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•  Definition of collectivity for pairing modes (correlation energies, 
  pair-creation matrix elements, coherent wave functions, etc) 
•  Dynamical tests of pairing modes (pair transfer, two-particle break-up,  
  two-particle knock-out, two-particle decay, etc) 
•  Reaction mechanism for two-particle transfer process 
•  Space correlations  
•  Q-value effects 
•  Weakly-bound systems, coupling to break-up channels and effects of 
  continuum.  One-dimensional case 
•  Pairing vibrations.  Shape coexistence.  Phase transitions 
•  Alpha-transfer processes and correlations with two-neutron and  
  two-proton transfers 



The essential quantity to characterize the system from the 
pairing point of view is given by the “pairing response”, namely 
all the T0 values of the square of the matrix element of the 
pair creation (or removal) operator (for T=1 pairs) 
                          P+ =∑j [a+

ja+
j]00          (and similarly for P-) 

connecting the ground state of nucleus N with all 0+ states of 
nucleus A+2 (or A-2). It is often assumed that the cross 
section for two-particle transfer just scale with T0.  
The traditional way to define and measure the collectivity of 
pairing modes is to compare with single-particle pair 
transition densities and matrix elements to define some 
“pairing” single-particle units and therefore “pairing” 
enhancement factors. 
Similarly for the T=0 pairs, leading to 1+ states 

The introduction of the concept of “collectivity”  is 
fundamental if we want, for example, to compare T=0 and T=1 
pairing 



enhancement 

g.s. in 
210Pb	

Excited 
0+ states	

Giant Pairing 
Vibration in 
210Pb	

10 

Typical “pairing” response 

A+2 

gs 

excited 
states 

A 

Sofia, Dasso, Vitturi 

possible  
measure of 
collectivity 



Khan, Sandulescu,Van Giai, Grasso		

enhancement 

Pair strength function	

22O	

(d3/2)2	

(f7/2)2	



0 10 20 30
θc.m. (deg)

10-2

10-1

100

dσ
/dΩ

    
(m

b/s
r)

Full wavefunction 
Pure (d5/2)

2

24Mg(3He,p)26Al   (0+)

0 10 20 30
θc.m. (deg)

10-2

10-1

100

dσ
/dΩ

    
(m

b/s
r)

Full wavefunction   
Pure (d5/2)2

24Mg(3He,p)26Al   (1+)

Comparing enhancement factors for 0+ and 1+ states 
(from just cross sections) 
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An example of  a “superfluid” nucleus (pairing rotations)  
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The “experimental” way of extracting the collectivity of pairing 
modes is from the enhancement of the two-particle cross section in 

heavy-ion induced reactions with respect to the square of 
probability of transferring just one particle.  

This assumes that the transfer cross section is proportional to the 
square of the pair-creation operator, besides other assumptions on 

the reaction dynamics ……… 



The classical example: 
Sn+Sn 
(superfluid on superfluid) 
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A way to define a pairing 
“enhancement” factor, by plotting 
transfer probabilities not as function 
of the scattering angle, but as 
function of the distance of closest 
approach of the corresponding 
classical trajectory		
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General problem: how separate the contribution of  0+ states? 



Proton transfer 



NEED FOR CONSTRUCTIVE INTERFERENCE 

To display “collectivity” with respect to a definite operator one needs that 
the matrix elements of this operator shows “constructive” interference 
over the different components. 

An example taken from a different mode: the case of the “so-called”  
pygmy dipole state (PDR) 
Structure calculation: HF+ discrete RPA (with SGII interaction) 

Import aspects: coherence plus shape of the transition density to  
characterize the nature of the state 
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This is a 3ℏω nuclear transitions 
generated by the second order 
ΔL=1 transition operator and it 
can be seen as a compressional 
mode. 



Are these states collective or not collective?   
   It depends with respect to which operator 

Isovector strength 

Isoscalar strength 



Basic point to discuss: how reactions involving pair of nucleons (e.g. 
two-particle transfer, two-particle break-up, two-particle knock-

out, two-particle emission) can provide clear signature on the 
properties (and on the “phase”) of nuclear systems. 

This dynamical source of information should be complementary (but 
as important) to the one associated to other properties (as energy 

spectra and correlation energies or electromagnetic transition 
rates, for example). 

Clearly the probabilities for such processes must be influenced by 
the particle-particle correlations and by the “collectivity” of the 

tested modes, and these will depend on the specific “phase” of the 
system.  So, for example, they will be sensitive to any change in the 

status of the system, for example along an isotope chain.    



Unfortunately, at variance, for example, from low-energy 
one-step Coulomb excitation, where the excitation 

probability is directly proportional to the 
B(Eλ) values, the reaction mechanism associated with the 

simplest of the listed processes, i.e. pair transfer, is rather 
complicated and the possibility of extracting spectroscopic 
information on the pairing field is not obvious. The situation 

is actually more complicated even with respect to other 
processes (as inelastic nuclear excitation) that may need to 

be treated microscopically, but where the reaction 
mechanism is somehow well established. 



To clarify the concept we consider again the case of dipole states  
(described within HF+RPA) and calculate  the cross sections to  

inelastically excite these states via Coulomb or nuclear field 
in the reaction alpha+124Sn (in DWBA). 

These cross sections are then compared with the corresponding 
isovector and isoscalar B(E1) values  



The relation  between the isoscalar 
response and the inelastic excitation 
cross section due to an isoscalar probe 
it is not so evident. 

For pure Coulomb excitation the 
relation between the inelastic cross 
section and the Bem(E1) is clear: they 
are proportional.  

OBS: For this comparison the energies of all the states have been put to zero in 
order to eliminate the contributions due to the Q-value effect (to be discussed 
later). 

Ratios between cross sections  
     and B(E1)’ 



But if the qualitative behavior may be clear, the quantitative 
aspects require a proper treatment of the reaction mechanism. 
All approaches, ranging from macroscopic to semi-microscopic 
and to fully microscopic, try to reduce the actual complexity of 
the problem, which is a four-body scattering (the two cores 
plus the two transferred particles), to more tractable 
frameworks. 

Two models are most popular: 
A, Successive single-particle transfer 
B. Cluster transfer 



Sequential two-step process: each step transfers one particle 

Pairing enhancement comes from the coherent interference  of the 
different paths through the different intermediate states in (a-1) and (A
+1) nuclei, due to the correlations in initial and final wave functions 

Basic idea: dominance of mean field, which provides the framework for 
defining the single-particle content of the correlated wave functions 

Expansion to second-order in the transfer potential 

Simultaneus       +                 Sequential             +        not-orthogonality 

(first-order)                      (second-order)                   (second-order) 

these two terms  
approximately cancel 
each other 

this is not the 
cluster 
contribution 

A 



Example with just two 
components 

208Pb(16O,18O)206Pb	

3p1/2	

2s1/2	

1d5/2	

208Pb	

16O	 18O	17O	

0.6	

0.8	

0.8 (1d5/2)2 + 0.6(2s1/2)2 



1-particle transfer (d5/2)	

2-particle transfer (d5/2)2 

											σT=1.98	mb	

2-particle transfer (correlated) 
																σT=3.90	mb	

208Pb(16O,17,18O)207,206Pb	

Example of calculation 

In this case the pairing enhancement factor in the cross section is about  
a factor 2 
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FIG. 1: Angular distributions obtained in DWBA for 110Sn(t,p)112Sn reaction at E=** MeV. Each curve corresponds to the
transfer of the two neutrons in the single particle obital indicated in the inset. Optical parameters are taken from ***.

0h11/2,2s1/2,1d3/2) (cf. first column in Table 1). The corresponding single-particle energies and two-particle am-

plitudes (Bj =
⇥
j + 1/2 uA

i vA+2
j ) are given in second and third columns in Table 1, with a total pairing gap

� =
�

j uA
i vAj equal to ** MeV . For the heavy-ion induced reactions, we have simply assumed that in the

(14C,12C) case the two neutrons are both trasferred in the 0p1/2, while for 18O we have assumed a simple wave
function of the form 0.8 (0d5/2)

2 + 0.6 (1s1/2)
2 with respect to the 16O core. This will imply that in the interme-

diate one-neutron trasfer partition we will consider, respectively, five channels for 13C �111Sn and ten channels for
17O�111Sn.

The cross section for the (t,p) reaction to 112Sng.s. is given in Fig. 2 for a bombarding energy of E=** MeV. The
di⇥erent curves give the cross sections obtained for pure configurations, i.e. assuming that the transferred neutrons
are deposited just in one orbital with two-neutron amplitude equal to unity. As clear from the figure, all cross sections
are similar in shape, but drastically di⇥er in magnitude, with favored transfer to the (0d25/2) and (1s1/2)

2 orbits. The

constructive interference in the case of correlated wave function gives, as expected, an enhanced cross section (thick
black curve in the figure).

To better show the sensitivity of the transfer processes to the detailed microscopic components we have repeated
our BCS calculation, altering the sequence and the spacing of the single particle levels (cf. fourth and sixth columns
in Table 1), but rescaling the pairing coupling strength to obtain the same pairing gap �. With the new two-particle
spectroscopic amplitudes (cf. fifth and seventh columns in Table 1) the total cross section has now changed (thick red
and blue curves in the figure). This confirms the fact that the e⇥ect of pairing correlations on the reaction mechanism
involved in the two-particle transfer reaction cannot be simply taken in account just in terms of the ”collective”
parameter �, but needs to involve the detailed microscopic structure of the correlated pair.

We consider now the same transfer process, but induced by a heavy ion (either 18O or 14C projectiles). The process
will be described within the two-particle sequential transfer model, as illustrated above. The corresponding total cross
sections for the ground-to-ground transition from 110Sn to 112Sn are given in table II. 12C and 16O are assumed as
cores in the two-cases. Therefore the wave function of 14Cgs will be taken as two-particles moving in one of the obitals
1p1/2 ........ and similarly for 18O corresponding to (0d5/2)2 or (1s1/2)2 (or mixing of them). The di⇥erent cases of
pure configurations in the projectile are given in the di⇥erent columns, while the di⇥erent pure configuration in the Sn
target correspond to the di⇥erent rows. The results for the (t,p) reaction are also reported. For a better comparison,
some of the results are also shown in Fig. **. As one can see, also in the case of heavy-ion induced reactions there
is a strong sensitivity the the specific microscopic components. But because of the di⇥erent reaction mechanism (??)

The transfer probabilities  with the involved orbital. 
In addition whether the final wave function only involves a “pure” 
orbital, or whether it is correlated 

pure orbitals 

correlated BCS  
wave function 

OBS: The shape of the angular distribution is the same,  being associated with           
the L=0 transfer 
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�i(MeV) Bi �i(MeV) Bi �i(MeV) Bi

0g7/2 -0.027 0.75 -0.027 1.15 -2.027 0.64

1d5/2 0.882 1.13 -0.118 0.57 0.882 1.02

2s1/2 1.330 0.53 -0.670 0.33 1.330 0.59

0h11/2 2.507 0.79 4.507 0.61 5.507 0.46

2d3/2 2.905 0.39 2.905 0.26 2.905 0.27

TABLE I: bla bla bla

(t,p) (14C,12C) (18O,16O)

(0p1/2)
2 (1s1/2)

2 (0p3/2)
2 (0d5/2)

2 (0d5/2)
2 (1s1/2)

2 Conf1
112Sn

(0g7/2)
2 2.80E-5 1.73E-5 1.19E-4 7.09E-4 9.00E-4 1.19E-3 2.01E-4 1.24E-3

(1d5/2)
2 1.13E-3 3.00E-2 4.71E-3 5.54E-3 1.18E-3 3.55E-3 1.13E-2 1.19E-2

(2s1/2)
2 1.08E-3 1.53E-2 5.38E-3 7.05E-3 1.16E-3 5.02E-3 1.42E-2 1.59E-2

(1d3/2)
2 4.73E-4 1.34E-3 2.79E-3 9.87E-3 4.14E-3 1.26E-2 6.62E-3 1.83E-2

(0h11/2)
2 7.50E-5 7.77E-4 5.29E-5 1.05E-4 7.65E-5 1.10E-4 9.06E-5 1.88E-4

ConfA 2.54E-3 8.77E-2 2.26E-2 3.77E-2 1.21E-2 8.60E-3 1.95E-2 7.53E-2

TABLE II: Two-neutron transfer cross-sections (in mb) for selected initial and final single-particle configurations. The notation
Conf1 for 18O refers to the standard 0.8(1d5/2)

2 + 0.6(2s1/2)
2 configuration, while ConfA in 112Sn refers to the configuration

with the Bi coe⇥cients as in the first column of table I. Notice that this configuration has
P

B2
i ⇠ 2.9.

the dependence is not the same as in the (t,p) reaction. In addition, as expected from semi-classical considerations,
there is a dependence on the spin-orbit coupling, favouring a change of orientation going from projectile to target.
So, starting from two-particles in the 0p1/2 orbit (spin-down) in 14C we will favor transfer to spin-up states (hence
more to 1d5/2 than 1d3/2) , while the opposite is obtained starting from two particles in the 0d5/2 orbit in 18O
(spin-up). The transfer probabilities will therefore depend strongly on the chosen projectile, more e�ectively than
in other reactions as Coulomb or nuclear inelastic excitations. It is clear, at this point, that for the extraction of
spectroscopic information it would be extremely useful to perform not a single reaction but a series of reactions with
di�erent projectiles.

Similar arguments apply to the global pairing ”enhancement” factor. If one looks at the last row in table II,
that refers to the use of correlated (BCS) wave functions in Sn isotopes, one can see that the cross section in the
”correlated” case is enhanced with respect to the largest individual component (1d5/2) by a factor 2.2 in the case of
(t,p), a factor 2.92 in the case of (14C,12C) and a factor 2.42 in the case of (18O,16O).

(b) The 32Mg case
As a second example, we consider the two-neutron transfer reaction from 30Mg to the ground and the excited 0+

states in 32Mg. We will follow a description on the line investigated by H.T. Fortune [6]. We are in the so-called
inversion region, where the large neutron excess is consider responsible for a change in the ”standard” sequence of
single-particle energy levels. Such a variation will clearly show up in the spectrum of the odd Mg nuclei and the values
of the EM multipole transitions (for example the B(E2) value connecting the gs and the first 2+ state in 32Mg), but
a clue on the microscopic structure of the di�erent states will come from the pair-transfer data. In fact, according
to the ”standard” sequence, transition the the ground state should involve the transfer of the two neutrons on the
0d3/2 shell (closing the N=20 shell), while the transition to the excited 0+ state on the subsequent 0f7/2. In reality
we expect that the pairing interaction will create around the ”closed” shell N=20 a correlated ”hole” pair (⇥) in the
(sd) orbitals and a correlated ”particle” pair (�) in the (pf) orbitals, and that gs and excited 0+ states in 32Mg will
correspond to di�erent (and orthogonal) mixtures of (0p-0h) (| 0 >) and (2p-2h) states (⇥�) (thus opening the N=20
shell). More explicitely we can assume in a simple model for the addition and removal pairs the wave functions

⇥ = c(0d3/2)
�2 + d(1s1/2)

�2 (0.3)

� = a(0f7/2)
2 + b(1p3/2)

2 (0.4)

BCS 1 BCS 2 BCS 3 

The two-particle transfer probability is enhanced by the pairing correlation but 
does NOT scale simply with the value of the pairing gap Δ.  In fact, if we alter  
the sequence of single-particle levels, and change the value of the pairing  
strength G to obtain the same Δ, the cross section will be different, due to 
different interplay of the single-particle states 

σ	(mb)	 2.5 3.4 1.3 

Does the two-particle transfer cross in superfluid systems  
simply scale with the pairing gap value Δ ?  



We consider the same case as before, i.e. the transfer of two neutrons 
from 110Sn to 112Sn (0+; gs) using the reactions 

        (14C,12C)                  or            (18O,16O) 

In addition to the information on the target, we need now to specify 
on which orbit the particle are transferred in the projectile 

In the (14C,12C) the  
two neutrons are  
assumed to be picked-up  
from the p1/2 shell. 

In the (18O,16O) from  
the pure d5/2 shell, or  
from a combination of  
(d5/2)2 and (s1/2)2 
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the dependence is not the same as in the (t,p) reaction. In addition, as expected from semi-classical considerations,
there is a dependence on the spin-orbit coupling, favouring a change of orientation going from projectile to target.
So, starting from two-particles in the 0p1/2 orbit (spin-down) in 14C we will favor transfer to spin-up states (hence
more to 1d5/2 than 1d3/2) , while the opposite is obtained starting from two particles in the 0d5/2 orbit in 18O
(spin-up). The transfer probabilities will therefore depend strongly on the chosen projectile, more e�ectively than
in other reactions as Coulomb or nuclear inelastic excitations. It is clear, at this point, that for the extraction of
spectroscopic information it would be extremely useful to perform not a single reaction but a series of reactions with
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Similar arguments apply to the global pairing ”enhancement” factor. If one looks at the last row in table II,
that refers to the use of correlated (BCS) wave functions in Sn isotopes, one can see that the cross section in the
”correlated” case is enhanced with respect to the largest individual component (1d5/2) by a factor 2.2 in the case of
(t,p), a factor 2.92 in the case of (14C,12C) and a factor 2.42 in the case of (18O,16O).

(b) The 32Mg case
As a second example, we consider the two-neutron transfer reaction from 30Mg to the ground and the excited 0+

states in 32Mg. We will follow a description on the line investigated by H.T. Fortune [6]. We are in the so-called
inversion region, where the large neutron excess is consider responsible for a change in the ”standard” sequence of
single-particle energy levels. Such a variation will clearly show up in the spectrum of the odd Mg nuclei and the values
of the EM multipole transitions (for example the B(E2) value connecting the gs and the first 2+ state in 32Mg), but
a clue on the microscopic structure of the di�erent states will come from the pair-transfer data. In fact, according
to the ”standard” sequence, transition the the ground state should involve the transfer of the two neutrons on the
0d3/2 shell (closing the N=20 shell), while the transition to the excited 0+ state on the subsequent 0f7/2. In reality
we expect that the pairing interaction will create around the ”closed” shell N=20 a correlated ”hole” pair (⇥) in the
(sd) orbitals and a correlated ”particle” pair (�) in the (pf) orbitals, and that gs and excited 0+ states in 32Mg will
correspond to di�erent (and orthogonal) mixtures of (0p-0h) (| 0 >) and (2p-2h) states (⇥�) (thus opening the N=20
shell). More explicitely we can assume in a simple model for the addition and removal pairs the wave functions

⇥ = c(0d3/2)
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�2 (0.3)

� = a(0f7/2)
2 + b(1p3/2)
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Resulting two-particle transfer total cross sections:   
the ranking of the different orbitals is different  
with different projectiles 
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FIG. 2: bla bla bla

and for the ground and excited state in 32Mg the form

0+gs = � | 0 > +⇥ ⇤⇥ (0.5)

0+exc = �⇥ | 0 > +� ⇤⇥ (0.6)

Simply speaking, the quantity ⇥2(= 1 � �2) provides a measure of the amount of the breaking of the N=20 shell.
Since we expect (as we have already seen in the previous case) a strong dependence of the transfer probability on the
specific orbital, di�erent internal structures of the (sd) and (pf) pairs, together with di�erent mixing coe⇤cients, will
produce large di�erences both in the absolute and in the relative cross sections.

Angular distributions obtained for 30Mg(t,p)32Mg reaction at E=4.9 MeV are illustrated in Fig. 3 for ”pure” con-
figurations. Binding energy to generate single particle wave functions and Q-value have been chosen as to correspond
to the transition to the ground state, To show the proper description of the optical parameters we also report the
experimental data. As clear from the figure, the shape of the calculated angular distributions fits well the experiment
(we recall the fact that our zero-range DWBA calculation only provides relative cross sections). As in the previous
case there is a large di�erence according to the specific orbit involved.

We include now the mixing of configurations. We report in Fig. 4 the ratios of the cross sections to the excited
0+ and the ground state in 32Mg as a function of the mixing coe⇤cient � (cf. inset in the figure) for di�erent values
of the structures coe⇤cients defining the addition and removal pairing phonons. In the calculation we have assumed
that the initial 30Mg ground state is described as a pure removal pair (no mixing with excitation to the (fp) orbits).
The horizontal band corresponds to the experimentally estimated range. As expected, the calculated values vary
drastically with the structure inputs. To reduce the number of parameters we show in Fig. 5 the ratio of cross sections
as a function of the mixing coe⇤cients � in the case of pure d3/2 orbit for the removal pair and for di�erent values of
the coe⇤cient A in the structure of the addition pair. In the simplest and ”normal” case in which the removal pair
is just a hole pair in the d3/2 orbit (c = 1, d = 0) and the addition pair two neutron in the f7/2 orbit (a = 1, b = 0),

Same results shown as histograms 
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Another example of constructive interference over the 
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FIG. 5. Cross sections for 24Mg(3He,p)26Al for the first 1+ state.
Uncertainties are smaller than the symbols representing the data.
The different lines correspond to the theoretical calculations for
transferring L = 0 pairs but adding up different parts of the overlap
to recover the full overlap ⟨24Mg(0+)|26Al(1+)⟩. The corresponding
theoretical spectroscopic factor for each part of the wave function is
omitted in the legend but considered in the calculation.

pair. However, the (d5/2)(d3/2) component is perfectly allowed
in the case of T = 0 and has to be taken into account when
generalizing BCS for np pairing.

In conclusion, we have established a novel analysis frame-
work that improves our understanding of the np pairing
phenomena in other systems and helps to elucidate whether
the isoscalar pairing force interaction is present. In order
to shed some light on the nature of the T = 0 isoscalar
np pairing, we performed a series of systematic np transfer
measurements on sd-shell N = Z nuclei. These high-quality
data were taken under identical conditions to avoid systemic
uncertainties, spanning a wide angular distribution, from close

to 0◦ up to 30◦. We obtained the absolute differential cross
sections with a high precision and thus the ratio between the
cross sections σ (0+)/σ (1+). In order to understand how the
cross-section ratio relates to the relative strength between
the isoscalar and the isovector pairing modes, we performed
second-order DWBA calculations taking into account shell-
model calculations with the USDB interaction. We found a
satisfactory agreement for the shape of the distribution but not
for the absolute comparison of the ratios. With the help of these
second-order DWBA calculations we can make comparisons
with the ratios for pure or zero-pairing wave functions. From
these, we find cases in which the T = 0 pairing appears to
dominate over the traditional or more standard T = 1 channel.
We have also shown how the different components contribute
coherently to increase the cross section in one of these
particular cases: 24Mg(3He,p)26Al(1+). In addition, the results
indicate that the cross sections to the 1+ are dominated by the
transfer of an L = 0 pair as in the T = 1 pairing. However,
certain components with a nonnegligible contribution to this
L = 0 transfer are not included in the typical Cooper pair
[5]. Building on this foundational work, new and follow-up
experiments with radioactive beams are required to further
our understanding of the evolution of np pairing correlations
along the N = Z line. Such challenging experiments will be
available at future rare-isotope facilities capable of providing
high-intensity proton-rich beams.
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Effect of contributions from L=0 and L=2 for 1+ states 

Small components (2s1/2)(1d3/2) and (1d5/2)(1d3/2) 
but they further increase the cross section 



Cross sections for pure configurations 

One more example of dependence on specific orbitals and consequent 
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FIG. 1. (Color online) (a) 2+1,2 levels, (b) 0
+ levels of Zr isotopes

as a function of N. Symbols are present theoretical results with
the shape classification as shown in the legends (see the text for
details). Solid lines denote experimental data [6–16]. Dashed
lines connect relevant results to guide the eye. The ratio between
the 4+1 and 2

+
1 levels is shown in the insert of (a) in comparison

to experiment. The lowest four 0+ levels are shown for 100Zr. (c)
B(E2; 2+ → 0+) values as a function of N. Experimental data are
from [13, 41–46]. (d) Deformation parameter β2. The values by
other methods are shown, too.

tion to the π- and ρ-meson exchange tensor force [37]. The
parameters of the central part were fixed from monopole
components of known SM interactions [37]. The T=0 part
of the VMU interaction is kept unchanged throughout this
work. The T=1 central part is reduced by a factor of 0.75
except for 1 f7/2 and 2p3/2 orbits. On top of this, T=1
two-body matrix elements for 0g9/2 and above it, includ-
ing those given by the SNBG3 interaction, are fine tuned
by using the standard method [38, 39]. The observed lev-
els of the 2+1 and 4

+
1 states of

90−96Zr and the 0+2 state of
94−100Zr are then used. Since the number of available data
is so small, this cannot be a fit but a minor improvement.
The single-particle energies are determined so as to be con-
sistent with the prediction of the JUN45 Hamiltonian, the
observed levels of 91Zr with spectroscopic factors, etc. The
present SM Hamiltonian is, thus, fixed, and no change is
made throughout all the calculations below. It is an initial
version, and can be refined for better details.
Figure 1(a) shows excitation energies of the 2+1,2 states

of the Zr isotopes, indicating that the present MCSM re-
sults reproduce quite well the observed trends. The shape
of each calculated state is assigned as spherical, prolate, tri-
axial or oblate by the method of [40], as will be discussed
later. The calculated 2+1 state is spherical for N=52-56,
while it becomes prolate deformed for N ≥58. Its exci-
tation energy drops down at N=60 by a factor of ∼6, and
stays almost constant, in agreement with experiment. The
ratio between the 4+1 and 2

+
1 levels, denoted R4/2, is de-

picted in the insert of Fig. 1(a) in comparison to experi-
ment. The sudden increase at N=60 is seen in both ex-
periment and calculation, approaching the rotational limit,
10/3, indicative of a rather rigid deformation. The R4/2 < 2
for N ≤58 suggests a seniority-type structure which stems
from the Z=40 semi-magicity.
Figure 1(b) shows the properties of 0+1,2 states. Their

shapes are assigned in the same way as the 2+ states. The
ground state remains spherical up to N=58, and becomes
prolate at N=60. A spherical state appears as the 0+4 state
at N=60 instead, as shown in Fig. 1(b). We here sketch
how the shape assignment is made for the MCSM eigen-
state. The MCSM eigenstate is a superposition of MCSM
basis vectors projected onto the angular momentum and
parity. Each basis vector is a Slater determinant, i.e., a di-
rect product of superpositions over original single-particle
states. The optimum amplitudes in such superpositions are
searched based on quantum Monte-Carlo and variational
methods [4, 20]. For each MCSM basis vector so fixed, we
can compute and diagonalize its quadrupole matrix. This
gives us the three axes of the ellipsoid with quadrupole mo-
menta Q0 and Q2 in the usual way [2]. One can then plot
this MCSM basis vector as a circle on the Potential Energy
Surface (PES) , as shown in Fig. 2. The overlap probability
of this MCSM basis vector with the eigenstate is indicated
by the area of the circle. Thus, one can pin down each
MCSM basis vector on the PES according to its Q0 and
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FIG. 1. (Color online) (a) 2+1,2 levels, (b) 0
+ levels of Zr isotopes

as a function of N. Symbols are present theoretical results with
the shape classification as shown in the legends (see the text for
details). Solid lines denote experimental data [6–16]. Dashed
lines connect relevant results to guide the eye. The ratio between
the 4+1 and 2

+
1 levels is shown in the insert of (a) in comparison

to experiment. The lowest four 0+ levels are shown for 100Zr. (c)
B(E2; 2+ → 0+) values as a function of N. Experimental data are
from [13, 41–46]. (d) Deformation parameter β2. The values by
other methods are shown, too.

tion to the π- and ρ-meson exchange tensor force [37]. The
parameters of the central part were fixed from monopole
components of known SM interactions [37]. The T=0 part
of the VMU interaction is kept unchanged throughout this
work. The T=1 central part is reduced by a factor of 0.75
except for 1 f7/2 and 2p3/2 orbits. On top of this, T=1
two-body matrix elements for 0g9/2 and above it, includ-
ing those given by the SNBG3 interaction, are fine tuned
by using the standard method [38, 39]. The observed lev-
els of the 2+1 and 4

+
1 states of

90−96Zr and the 0+2 state of
94−100Zr are then used. Since the number of available data
is so small, this cannot be a fit but a minor improvement.
The single-particle energies are determined so as to be con-
sistent with the prediction of the JUN45 Hamiltonian, the
observed levels of 91Zr with spectroscopic factors, etc. The
present SM Hamiltonian is, thus, fixed, and no change is
made throughout all the calculations below. It is an initial
version, and can be refined for better details.
Figure 1(a) shows excitation energies of the 2+1,2 states

of the Zr isotopes, indicating that the present MCSM re-
sults reproduce quite well the observed trends. The shape
of each calculated state is assigned as spherical, prolate, tri-
axial or oblate by the method of [40], as will be discussed
later. The calculated 2+1 state is spherical for N=52-56,
while it becomes prolate deformed for N ≥58. Its exci-
tation energy drops down at N=60 by a factor of ∼6, and
stays almost constant, in agreement with experiment. The
ratio between the 4+1 and 2

+
1 levels, denoted R4/2, is de-

picted in the insert of Fig. 1(a) in comparison to experi-
ment. The sudden increase at N=60 is seen in both ex-
periment and calculation, approaching the rotational limit,
10/3, indicative of a rather rigid deformation. The R4/2 < 2
for N ≤58 suggests a seniority-type structure which stems
from the Z=40 semi-magicity.
Figure 1(b) shows the properties of 0+1,2 states. Their

shapes are assigned in the same way as the 2+ states. The
ground state remains spherical up to N=58, and becomes
prolate at N=60. A spherical state appears as the 0+4 state
at N=60 instead, as shown in Fig. 1(b). We here sketch
how the shape assignment is made for the MCSM eigen-
state. The MCSM eigenstate is a superposition of MCSM
basis vectors projected onto the angular momentum and
parity. Each basis vector is a Slater determinant, i.e., a di-
rect product of superpositions over original single-particle
states. The optimum amplitudes in such superpositions are
searched based on quantum Monte-Carlo and variational
methods [4, 20]. For each MCSM basis vector so fixed, we
can compute and diagonalize its quadrupole matrix. This
gives us the three axes of the ellipsoid with quadrupole mo-
menta Q0 and Q2 in the usual way [2]. One can then plot
this MCSM basis vector as a circle on the Potential Energy
Surface (PES) , as shown in Fig. 2. The overlap probability
of this MCSM basis vector with the eigenstate is indicated
by the area of the circle. Thus, one can pin down each
MCSM basis vector on the PES according to its Q0 and

3

FIG. 2. (Color online) T-plots for 0+1,2 states of
98,100,110Zr isotopes.

Q2 with its importance by the area of the circle. Note that
the PES in Fig. 2 is obtained by constrained HF calculation
for the same SM Hamiltonian, and is used for the sake of
an intuitive understanding of MCSM results. This method,
called a T-plot [40], enables us to analyze SM eigenstates
from the viewpoint of intrinsic shape. Figure 2(a) shows
that the MCSM basis vectors of the 0+1 state of

98Zr are
concentrated in a tiny region of the spherical shape, while
its 0+2 state is composed of basis vectors of prolate shape
with Q0 ∼350 fm2 (see Fig. 2(b)). A similar prolate shape
dominates the 0+1 state of

100Zr with slightly larger Q0, as
shown in Fig.2(c). We point out the abrupt change of the
ground-state property from Fig. 2(a) to (c), and will come
back to this point later. The T-plot shows stable prolate
shape for the 0+1 state from

100Zr to 110Zr (see Fig. 2(d)).
Figure 1(c) displays B(E2; 2+1 → 0+1 ) values, with small

values up to N=58 and a sharp increase at N=60, consis-
tent with experiment [13, 41–44]. The effective charges,
(ep, en) = (1.3e, 0.6e), are used. Because the B(E2; 2+1 →
0+1 ) value is a sensitive probe of the quadrupole deforma-
tion, the salient agreement here implies that the present
MCSM calculation produces quite well the shape evolu-
tion as N changes. In addition, theoretical and experimen-
tal B(E2; 2+2 → 0+2 ) values are shown for N=54 [45] and
56. The value for N=56 has been measured by experiment,
discussed in the subsequent paper [46], as an evidence of
the shape coexistence in 96Zr. The overall agreement be-
tween theory and experiment appears to be remarkable. It
is clear that the 2+2 → 0+2 transitions at N=54 and 56 are
linked to the 2+1 → 0+1 transitions in heavier isotopes, via
2+1 → 0+2 transition at N=58.
Figure 1(d) shows the deformation parameter β2 [1]. The

results of IBM [24], HFB [28] and FRDM [32] calculations
are included, exhibiting much more gradual changes. The
MCSM values are obtained from B(E2; 2+1 → 0+1 ).
The systematic trends indicated by the 2+1 level, the ra-

tio R4/2, the B(E2; 2+1 → 0+1 ) value (or β2), and the T-plot
analysis are all consistent among themselves and in agree-
ment with relevant experiments. We can, thus, identify the
change between N=58 and 60 as a QPT, where in general
an abrupt change should occur in the quantum structure of
the ground state for a certain parameter [17, 18]. The pa-
rameter here is nothing but the neutron number N, and the
transition occurs from a “spherical phase” to a “deformed
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FIG. 3. (Color online) (a) Occupation numbers of protons and
(b) effective single-particle energies of neutrons for selected Zr
isotopes. Neutron 0g9/2 is around -12 MeV, and is not shown.

phase”. Figure 1(b) demonstrates that the 0+1 state is spher-
ical up to N=58, but the spherical 0+ state is pushed up
to the 0+4 state at N=60, where the prolate-deformed 0

+

state comes down to the ground state from the 0+2 state at
N=58. This sharp crossing causes the present QPT. The
discontinuities of various quantities, one of which can be
assigned the order parameter, at the crossing point imply
the first-order phase transition. The shape transition has
been noticed in many chains of isotopes and isotones, but
appears to be rather gradual in most cases, for instance,
from 148Sm to 154Sm. The abrupt change in the Zr isotopes
is exceptional.
We comment on the relation between the QPT and the

modifications of the interaction mentioned above. With-
out them, the 2+1 level is still ∼0.2 MeV at N=60 close
to Fig. 1(a), while at N=58 it is higher than the value in
Fig. 1(a). Thus, the present QPT occurs rather insensitively
to the modifications, whereas experimental data can be bet-
ter reproduced by them.
We now discuss the origin of such abrupt changes. Fig-

ure 3(a) displays the occupation numbers of proton orbits
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Quantum Phase Transition in the Shape of Zr isotopes
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The rapid shape change in Zr isotopes near neutron number N=60 is identified to be caused by type II
shell evolution associated with massive proton excitations to its 0g9/2 orbit, and is shown to be a quantum
phase transition. Monte Carlo shell-model calculations are carried out for Zr isotopes of N=50-70 with
many configurations spanned by eight proton orbits and eight neutron orbits. Energy levels and B(E2)
values are obtained within a single framework in a good agreement with experiments, depicting various
shapes in going from N=50 to 70. Novel coexistence of prolate and triaxial shapes is suggested.

PACS numbers: 21.60.Cs, 21.10.-k,27.60.+j,64.70.Tg

The shape of the atomic nucleus has been one of the pri-
mary subjects of nuclear structure physics [1], and con-
tinues to provide intriguing and challenging questions in
going to exotic nuclei. One such question is the transition
from spherical to deformed shapes as a function of the neu-
tron (proton) number N (Z), referred to as shape transition.
The shape transition is visible in the systematics of the ex-
citation energies of low-lying states, for instance, the first
2+ levels of even-even nuclei: it turns out to be high (low)
for spherical (deformed) shapes [1–3]. A shell model (SM)
calculation is suited, in principle, for its description, be-
cause of the high capability of calculating those energies
precisely. On the other hand, since the nuclear shape is
a consequence of the collective motion of many nucleons,
the actual application of the SM encountered some limits
in the size of the calculation.

In this Letter, we present results of large-scale Monte
Carlo Shell Model (MCSM) calculations [4] on even-even
Zr isotopes with a focus on the shape transition from N =
50 to N = 70, e.g. [5]. Figure 1(a) shows that the ob-
served 2+1 level moves up and down within the 1-2 MeV
region for N=50-58, whereas it is quite low (∼0.2 MeV)
for N ≥ 60 [6–16]. Namely, a sharp drop by a factor of
∼6 occurs at N=60, which is consistent with the corre-
sponding B(E2) values shown in Fig. 1(c). These features
have attracted much attention, also because no theoretical
approach seems to have reproduced those rapid changes
covering both sides. More importantly, an abrupt change
seems to occur in the structure of the ground state as a
function of N, which can be viewed as an example of the
quantum phase transition (QPT) satisfying its general def-
inition to be discussed [17, 18]. This is quite remarkable,
as the shape transition is in general rather gradual. In ad-
dition, there is much interest in those Zr isotopes from the
viewpoint of the shape coexistence [19].

The advanced version of MCSM [20, 21] can cover all
Zr isotopes in this range of N with a fixed Hamiltonian,
when taking a large model space, as shown in Table I. The
MCSM, thus, resolves the difficulties of conventional SM

TABLE I. Model space for the shell model calculation.

proton orbit magic number neutron orbit
- 1 f7/2, 2p3/2

82
- 0h11/2

0g7/2, 1d5/2,3/2, 2s1/2 0g7/2, 1d5/2,3/2, 2s1/2

50
0g9/2 0g9/2

0 f5/2, 1p3/2,1/2 -

calculation, where the largest dimension reaches 3.7×1023,
much beyond its current limit. Note that no truncation
on the occupation numbers of these orbits is made in the
MCSM. The structure of Zr isotopes has been studied by
many different models and theories. For instance, a recent
large-scale conventional SM calculation showed a rather
accurate reproduction of experimental data up to N=58,
whereas it was not extended beyond N=60 [22]. The 2+1
levels have been calculated in a wider range in Interact-
ing Boson Model (IBM) calculations, although the afore-
mentioned rapid change is absent [23, 24]. Some other
works were restricted to deformed states [5, 25, 26], or in-
dicated gradual shape-changes [27–34].

It is, thus, very timely and needed to apply the MCSM to
Zr isotopes, particularly heavy exotic ones. The Hamil-
tonian of the present work is constructed from existing
ones, so as to reduce ambiguities. The JUN45 Hamilto-
nian is used for the orbits, 0g9/2 and below it [35]. The
SNBG3 Hamiltonian [36] is used for the T=1 interaction
for 0g7/2, 1d5/2,3/2, 2s1/2 and 0h11/2. Note that the JUN45
and SNBG3 interactions were obtained by adding empir-
ical fits to microscopically derived effective interactions
[35, 36]. The VMU interaction [37] is taken for the rest
of the effective interaction. The VMU interaction consists
of the central part given by a Gaussian function in addi-

0gs in 98Zr 



Calculation of two-particle transfer reactions using:  
sequential model for the reaction mechanism 
one- and two-particle spectroscopic amplitudes from the Tokyo group 

gs->gs 

gs->0+
exc 

experimental data needed 



B 

Cluster-transfer model (suggested by the close radial correlation of the pairs) 

0s 0s 
R 

R 

Initial and final cluster wave  
functions are obtained by 
taking the overlap between 
the two-particle wave functions 
and a 0s wave function for 
the relative motion 

Also in this case the resulting cross section depends on the specific single-particle 
orbitals (via the Talmi-Moshinsky brackets), but the dependence is different 
from the one associated with the sequential transfer 



The preference to either model may depend on the colliding systems and on  
kinematical conditions.  

The proper approach will depend on the competition between the two colliding  
single-particle mean fields and the residual two-body interaction (for relatively  
weak interaction the mean fields will prevail, while in the other extreme of  
infinite pairing correlation the cluster structure will take over). 



Space pair correlation 

We conclude that the simple  behavior of two-particle matrix 
elements in not the end of the story, because the reaction 
mechanism in a specific two-particle transfer reactions  is 

sensitive to the radial behavior of the pair wave function, and 
therefore to the specific form of the single-particle states.  

We have therefore to look at possible correlations in space and 
to the dependence of this correlation on the specific involved 

orbitals  

A simple way of displaying the space correlations in the pair:  
one puts one particle in one point and look at the probability  

of finding the other one in another point 



(3p1/2)-2	 (2f5/2)-2	

Correlated ground state 

206Pb	

|Ψ(r1,r2)|2 as a  

function of r2, 

for fixed r1	

position of particle 1	

OBS: mixing of 
configurations with 
opposite parity		



|Ψ(r1,r2)|2 as a function of r2, for fixed r1	

particle-particle spatial correlations	

Neutron addition mode: ground state of 210Pb 

position of particle 1	

(1g9/2)2	

position of  
particle 1	

correlated ground state 

Work done 
in collaboration 
with 
PierFrancesco 
Bortignon 



r	

R	 R	 R	

R	

r	

(3p1/2)-2	 (2f5/2)-2	 Correlated g.s. (RPA) 

206Pb	

δρP(R,r)	
Catara etal	

larger R, smaller r 

Another representation of the pair transition density 
   in terms of R and r 



rn	

Rα

n2	

n1	

p1	

p2	
rp	

rpn	

Φ(Ra)=<Φ(r1n)Φ(r2n)Φ(r1p)Φ(r2p)|Φ00(rn)Φ00(rp)Φ00(rpn)>	

A natural extension: effect of pairing on alpha-clustering 
Catara, Insolia, Maglione, A.V. 



Alpha-cluster probabilities in 232 Th, displayed in the intrinsic frame by 
        projecting over an alpha particle wave function 

4 particles in pure (time-reversed) 
Nilsson orbits 

Nilsson+BCS for both 
protons and neutrons 

OBS: 1.  Alpha-probability distributed over the entire surface 
          2. Total alpha spectroscopic factor Sα increases orders of magnitude 
                     (although still a factor 10 smaller than experiment) 
               Need for neutron-proton interaction 



Alpha clusters transfer in terms of transfer of correlated nn and 
pp pairs (and np pairs) 



Isotope dependence of 
Te(d,6Li)Sn(gs) 
Te(d,6Li)Sn(0+ exc) 
Sn(d,6Li)Cd(gs) Cd	

Sn	

Te	

gs	

0+	exc	

Proton and neutron parts factorized 

Neutrons: BCS 
Protons: Cd   hole pair (2h) 
              Sn gs  closed shell Z=50 
              Te   particle pair (2n) 
               Sn 0+ exc   2p-2h 



Pillet, Sandulescu, Schuck	

r 

R 
δρP(R,r)	

HFB  Cooper pairs 



A simple model to investigate the relative role of of the mean-field 
and the residual interaction 

moving well 

(acting only when the two particles are both inside the same well) 



Two-particle correlated wave function: correlation clearly favors the situation  
with the two particles on the same side 

|Φ (x1,x2)|2 

X1 (fm) 

X
2 

(f
m

) 



For comparison the situation with uncorrelated wave function 

|Φ (x1,x2)|2 



moving  
well 

initial wave  
  function 

T 
p 

xp=x0+at2 

xT =0     



We can now follow the evolution in time of the two-particle wave 
function in the (x1,x2) plane, due to the action of the moving well 

At the end of the process, from the final two-particle wave 
function, we can separate different final states: 

1. elastic/inelastic (both particles still in the initial well) 
2. one-particle transfer (one particle in the initial well and one in 

the moving one) 
3. one-particle break-up (in particle in the continuum outside the 

wells and one in the initial or final well) 
4. two-particle transfer (both particles in the moving well) 
5. two-particle break-up (both particles outside the wells) 



We first consider the case of uncorrelated systems  
         (no residual interaction). 

In this case the transfer process is induced by the mean-field of  
the moving well, and in terms of reaction mechanism the two-particle  
transfer can only be interpreted as obtained by the successive  
transfer of single particles. 

In such a situation, in a perturbative approach,  we expect a pair  
transfer probability 

                                P2 ~ (P1)2  

Let us see what comes from the “exact” solution  
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P2 = 0.2 x 0.2 = 0.04 
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Let us see now the case of the “correlated” pair, due to the action 
of the residual pairing interaction (density dependent, therefore 
only acting when both particles are within a well, and not when 
the particles are “in the air”). 



Initial wave function 

Final wave function 

Perturbative uncorrelated 
estimate: 
P2  (uncorr) = 0.26 x 0.26 = 0.07 
P2 (corr) = 0.13 = 2 P2 (uncorr) 

Pairing enhancement factor: 2 
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Additional points that make not trivial the correspondence between 
the pair-transfer cross section and the pairing matrix elements: 

optical potentials 
Q-value effects 

continuum effects 

For the optical potentials, to show the sensitivity of the results on their 
choices, different options are used for the three relevant channels 

(proton, deuteron, 3He) 

Legenda: 
ME: Menet forprotons,  

CH: Chapel Hill 89 for protons,  
LH: Lohr-Haeberli for deuteron,  

DA: Daehnick for deuteron,  
BG: Bechetti-Greenless for 3He,  

PA: Pang for 3He. 



Fig. 1 Experimental cross section for the transfer reaction 24Mg(3He,p) populating the first 1+ 
excited state in 26Al compared with the theoretical prediction using USDB spectroscopic factor 
and different optical potentials. The legend reads ME: Menet for protons, CH: Chapel Hill 89 for 
protons, LH: Lohr-Haeberli for deuteron, DA: Daehnick for deuteron, BG: Bechetti-Greenless for 
3He, PA: Pang for 3He

The differences for the cross section at zero degrees can be up to a 40% but they are reduced 
up to a 5% or less if we discard those options that do not reproduce the angular distribution. The 
same reduction is found if we do the ratio between the transfer to the 0+ and the 1+ states, but 
we will discuss this in the answer to point 5. As an example, we include here in Figure 1 of this 
answer to the referee the cross section shown in Figure 4, but for different choices of the 
potential. We can see that those theoretical cross section that reproduces approximately the 
angular distribution give a very similar prediction for the cross section at zero degrees.



Fig. 2 Experimental ratios for the transfer reaction compared with the theoretical prediction in 
the independent particle limit and different optical potentials. The legend reads ME: Menet for 
protons, CH: Chapel Hill 89 for protons, LH: Lohr-Haeberli for deuteron, DA: Daehnick for 
deuteron, BG: Bechetti-Greenless for 3He, PA: Pang for 3He. The green open dots correspond 
to the option chosen in the article (ME LH BG).

We have checked again different possible choices of the optical potential to ensure that our 
conclusions are not affected. We show here in Figure 2 of this answer different values of the 
ratio calculated within the independent particle assumption for the different choices of potentials. 
For the three ratios with lowest mass the deviation is very small and does not compromise the 
conclusions on the 26Al case where for any choice of the potential we found that the 
experimental ratio shows a larger amount of T=0 pairing than that of T=1. In the other two 
cases, the differences are larger. However, for most of the potential choices the experimental 
ratio is consistent with a doubly magic 40Ca with a very small pairing. Therefore, again the 
conclusions are not substantially affected. Regarding including these uncertainties, we prefer 
not to include them in the plot as a theoretical error since this is not a statistical deviation or the 
estimation of a non-included term in the calculation. We think it is better to add a few phrases in 
the text as a warning of this issue. We have done so in the same paragraph that we mention in 
the answer to point 2 since both issues are related to the choice of optical potentials.

6. Figure 4. This is a very nice illustration of how important the
different components of the wave function are needed to reproduce the magnitude of the 
measured angular distributions. What is meant by “the corresponding spectroscopic 
factor” – is that taken from the theoretical wave function?

ME	LH	BG	



Q-value effect 

Keeping fixed any other parameter, the probability for populating 
a definite final channel depends on the Q-value of the reaction.  
The dependence (in first approximation a gaussian distribution 
centered in the optimum Q-value) is very strong in the case of 
heavy-ion induced reactions, weaker in the case of light ions. 

The optimum Q-value depends on the angular momentum transfer 
and on the charge of the transferred particles. In the specific 
case of L=0 two-neutron transfer, the optimal Q-value is zero. 



Total kinetic energy loss (MeV) 

96Zr+40Ca 

Selecting final  
42Ca mass partition 

co
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excited 
 states 

Experimental evidence 



Playing with different combinations of projectile/target  
(having different Qgg-value) one can favour different  
energy windows 

Example: Target 208Pb  Final 210Pb (at bombarding energy 
  Ecm = 1.2 Ebarrier) 

gs 

excited states 



The width of the Q-value window increases 
 with the bombarding energy 

gs 



			The pairing strength is therefore modulated by the Q-value cut-
off to yield the final two-particle cross section.  And the 
modulation depends on the specific reaction. 

    And the pairing interaction, by modifying via the correlation 
energy the energies and the Q-value can in fact produce a 
reduction of the pair transfer cross section 



RPA	

TDA	

sp	
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Basic problem: 

how is changed the picture as we move closer  
or even  beyond the drip lines? 

What is the effect of continuum states in the 
wave functions and of break-up channels in 
the reaction mechanism? 



Data from GANIL, Navin etal, 2011 



Extremely difficult to extract the fundamental σ2/σ1 ratio	



Sensitivity to  
the pairing function 
in 11Li 

P0: 3% of (s1/2)2 

P2: 31% of (s1/2)2 

P3: 45% of (s1/2)2	

Tanihata, Thompson 

11Li+p -> 9Li+t 

Data from ISAC-2, 
TRIUMF 



Potel etal, PRL, 2010 

11Li+p -> 9Li+t 



A	

A+1	

A+2	

j2	

j1	

E=0	

Systems  
closer to the drip 
lines 
(intermediate  
bound and unbound 
states) 

Example	
|A=2>	=	{	ΣiXi[ai+	ai+]0+	∫	dE	X(E)	[a+(E)a+(E)]0}	|A>	

one-par\cle	
transfer	to	
con\nuum	



continuum

one-particle 
transfer process 

A

A+1

A+2

Two-particle trasfer will proceed mainly by 
constructive interference of successive transfers  
through the (unbound) continuum intermediate states

Systems  
at the drip lines 
(intermediate  
unbound 
states) 

|A=2>	=	∫	dE	X(E)	[a+(E)a+(E)]0	|A>	



Discretized 
continuum

one-particle 
transfer process 

A

A+1

A+2

The integration over the continuum intermediate states 
can becomes feasible by continuum discretization: 
but how many paths should we include? Thousands or few, 
for example only the resonant states?


