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PHYS 6330, Computational Physics Ill, QM II part

1 Analytic Structure for Spherical Well

In this exercise you will learn about analytic properties of the scattering amplitude. First, have a
look at this video — you will produce something similar. The exercise serves to get intuition about
scattering/bound state problems and the underlying analytic structure in terms of singularities
that manifest themselves as resonances and bound states — and how one transforms into the other
as the potential depth changes. For simplicity, you may set A = m = 1 in the entire problem. This
is also done in the video. Note: here we look at the S-wave only.

Our example is the spherical square well. We want to make an animation that shows the partial-
wave amplitude to(k) as a function of £ € C. Treating the problem in the complex k-plane is
slightly simpler because there is only one Riemann sheet while the complex E = h?k?/(2m)-plane
has two Riemann sheets.

1.

5.

Bound state problem: From topic 5, solve the bound-state problem numerically for a well that
allows for at least one S-wave bound state. Check the bound state condition to make sure the
state exists. Make a plot in which you show the RHS and LHS of Eq. (5.188) for illustration.

The power of analyticity: Bound state energies are pole positions of ¢y on the positive imagi-
nary k-axis. For the same well as before, search numerically for poles and confirm that their
positions (or, position if you have a well with only one bound state) coincide with the bound
state energies determined in 1.

. Pole trajectories: Trace the pole movements (“trajectories”) in the complex k-plane by plot-

ting log |to|(k) for different 0 < Vi < Vipax (make an animation). The logarithm only serves
to make poles more visible in the contour plot. This would look like in the video, but you do
not have to look for poles for every value of Vj which is quite cumbersome and takes a lot of
time. However, do the animation like in that video, i.e, complex plane to the left and phase
shift to the right, to see what effects poles have on the phase shift. Choose the maximal depth
of the well, Vihax, such that there you have at least two bound states.

. Comment your animation (A1t+7 to get to commenting mode in Mathematica):

(a) What do the poles do as the potential gets deeper? Give a qualitative explanation in
several complete phrases. In particular, discuss the role of resonances and bound states.

(b) What happens to the scattering length in the moment the first bound state is at thresh-
old, i.e., at k=07

(c) Inform yourself about Levinson’s theorem (HZ notes). Comment on how you can confirm
that theorem in your animation for the different cases of 0, 1, and 2 bound state(s).

(d) Have a look at this paper and in particular Fig. 1 and text commenting that figure. Can
you see any similarity of the pole trajectories to your animation? Speculate a bit at this
point, it is clear that you cannot fully understand the paper.

Export your animation and make a movie of less than 3MB size of it using, e.g., “handbrake”
to reduce file size. Attach that movie to your blackboard submission together with the
Mathematica notebook.


http://bulletin.gwu.edu/search/?P=PHYS+6330
https://www.dropbox.com/s/blq8jdksc4jqwqi/Trajectory_Vo_720p.m4v?dl=0
https://www.dropbox.com/s/blq8jdksc4jqwqi/Trajectory_Vo_720p.m4v?dl=0
https://arxiv.org/pdf/0801.2871.pdf
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2 Lippmann-Schwinger Equation

The goal of this exercise is to numerically solve the Lippmann-Schwinger equation (LSE) in s-wave
for the spherical-well potential, see Eq. (7.179). As parameters for the well, use the ones you have
employed in a previous computational exercise to calculate the phase shifts as a function of the
energy E = p?/(2m). The solution of the problem is divided into several steps. In your notebook,

e Use sections to follow the same numbering as below.
e Comment all steps in the text environment or inside code with (* [comment] *).
e Comment the logic of your program and which decisions you make, and why.

e Whenever you use a formula from the HZ notes, explicitly refer to it.

First of all, you need to find a solution strategy. In the lecture, we have discussed several alterna-
tives, and you have to choose one suitable for your problem (see discussion below). The numerical
procedure is the same for each alternative: Discretize the momenta in the s-wave LSE as discussed
to be able to use the matrix inversion trick to solve for Ty(p’,p). To your set of “off-shell” points
{qi}, i = 1,n, add an on-shell point ¢, which increases the dimension of the discretized Ty and Vj
from n to n + 1, as discussed. This will provide you the solution for the energy E = ¢2,/(2m). For
Vb, use the partial-wave projected potential in momentum space calculated in an analytic exercise
in the QMII course.

Check the limit considerations in the solution of that exercise. Consider: We found that V falls off
sufficienctly rapidly for the integral term in the LSE to converge. A way to solve the LSE, avoiding
the singularity in the integration at ¢ = v2m£FE, consists in deforming the original integration from
0 to oo, called C in the picture below. Indeed, one can integrate along a contour Cy = {¢q(1 —ia)},
g > 0 and o > 0 of the size of about o ~ 0.05 to 0.3. The integral over C equals the integral
over (9, if the integral over the arc segment at large ¢, called C3, vanishes. This situation can be
illustrated as follows:
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The possible problem is: even if the integration along C; converges, we have no guarantee that the
integration over C'3 vanishes, or that the integration of Cy converges. This has to be checked, and
the test will fail (see exercise below). The reason lies in the sin and cos functions in Vj that are no
longer bound for complex arguments. The way out of this problem is given by several alternatives:

1. Introduce form factors f(q) = A%/(q* 4+ A?) or higher powers thereof to replace Vy(p/, p) with
F@)Vo(@',p)f(p) to make the integrand over Cy convergent and the integral over C3 vanish.
Of course, after solving the LSE numerically, you have to take the limit A — co. This is, in
fact, a very similar trick we used to calculate Coulomb scattering: We first solved Yukawa
scattering and then took the limit g — 0 after solving the scattering problem.

2. The convergence problem comes from the Fourier transform of the potential, which contains
a sharp step. If, instead, you use the Woods-Saxon potential from a previous numerical
exercise, and calculate Vy(p'p) from it, you should find a much better and faster converging
asymptotic behavior for Vj, especially for complex momenta.
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3.

You can choose to not deform the integration contour at all. But then your numerics becomes
ill defined because your integration hits the singularity at ¢ = v2m£E. You then have to solve
the non-singular W-matrix equation first and follow the steps from the lecture notes to obtain
To from there.

Exercise:

1.

Check numerically Vo(p',p) at large, real p,p’ to confirm the asymptotic behavior found
analytically. For this, make a 3D plot in which you show Vj(p', p) multiplied with suitable
powers of p,p’ to illustrate the behavior.

. Make now p, p’ complex according to the above figure and check whether the integrand of the

LSE along C; still vanishes sufficiently fast (complex numbers now). This test will fail.

. Take a decision according to the alternatives outlined above and give reasons for your decision.

Have you tried more than one alternative? If so, discuss. Also, discuss with your classmates
which strategy could be easier to pursue. You may even decide that each of you tries a
different strategy to see what works best.

. For the numerical solution, you have to first generate your set of off-shell Gauss points,

together with weights, {(g;, w;)}. This is easily done in Mathematica. However, note that
the Gauss points are generated in a given interval, that you can choose, say, |0, 7/2[. Next you
have to make a suitable variable transformation (e.g., using tan) to map this finite interval to
]0, 0o[. This will change the position of the Gauss points and also transform the weights (write
a general integral as sum to see this immediately). With your new {(¢;, w;)}, approximate
the integral fooo dx exp(—z) and compare to the analytic value to check that your substitution
works and you have enough Gauss points (you shouldn’t need more than 40 or your program
might run slow).

. Define now the (n + 1) x (n + 1) matrices Vp, Ty and G, the latter containing the ¢ factor

and Gauss weights according to Eq. (7.179) and as discussed in class.

. Solve for Tj for at least five different energies E > 0 and compare it to the analytically known

to. Make a plot in which you show the analytically known Re #o(F) and Im ¢o(FE). In the
same plot, show your numerical solutions of the present exercise indicated with large dots.
Make a really nice plot this time, please.
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