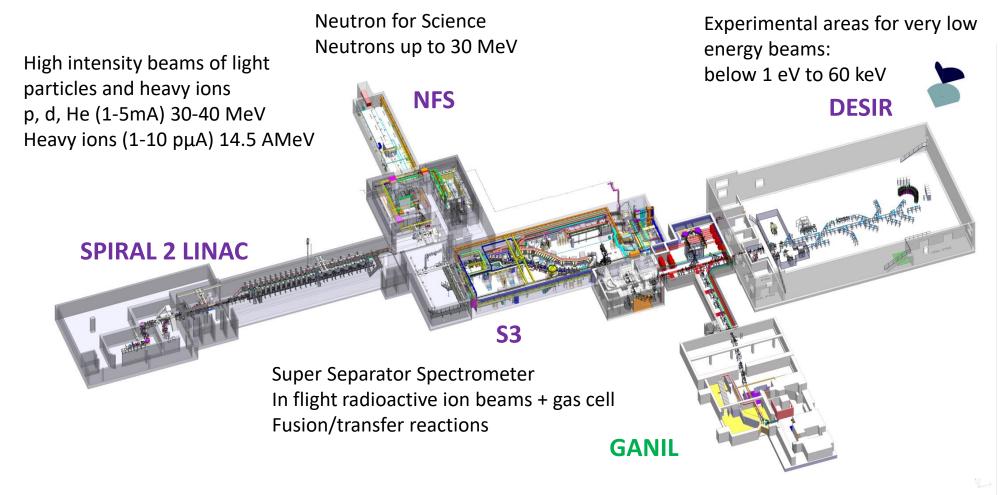
Radioactive ion beam production

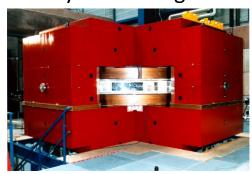

Some preliminary reflections

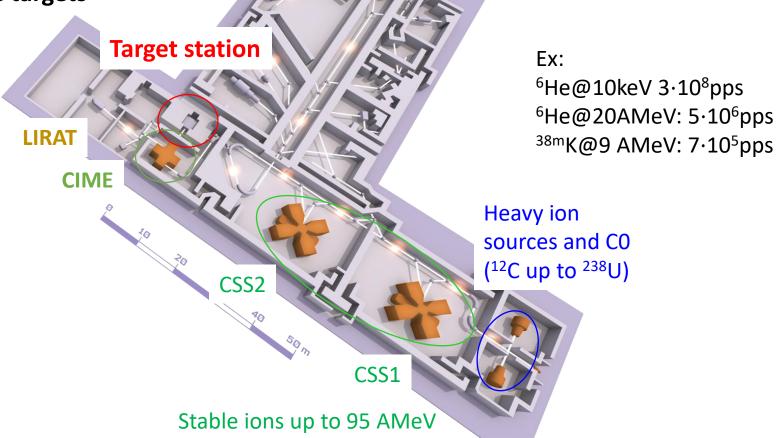
- What is existing now or under construction
- What we proposed since prospectives IN2P3 and within the call of the committee
- Summary table for ERL / e- ion scattering facility

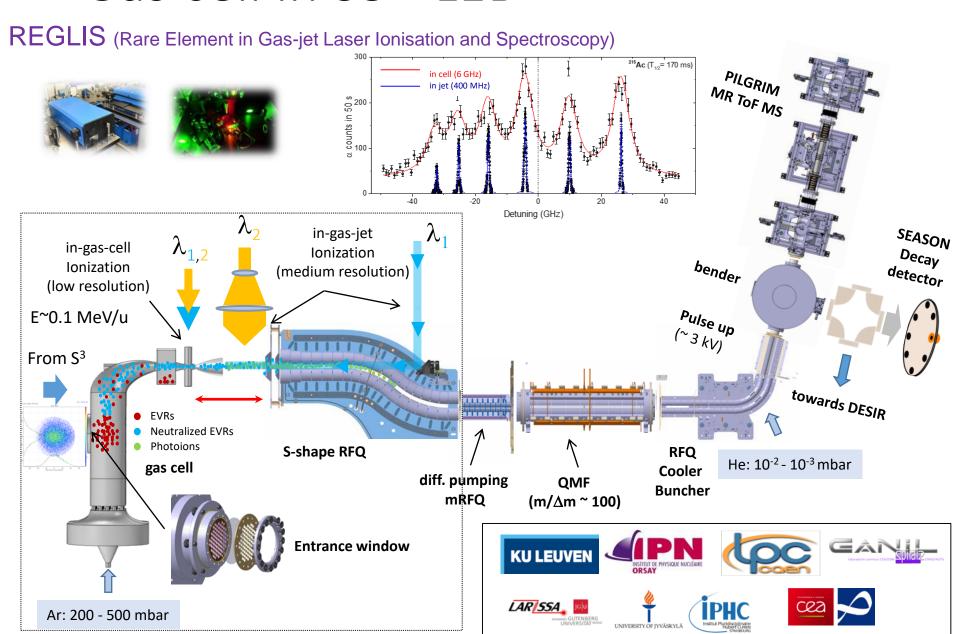
- What is existing now or under construction
- What we proposed since prospectives IN2P3 and within the call of the committee
- Summary table for ERL / e- ion scattering facility

GANIL-SPIRAL 2 — Phase 1

Experimental areas and cyclotrons: heavy ions (pμA) up to 95AMeV **SPIRAL 1 facility**: RIBs from fragmentation




Re-accelerated beams at SPIRAL 1

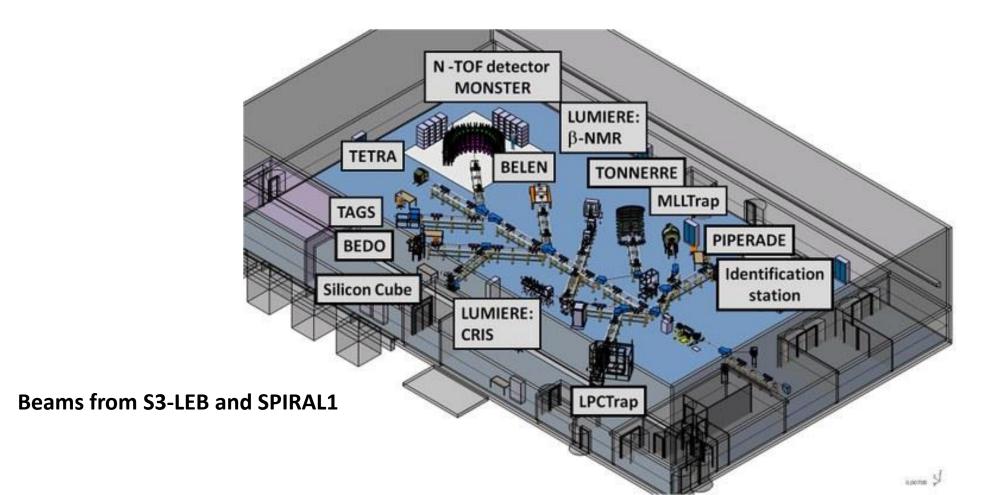

« Cyclotron d'ions de moyenne énergie »

Gas cell in S3 - LEB

Ex: 100Sn@30keV ~10 pps

A few pps to 10⁵ pps N=Z beams and superheavies

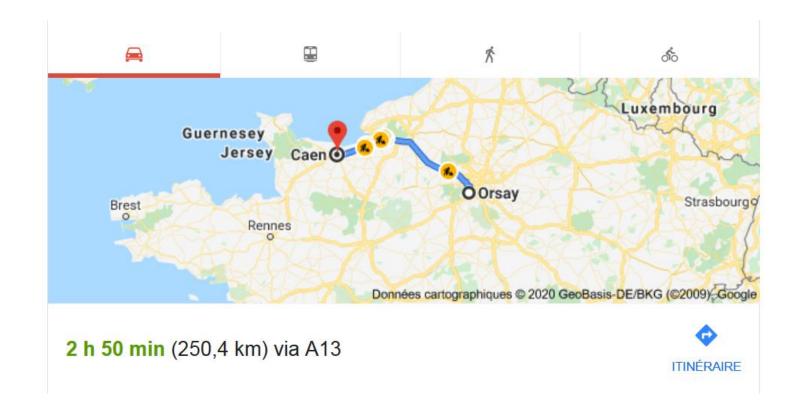
Commissioning in 2023


Nominal intensities with A/q=7 injector → 2027

DESIR facility

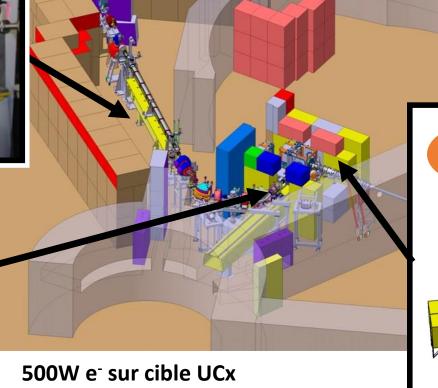
Very low energy beams:

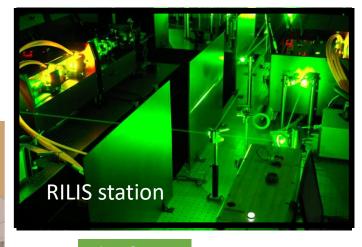
Spectroscopy of ground state properties of exotic nuclei produced at S3-LEB and SPIRAL 1

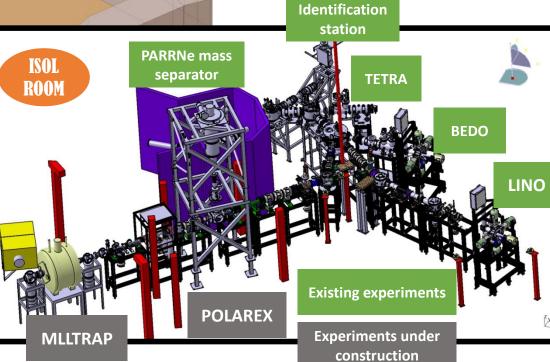

Traps, laser systems, and decay spectroscopy

Radioactive ion beam facilities in France

• 2 facilities: ALTO @IJCLab and GANIL-SPIRAL2

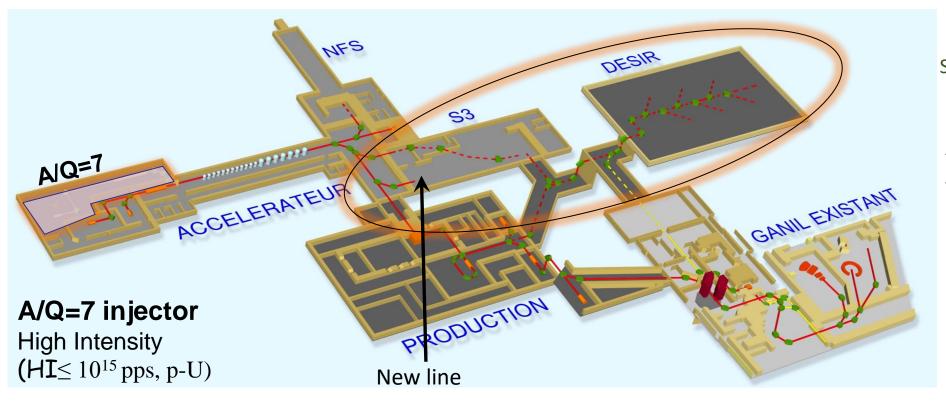

Acceptate Lineague of Tandom à Orsay Photofission (installation pilote)





Ex: 3·10⁷ pps of ¹³²Sn

Faisceaux ISOL de basse énergie Décroissance, piégeage



- What is existing now or under construction
- What we proposed since prospectives IN2P3 and within the call of the committee
- Summary table for ERL / e- ion scattering facility

A/Q = 7 Injector

I. Stefan *Scientific Coordinator*

M. H. Moscatello *Technical Coordinator*

New injector for Linag presented in: Spiral Physics Case, page 171 (2006)

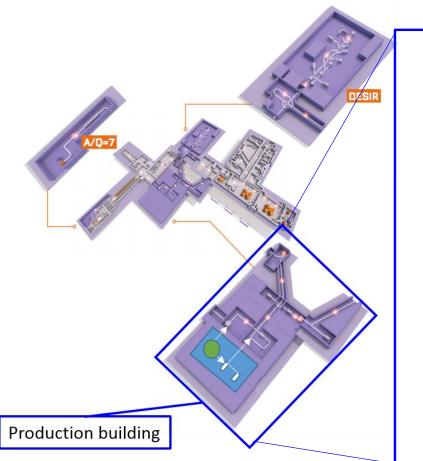
A/Q=3 (existing): E<=14.5 MeV/A A/Q=7 : E<=7 MeV/A

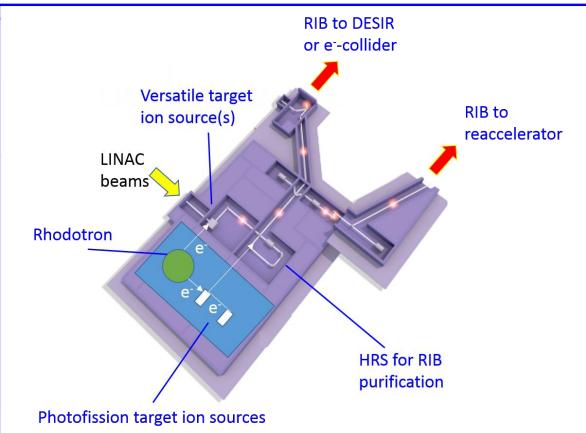
New beamline?

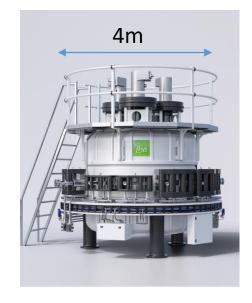
- not part of this project
- good future opportunity
- independent of S3
- advantageous use of heavy beams (Pb,U)

A multi-user facility

In the next ~10 years


A production building with several production caves


ISOL / gas cell with dedicated driver to complement the LINAC


- Fusion and transfer reaction with the LINAC beams (including A/Q=7)
- Photofission or light particle induced fission (p,d, ³He/⁴He): **up to ~10**¹³ **fissions/s** using ALTO's expertise

Instead of expensive, quite inadapted SPIRAL 2 phase 2 original production mechanism

Rhodotron® TT300-HE
HighEnergyElectronGenerator

~7M€ according to IBA inc. Beam line and diagnostics

- What is existing now or under construction
- What we proposed since prospectives IN2P3 and within the call of the committee
- Summary table for ERL / e- ion scattering facility

Summary table: production for ERL / e- ion scattering facility

Facility	Beams	Reaction mechanism	When	Comments
SPIRAL 1	A<80, intensities up to ~10 ⁹ pps	Fragmentation	Many are ready, some to develop	Fusion evaporation possible (TULIP)
S3-LEB	Mid-heavy to heavy neutron deficient beams A >40 → ~270 Intensities up to 10 ⁶ pps	Fusion evaporation	Starting on-line development as of 2023	
Gas cell/ production cave with A/q=7	Light to heavy (N=126) neutron rich beams, with intensities up to 10 ⁵ ?pps	Multinucleon transfer	* After A/q is ready > 2027 * ideally in the production building ~2030?	See contribution of C. Theisen
Fission fragments from LINAC	70 <a<150 intensities="" to="" up="" with="" ~10<sup="">9 pps</a<150>	Fusion reactions Light particle induced fission (p,d,3He,4He)	Production building, ~2030?	See contribution of Delahaye et al.
Fission fragments from Rhodotron	70 <a<150 intensities="" to="" up="" with="" ~10<sup="">9 pps</a<150>	Photofission à la ALTO	Production building, ~2030?	

Summary table: production for ERL / e- ion scattering facility

Facility	Beams	Reaction mechanism	When	Comments
SPIRAL 1	A<80, intensities up to ~10 ⁹ pps	Fragmentation	Many are ready, some to develop	Fusion evaporation possible (TULIP)
S3-LEB	Mid-heavy to heavy neutron deficient beams A >40 → ~270 Intensities up to 10 ⁶ pps	Fusion evaporation	Starting on-line development as of 2023	
Gas cell/ production cave with A/q=7	Light to heavy (N=126) neutron rich beams, with intensities up to 10 ⁵ ?pps	Multinucleon transfer	* After A/q is ready > 2027 * ideally in the production building ~2030?	See contribution of C. Theisen
Fission fragments from LINAC	70 <a<150 intensities="" to="" up="" with="" ~10<sup="">9 pps</a<150>	Fusion reactions Light particle induced fission (p,d,3He,4He)	Production building, ~2030?	See contribution of Delahaye et al.
Fission fragments from	70 <a<150 intensities="" to="" up="" with="" ~10<sup="">9 pps</a<150>	Photofission à la ALTO	Production building, ~2030?	
Rhodotron				

Some remarks

- The ISOL technique proposed here is well suited to the production of the beams requested by the e⁻ ion scattering facility
 - $10^4 10^8$ pps max with min half life ~1s because of trapping
 - No need to go for a full scale SPIRAL 2 phase 2 in the original production scheme
 - Scheme not optimized / is a penalty for many exotic isotopes with half lives ~s / min
 - Highest intensity for some isotopes of no use: ¹³²Sn at more than 10⁸ pps is enough and is readily available at existing facilities such as ISOLDE
- The production building would allow an optimized use of DESIR instrumentation in an intermediate phase
- A driver for photofission is advantageous in many respects
 - Real multi-user facility
 - Ambitious programs with long beam times become possible at S3
 - Ambitious programs for DESIR with neutron rich beams becomes possible
 - Continuous R&D for fission fragment production from photofission becomes possible
 - Rhodotron with 2 outlets
- Interdisciplinary research will increase the need for LINAC beams availability
- Several production caves are mandatory for R&D and operation
 - Striking example: number of available beams and beam time at SPIRAL 1 (1 target station) vs ISOLDE (2 target stations)
 - Several caves: possible adaptation to different production mechanisms

Next steps

- Table for photofission fragment intensities can relatively easily be compiled
 - Starting from estimates for SPIRAL 2 phase 2
- Intensity estimates for transfer reactions is practically not feasible
- A feasibility study of the production building is only possible if including engineers (H. Franberg, X. Hulin + ?)