
Symmetry restoration in the mean-field

description of proton-neutron pairing

Antonio Márquez Romero

September 3, 2019

Recent advances on proton-neutron pairing, ESNT 2-6 September 2019



Table of contents

1. Introduction

2. Mean-field description and beyond

3. Results

4. A = 4 and A = 6 cases

5. Separable pairing

6. Conclusions

1



Introduction



Motivation

• Proton-neutron (pn) pairing correlations have been largely neglected

in most of the calculations in nuclear structure.

• Coexistence between proton-neutron (isoscalar) and like-particle

(isovector) condensates is expected to appear in N = Z nuclei1.

Isovector condensate Isoscalar-isovector

coexistence

• The aforementioned coexistence is elusive2 and “no

symmetry-unrestricted mean-field calculations of pn pairing with an

isospin conserving formalism have been carried out”3.

1Frauendorf, S., Macchiavelli, A. O. (2014). Overview of np pairing. PPNP, 78
2Rrapaj, Ermal, Macchiavelli A.O., and Gezerlis A. Symmetry restoration in

mixed-spin paired heavy nuclei. PRC 99.1 (2019)
3Perliska, E., et al. ”Local density approximation for pn pairing correlations:

Formalism.” PRC 69.1 (2004): 014316.

2



Motivation

• Proton-neutron (pn) pairing correlations have been largely neglected

in most of the calculations in nuclear structure.

• Coexistence between proton-neutron (isoscalar) and like-particle

(isovector) condensates is expected to appear in N = Z nuclei1.

Isovector condensate Isoscalar-isovector

coexistence

• The aforementioned coexistence is elusive2 and “no

symmetry-unrestricted mean-field calculations of pn pairing with an

isospin conserving formalism have been carried out”3.

1Frauendorf, S., Macchiavelli, A. O. (2014). Overview of np pairing. PPNP, 78
2Rrapaj, Ermal, Macchiavelli A.O., and Gezerlis A. Symmetry restoration in

mixed-spin paired heavy nuclei. PRC 99.1 (2019)
3Perliska, E., et al. ”Local density approximation for pn pairing correlations:

Formalism.” PRC 69.1 (2004): 014316.

2



Motivation

• Proton-neutron (pn) pairing correlations have been largely neglected

in most of the calculations in nuclear structure.

• Coexistence between proton-neutron (isoscalar) and like-particle

(isovector) condensates is expected to appear in N = Z nuclei1.

Isovector condensate Isoscalar-isovector

coexistence

• The aforementioned coexistence is elusive2 and “no

symmetry-unrestricted mean-field calculations of pn pairing with an

isospin conserving formalism have been carried out”3.
1Frauendorf, S., Macchiavelli, A. O. (2014). Overview of np pairing. PPNP, 78
2Rrapaj, Ermal, Macchiavelli A.O., and Gezerlis A. Symmetry restoration in

mixed-spin paired heavy nuclei. PRC 99.1 (2019)
3Perliska, E., et al. ”Local density approximation for pn pairing correlations:

Formalism.” PRC 69.1 (2004): 014316.

2



SO(8) solvable model

Pairing Hamiltonian:

Ĥ =

Isovector contribution︷ ︸︸ ︷
−g(1− x)

∑
ν

P̂ †ν P̂ν −g(1 + x)
∑
µ

D̂†µD̂µ︸ ︷︷ ︸
Isoscalar contribution

P̂ †ν =

√
2l + 1

2

(
a†
l 12

1
2

a†
l 12

1
2

)L=0,S=0,T=1

M=0,Sz=0,Tz=ν
(1)

D̂†µ =

√
2l + 1

2

(
a†
l 12

1
2

a†
l 12

1
2

)L=0,S=1,T=0

M=0,Sz=µ,Tz=0
(2)

x: mixing parameter, g: strength of the interaction.

Pang, Sing Chin. ”Exact solution of the pairing problem in the LST scheme.” Nuclear Physics A 128.2 (1969):

497-526. 3
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Ĥ =

Isovector contribution︷ ︸︸ ︷
−g(1− x)

∑
ν

P̂ †ν P̂ν −g(1 + x)
∑
µ

D̂†µD̂µ︸ ︷︷ ︸
Isoscalar contribution

P̂ †ν =

√
2l + 1

2

(
a†
l 12

1
2

a†
l 12

1
2

)L=0,S=0,T=1

M=0,Sz=0,Tz=ν
(1)

D̂†µ =

√
2l + 1

2

(
a†
l 12

1
2

a†
l 12

1
2

)L=0,S=1,T=0

M=0,Sz=µ,Tz=0
(2)

x: mixing parameter, g: strength of the interaction.

Pang, Sing Chin. ”Exact solution of the pairing problem in the LST scheme.” Nuclear Physics A 128.2 (1969):

497-526. 3



Mean-field description and

beyond



Hartree-Fock-Bogoliubov (HFB) formalism

Starting point: HFB calculation, by means of a transformation from the

single-particle basis (â, â†) to the quasiparticle basis (β̂, β̂†)

β̂†i =
∑
k

uikâ
†
i + vikâi −→ β̂|Ψ〉 = 0

including spin and isospin mixing. By means of the Thouless theorem, we

include the contribution from each correlated pair in the wavefunction

|Ψ〉 = N exp
(
Ẑ+
)
|0〉 (3)

with

Ẑ+ =
∑

ν=±1,0

pν P̂
+
ν +

∑
µ=±1,0

dµD̂
+
µ (4)

Only axial pairs are needed

p0 = sin(α/2)e−iϕ, d0 = cos(α/2)eiϕ (5)

The resulting HFB energy being E = 〈Ψ|Ĥ|Ψ〉

Ring, Peter, and Peter Schuck. The nuclear many-body problem. Springer Science & Business Media, 2004. 4
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Ẑ+ =
∑

ν=±1,0

pν P̂
+
ν +

∑
µ=±1,0

dµD̂
+
µ (4)

Only axial pairs are needed

p0 = sin(α/2)e−iϕ, d0 = cos(α/2)eiϕ (5)

The resulting HFB energy being E = 〈Ψ|Ĥ|Ψ〉
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HFB results4
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Figure 1: Energy (arbitrary units) as a function of the tuning parameter x for a

model-space with l = 2, A = 12 obtained from the HFB and exact solutions.

4A.M. Romero, J. Dobaczewski, A. Pastore. APPB 49.3 2018 5



HFB results
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Figure 2: Normalised “number of pairs” as a function of the tuning parameter

x computed using the HFB method.
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Beyond mean-field: restoration of broken symmetries

The quasiparticle vacuum |Ψ〉 is a superposition of states with good

particle (A), spin (S) and isospin (T ) numbers,

|Ψ〉 =
∑
AST cAST |AST 〉, leading to broken symmetries.

By means of

projection methods, these symmetries can be restored,

|AST 〉 = P̂AP̂SP̂T |Ψ〉,
with

P̂A|Ψ〉 =
1

2π

∫ 2π

0

dϕeiϕ(Â−A)|Ψ〉 (6)

P̂SS′
zSz
|Ψ〉 =

2S + 1

8π2

∫
dΩSD

S∗
S′
zSz

(ΩS)R̂(ΩS)|Ψ〉 (7)

P̂TT ′
zTz
|Ψ〉 =

2T + 1

8π2

∫
dΩTD

T∗
T ′
zTz

(ΩT )R̂(ΩT )|Ψ〉 (8)

and the “projected energy” is calculated as

Eproj =
〈Ψ|Ĥ|AST 〉
〈Ψ|AST 〉

Sheikh, J. A., et al. ”Symmetry restoration in mean-field approaches.” arXiv:1901.06992 (2019). 7
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Choice: variate, then project; or project, then variate?

We find two options to perform beyond mean-field calculations,

• Projection after variation (PAV):

δ
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

∣∣∣∣
|ΨPAV〉

= 0 −→ EPAV
proj =

〈ΨPAV|Ĥ|AST 〉
〈ΨPAV|AST 〉

• Variation after projection (VAP):

δ
〈Ψ|Ĥ|AST 〉
〈Ψ|AST 〉

∣∣∣∣
|ΨVAP〉

= 0 −→ EVAP
proj =

〈ΨVAP|Ĥ|AST 〉
〈ΨVAP|AST 〉

As these methods rely upon the variational principle, the VAP approach

should perform better.

8
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Signature of the states

• States of good quantum numbers |AST 〉 are also eigenstates of the

signature operators in spin and isospin space

R̂S(π) = e−iπŜy R̂T (π) = e−iπT̂y (9)

• Signature of axial (projection zero) states:

R̂S(π)R̂T (π)|ST 〉 = (−1)S+T |ST 〉 (10)

• Signature of particle-number projected states:

R̂S(π)R̂T (π)|A〉 = R̂S(π)R̂T (π)
(Ẑ+)A/2

(A/2)!
|0〉 = (−1)A/2|A〉 (11)

• Therefore
R̂S(π)R̂T (π)|AST 〉 = (−1)A/2|AST 〉

= (−1)S+T |AST 〉
(12)

• Selection rule for the projected states:

• If S + T = even −→ A/2 = even

• If S + T = odd −→ A/2 = odd

9
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Figure 3: HFB (top) and VAP (bottom) energy (arbitrary units) surface as a

function of the parameters α and ϕ for different values x of the interaction, for

S = T = 0 and for a model-space with Ω =
∑

l(2l + 1) = 12, A = 24. Steps

of ∆E = 20, 15, 13, 17 and 20, respectively.
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Energy
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Figure 4: Energy (arbitrary units) as a function of the tuning parameter x for a

model space with spatial degeneracy Ω = 12 and A = 24, S = T = 0, obtained

for HFB, PAV and VAP methods and comparing them to the exact solutions.
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Energy: exact and VAP comparison
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Differences
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Pairing coexistence seen by the VAP approach!
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Figure 5: Norm of isoscalar pairs (contribution to the total wavefunction of

the nucleus) as a function of the tuning parameter x obtained from VAP and

PAV (HFB) methods.
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Pairing coexistence for different A, S, T
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Deuteron transfer, the link between theory and experiment

−1.0 −0.5 0.0 0.5
x

0.0

0.2

0.4

0.6

0.8

1.0

|〈A
+
2,
1,
T
||D̂

+
||A

,0
,T

〉|2
/m

ax

Lines = Exact
Symbols = VAP

0 2 4 6 8

T

0

50

m
ax

−1.0 −0.5 0.0 0.5 1.0
x

Lines = Exact
Symbols = VAP

4 8 12 16 20

A

50

80

m
ax

T = 0
T = 1
T = 2

T = 3
T = 4
T = 5

T = 6
T = 7
T = 8

A = 4
A = 6
A = 8

A = 10
A = 12
A = 14

A = 16
A = 18
A = 20
A = 22

A.M. Romero, J. Dobaczewski, A. Pastore. PLB 795 (2019) 16



A = 4 and A = 6 cases
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Projection gives exact states!

For A = 4, S = T = 0, there are only two possible configurations:

(a) (b)

p p

n n

p p

n n

|A = 4, S = T = 0〉 =

[
α
(
P̂+P̂+

)S=0,T=0

+ β
(
D̂+D̂+

)S=0,T=0
]
|0〉
(13)

For A = 6,

|A = 6, S = 1, T = 0〉 = D̂+
0 |A = 4, S = T = 0〉 (14)

No longer true for A > 6. It is not possible to describe those states

entirely with our isoscalar and isovector pairs.

18
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Importance of the separate symmetry restorations
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Figure 6: HFB (first row), particle-number restored (second row), spin plus

isospin restored (third row) and particle number, spin and isospin restored

(fourth row) energy surfaces. 19



Separable pairing



Realistic separable interaction in the pairing channel

V (r1, r2; r′1, r
′
2) = −δ(X −X ′)δ(Y − Y ′)δ(Z − Z ′)
× P (x)P (y)P (z)P (x′)P (y′)P (z′)

× [W +BP σ −HP τ −MPσP τ ]

(15)

where ri = (xi, yi, zi), x = x1 − x2 and X = 1
2 (x1 + x2). The

interaction is modelled by a Gaussian

P (x) =
1√
4πa

e−x
2/(4a2) (16)

Benchmarked with the spherical code HOSPHE with D1 parametrization

a (fm) W (MeV) B (MeV) H (MeV) M (MeV)

0.636 -369 369 0 0

Followed by implementation of isoscalar pairing and the

symmetry-restoration methodology.
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Conclusions



Summary and ongoing work

• Symmetry-restored mean-field techniques accurately describes the

exact solution within a simple SO(8) pairing interaction model and

the coexistence of the isoscalar and isovector pair condensates.

• Restoration of both angular momentum and isospin seems to be of

crucial importance for the description of pairing coexistence.

• Further studies are to be carried out using realistic interactions and

shell structure settings.
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Thank you for your attention.
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