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Formulation
Solvable model
Realistic calculations

2

[Duguet, Signoracci 2016]
[Tichai et al. 2019] 

[Duguet, Signoracci 2016]
[Qiu et al. 2019] 

1

[Gorkov 1958; Somà et al. 2011]
[Somà et al. 2013] 
[Signoracci et al. 2015]
[Henderson et al. 2014] 

Single-reference expansion many-body methods and symmetries

[Henly, Wilets, 1964]
[Duguet, Signoracci 2016]
[Tichai et al. 2018] 
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Particle number corrections in BMBPT

A. Tichai, P. Arthuis et al.   Phys.Lett. B786 (2018) 195-200 arXiv:1806.10931
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A-Body Hamiltonian A-Body wave-function
5 variables, A nucleons

Many-body problem

Single-reference expansion many-body methods

U(1) Symmetry

Open-shell

Degenerate

Improper starting point

Open-shell

Non-degenerate

Proper starting point

Closed-shell

Non-degenerate

Good starting point

Symmetry conserving expansion

such that

Full              as perturbed eigenstate.

Symmetry breaking expansion

such that

● Static / dynamical correlations

● Polynomial cost at given  order

● Truncated expansions break symmetry
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High order constrained BMBPT

Toward high orders
● Series behavior?
● Particle number asymptotic restoration?
● Check low orders

Constrained BMBPT
● Constrain average A at each order P.
● Convergence?

Workaround
● Numerically costly.
● A posteriori correction.

Truncation

Toy Model / Proof of principle

Realistic interaction

Far from model space convergence

CI truncation contamination at high order

More informations than standard MBPT

Building             CI Matrix.

Observables

A[P] = Atarget?BMBPT(P)

HFB

no
Result

yes

Why?
Truncated expansions → Wrong average particle number.

Intrisincally iterative

Particle number adjusted at each working order P.

               emax 2, 4, 6                      SD(T)(Q)

Order P constraint
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Bogoliubov reference state

Bogoliubov transformation Bogoliubov state

Quasi-particle excitations 

Breaks U(1) symmetry

Vacuum state
Reduces to SD in HA if V=0

unitary, i.e.
Orthonormal basis of Fock space

Reduces to npnh excit. in HA if V=0

Ritz variational problem with a Bogoliubov ansatz

HFB eigenvalue equation 

Minimize                                       while keeping

with 

Quasi-particle energies > 0Fully characterize

1) the Bogoliubov transformation unitary
2) particle number fixed on average 
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Time independent (un)constrained BMBPT

Splitting and basis

Perturbative expansion

Auxiliary problem

Two subcases considered:

Order-P approximation

Linked diagrams contributing to the wave-function
Computationally: Matrix-Vector product
Visited configuration space increasing at each order

Unconstrained:
● Constrained at HFB level
● AHFB matches A
● Series
Constrained:
● Constrained at working order P
● A[P] matches A
● Iterative process (root finding)
● Vacuum, splitting, expansion P-dependent
● Sequence of partial sums

Intermediate normalization
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Evaluation of observables

Observable O

● Partial sum of series.
● Visits smaller configuration space than the wave-function.
● Traditionally used in realistic calculations.
● Matches eigenvalue for eigenvectors.

Projective approach Expectation value approach

● Rational fraction.
● Visits same configuration space as the wave-function.
● Computationally expansive in realistic calculations.
● Bounded from below.
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Summary

Operator Eigenvalue Projective Pade 
resummation

Eigenvector 
Continuation

Exact

Lower index P removed in case of unconstrained BMBPT

Operator Eigenvalue Projective Pade 
resummation

Eigenvector 
Continuation

Exact 
Diagonalization
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O18, Emax 4, SDT + IT
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First results of unconstrained BMBPT

Maybe constraining would help?

See A. Tichai talk
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Constrained BMBPT Taylor series

Constrained BMBPT: find HFB with right perturbative particle number

Reminder: Chemical potential is order-dependent!
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Resummation of projective observables using Pade approximants

How to deal with divergent partial sums at x=1?

Unconstrained: resummation of the projective truncated series.

Constrained: resummation of the partial sum at each order.

Remarks: 
● Captures poles in the complex plane.
● Efficient at high order only: instabilities.
● No extra work: post-treatment only.
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Eigen-vector continuation

D. K. Frame et al. Phys. Rev. Lett 121.3 (2018)  arXiv: 1711.07090

visits a small space and is converging for small x
Extrapolate           by diagonalizing     on                                               or equivalently on 

Generalized

Eigenvalue Problem

Diagonalization on Krylov space: similar to Lanczos algorithm

Ground state

P-order approx. of     ground state connected to 

Excited states
Not done here but reachable too.

Observables

Remarks
● No need of computing the vectors explicitly
● Increases complexity
● Valid also at low orders
● Variational: improves at each iteration
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Summary

Operator Eigenvalue Projective Pade 
resummation

Eigenvector 
Continuation

Exact

Lower indice P removed in case of unconstrained BMBPT
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Resummed observables in unconstrained BMBPT

Still wrong particle number even in the limit...
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Resummed observables wrt. HFB
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Constrained BMBPT
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A posteriori correction

Goal : Correct for the discrepancy in average neutron / proton number without constraining at order P > 0

● No additional work (only one vacuum).
● Valid for small corrections.
● Apply to all computation methods of observables.
● Already used at order 3 in realistic calculations.
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A posteriori correction vs. HFB vacuum 
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Comparison with constrained BMBPT

Perturbative order P
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Conclusion

Accurate results at low order

A posteriori corrections

Resummation techniques

Particle number restoration

● Standard projective approach accurate (divergence at high order).
● Significant contamination to A appear early.

● Accurate workaround to constrained BMBPT.
● No additional cost.

● Pade does not help at low order.
● Eigenvector continuation: promising result
● What about computational cost?
● Increases convergence rate.

● Need commutation between A and H…
● … seem to appear at larger configuration space.
● SDT(Q)(P) : higher order in PT with full operator.
● Underlines the need for projection techniques.
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Thank you!

● Pepijn Demol
● Julien Ripoche
● Alexander Tichai
● Thomas Duguet
● Vittorio Somà
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Analytic continuation

Dillon Frame et al. Phys. Rev. Lett 121.3 (2018) arXiv: 1711.07090
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Importance truncation

A. Tichai, J. Ripoche, T. Duguet  arXiv:1902.09043 P=2
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