Proton Neutron Pairing Correlations within a mean field picture

- The constant gap T=0 and T=1 pairing model and model properties
- The effect on binding energies
- Rotational states within a T=0 and T=1 model description
- T=0 pair scattering
- Symmetry breaking of the T=1 pairing interaction and calculations of T=1 rotational states in odd-odd nuclei

ROYAL INSTITUTE OF TECHNOLOGY

Spectrum 74Kr

Systematics of even-even $T_z = 1$ nuclei in the A = 80 region: High-spin rotational bands in ⁷⁴Kr, ⁷⁸Sr, and ⁸²Zr

ROYAL INSTITUTE OF TECHNOLOGY

Ramon Wyss, Saclay 2018

N=90 isotones – comparison between experiment and extended TRS model calculations

$$E(4_1^+)/E(2_1^+) = 3,33\frac{J^{(2)}}{J^{(4)}}$$

TABLE I: The calculated and experimental $E(4_1^+)/E(2_1^+)$ ratio for the N=90 isotones.

Nucleus	Calculated $E(4_1^+)/E(2_1^+)$	Experimental $E(4_1^+)/E(2_1^+)$
^{150}Nd	2.90	2.927
^{152}Sm	3.04	3.009
^{154}Gd	3.12	3.015
^{156}Dy	3.07	2.934

E Ganioğlu, R Wyss, P Magierski Physical Review C 89 (1), 014311; 2014

Structure of Nucleonic Pairs

- $N=Z \rightarrow$ (almost) identical wavefunctions
- particle particle interaction between pairs with identical orbits
- Pauli Principle

```
Isovector Pairs T=1, S=0
```


Isoscalar Pairs T=0, S=1

Generalised pairing interaction

- Start from a basis in which signature α is a good quantum number: $R_x(\pi)|\phi_j\rangle = +/-i |\phi_j\rangle = e^{i\alpha}|\phi_j\rangle, \alpha = +/-1/2,$
- The standard pairing interaction scatters pairs in opposite signature orbits,

$$\alpha \overline{\alpha} \leftrightarrow \alpha' \overline{\alpha'} \qquad \qquad P_{1 \pm 1}^{\dagger} = \sum_{i > 0} a_{i p}^{\dagger} a_{\tilde{i} p}^{\dagger}$$

• All possible couplings need to be present: I = 1 nn, pp, and T = 1 np

$$P_{1\,0}^{\dagger} = \frac{1}{\sqrt{2}} \sum_{i>0} (a_{i\,n}^{\dagger} a_{\tilde{i}\,p}^{\dagger} + a_{i\,p}^{\dagger} a_{\tilde{i}\,n}^{\dagger})$$

For the T=0 pairingg, *two* different couplings are possible:
 a) a T=0 np pair scatters between orbits of opposite signature,

$$\alpha \overline{\alpha} \leftrightarrow \alpha' \overline{\alpha'} \qquad P_{10}^{\dagger} = \frac{1}{\sqrt{2}} \sum_{i>0} (a_{in}^{\dagger} a_{ip}^{\dagger} - a_{ip}^{\dagger} a_{in}^{\dagger})$$

• b)a T=0 np pair scatters between orbits of the same signature,

$$\alpha \alpha \leftrightarrow \alpha' \alpha' \qquad \tilde{P}_{00}^{\dagger} = \frac{1}{\sqrt{2}} \sum_{i>0} (a_{in}^{\dagger} a_{ip}^{\dagger} + a_{ip}^{\dagger} a_{in}^{\dagger})$$

Is pairing a L=0 interaction?

- Depends whom you are asking
- Shell model: yes and very relevant for T=1 interaction.
 - For T=0, there is a dominant J=1 component but what is the L=? In singel j-shell, e.g. j=d5/2 ratio (L=0/L=2) = 6/5d3/2 ratio (L=0/L=2) = 5/24
- The L=0, T=0 coupling arises strongest between spin orbit partners, e.g. d3/2 and d5/2 etc, since in order to have S=1, the individual I couple I_m and I_{-m} . It becomes quenched by spin-orbit ($\sigma \tau \sigma \tau$)

For mean field, definitively not – L is not determined-For a simple seniority interaction GP+P all multipoles can be present.

ROYAL INSTITUTE OF TECHNOLOGY Investigate the generalised pairing hamiltonian

$$\hat{H}^{\omega_{\tau}} = \hat{h}_{sp} - G_{t=1} \hat{P}_{1}^{\dagger} \hat{P}_{1} - G_{t=0} \hat{P}_{0}^{\dagger} \hat{P}_{0} - \vec{\omega}_{\tau} \vec{\hat{t}},$$

$$h_{\alpha\beta} = e_{\alpha}\delta_{\alpha\beta} - \omega j_{\alpha\beta}^{(x)} + \Gamma_{\alpha\beta},$$

Employ approximate number projection via L.N.

$$\hat{\mathcal{H}}^{\omega} = \hat{H}^{\omega} - \sum_{\tau} \lambda_{\tau}^{(1)} \Delta \hat{N}_{\tau} - \sum_{\tau\tau'} \lambda_{\tau\tau'}^{(2)} \Delta \hat{N}_{\tau} \Delta \hat{N}_{\tau'}$$

Investigate the BCS- and HFB solution as a function of strength

-BCS G
$$T=0/G$$
 $T=1 = ?$ and HFB G $T=0/G$ $T=1 = ?$

Lipking Nogami corrections:

$$\langle \mathrm{LN} | \Delta \widehat{N}_{\tau} | \mathrm{LN} \rangle = 0,$$

$$\langle LN | \Delta \widehat{N}_{\tau} \Delta \widehat{N}_{\tau'} | LN \rangle = 0$$

Intensity T=0/T=1 ; Resultats (1)

48Cr Calculation 1) meanfield = W.S.

2) X=
$$\tilde{G}^{t=0} / G^{t=1}$$

Incompatible?

-T=1 with T=0

Iso spin mixing due to T=1 pairing interaction

T=1 pairing violates isospin – resulting in deformation in iso-space
T=0 pairing restores iso spin (scalar in iso space)
We need iso spin breaking to calculate iso spin excited states.

X=Intensity T=0/T=1

PLB 393 (1997) 1

Mass excess due to Wigner energy

N=Z nuclei appear to be more bound, o-o have a repulsive term

Generalised blocking effect: T=0 pairng correlations present only in N~Z nuclei

Interpretation of the Wigner Energy as due to RPA Correlations

Kai Neergard

In a schematic model with equidistant fourfold degenerate single-nucleon levels, a conventional isovector pairing force and a symmetry force, the RPA correlation energy rises almost linearly with the isospin T, thus producing a Wigner term in accordance with the empirical proportionality of the symmetry energy to T(T+1).

PLB 537 (2002), 287 PLB 572(2003), 159

Replace LD formula $(N-Z)^2$ with T(T+1)

The alignment in iso space *tx* and the respons of T=1 and T=0 pair field. Calculations for 24Mg and 48Cr.

Meissner effect in isospace!

ROYAL INSTITUTE OF TECHNOLOGY

Moments of inertia and T=0 Pairing Correlations

Ramon Wyss, Saclay 2018

Exact solutions in single j-shell model

48Cr, critical strength

ROYAL INSTITUTE OF TECHNOLOGY

Generic features of the alignment in the presence of the different T=0 and T=1 pairing modes

No effect on MoI from T=0 pairing in a single j-shell

Effect of T=0 Pairing on MoI

ROYAL INSTITUTE OF TECHNOLOGY

Measuring Pair Transfer via Band Crossing at High Spins

Ramon Wyss, Saclay 2018

Levelscheme of 73Kr

N.S.Kelsall et. al., Phys.Rev. C65, 044331 (2002)

WS sp diagramme

Alignments and Routhians for 73Kr

good agreement for low spin for the two neg. par. bands – disagreement at high spins

good agreement for the pos.par. band (g9/2) over the entire spin range

Assume an entire different configuration:

Move the neutron from neg. par. f/p orbit into g9/2 and make a 2qp proton excitation from a f/p orbit into g9/2

ν g9/2 pos par (+,+1/2) Π:[f/p x g9/2] neg par (-,-/+1/2)

Alignment and Routhian for the new configuration

T=1 scenario:

conf I

 $\alpha^+_{\nu(f/p)} \prod BCS_{\nu} > \prod BCS_{\pi} >$

conf II

 $|\alpha_{v(g9/2)}^{+}\prod BCS_{v} > \alpha_{\pi(g9/2)}^{+}\alpha_{\pi(fp)}^{+}\prod BCS_{\pi} > |$

$\operatorname{conf}_{g9/2} \ \alpha^+_{v(g9/2)} \prod BCS_v > \prod BCS_\pi >$

<conf I |O(E2)| conf II > forbidden <conf II |O(E1)| conf g9/2> allowed

Scattering of a T=0 np pair

TRS calculations with T=0 and T=1 pairing

Same configuration blocked in both calculations – phase transition from T=1 to T=0 pairing

Pairing gaps for 73Kr

ROYAL INSTITUTE OF TECHNOLOGY

Mass Differences

Ramon Wyss, NBI, Dec 16, 2005

Mass difference in the presence of T=0 pairing:

ROYAL INSTITUTE OF TECHNOLOGY

- Groundstate of e-e nucleus is a condensate of T=0 np-pairs
- Remove(add) one T=0 pair, go from e-e to o-o nucleus
- Hence, o-o nuclei as bound as e-e, no difference in B.E.

Energy difference between T=1 and T=0 o-o N=Z nuclei

Energy difference decomposed in pairing energy and symmetry energy
 Symmetry energy assumed 75T(T+1)

A.O. Macchiavelli, PRC61, 041303R(2000)

Problem for T=0 scenario?

Odd-odd nucleus

odd-odd T=0 nucleus has always a given spin (odd spin) and parity (even).

This level is blocked for pairing correlations, irrespectively we deal with T=0 or T=1 pairing. The symmetry of the wavefunction of e-e nuclei is different from that of o-o

Massdifference in the presence of T=0 pairing

- T=0 states in o-o nuclei carry angular momentum
- cannot be described by the BCS-vacuum of e-e nuclei (time even)
- Correspond to 2qp excitations

ROYAL INSTITUTE OF TECHNOLOGY

$$\Psi_{T=0}^{o-o} = \alpha_{1n}^{+} \alpha_{1p}^{+} | VAC_{BCS} >$$
$$| VAC_{BCS} > = \prod_{i>0} (\mu_{i} + \nu_{i1} C_{ip}^{+} C_{\bar{i}p}^{+} + \nu_{i2}^{*} C_{ip}^{+} C_{\bar{i}n}^{+})$$

$$(\mathcal{U}_{i}+\mathcal{V}_{i1}\mathcal{C}_{in}^{+}\mathcal{C}_{in}^{+}+\mathcal{V}_{i2}\mathcal{C}_{in}^{+}\mathcal{C}_{ip}^{+})$$

Odd-even mass differences

- B.E. (A) $\frac{1}{2}$ (B.E. (A+1) + B.E. (A-1)) = Δ_{oe} $\Delta_{oe} \sim \Delta_{BCS}$
- Where $\Delta_{BCS} = \operatorname{sqrt}(\Delta^2_{T=1+}\Delta^2_{T=0})$
- The last proton and neutron interact via the residual proton neutron interaction, δ_{np}
- B.E.(A_{ee})- B.E.(A_{oo}) ~ 2 Δ_{BCS} δ_{np}
- In N=Z nuclei, we expect δ_{np} to be stronger (maximum overlap). Should be seen in experiment.

ROYAL INSTITUTE OF TECHNOLOGY

Masses summary1

ROYAL INSTITUTE OF TECHNOLOGY • o-o N=Z nuclei are less bound than N \neq Z

 Indicative of larger gap (pairing correlations) in e-e N=Z nuclei

Comparison between T=0 and T=2

Competition between 2qp excitation and symmetry energy in o-o nuclei

ROYAL INSTITUTE OF TECHNOLOGY

ROYAL INSTITUTE OF TECHNOLOGY

