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* Definition of collectivity for pairing modes (correlation energies,
pair-creation matrix elements, coherent wave functions, etc)

 Dynamical tests of pairing modes (pair transfer, two-particle break-up,
two-particle knock-out, Two-particle decay, etc)

* Reaction mechanism for two-particle transfer process

* Space correlations

* Q-value effects

« Weakly-bound systems, coupling to break-up channels and effects of
continuum. One-dimensional case

* Pairing vibrations. Shape coexistence. Phase transitions

* Alpha-transfer processes and correlations with two-neutron and
two-proton transfers



The essential quantity to characterize the system from the
pairing point of view is given by the "pairing response”, namely
all the T, values of the square of the matrix element of the
pair creation (or removal) operator (for T=1 pairs)

P+ =2 [a*;a*;]oo (and similarly for P-)

connecting the ground state of nucleus N with all O+ states of
hucleus A+2 (or A-2). It is often assumed that the cross
section for two-particle transfer just scale with T,

The traditional way to define and measure the collectivity of
pairing modes is to compare with single-particle pair
fransition densities and matrix elements to define some
“pairing” single-particle units and therefore “pairing”
enhancement factors.

Similarly for the T=0 pairs, leading to 1+ states

The introduction of the concept of “collectivity” is
fundamental if we want, for example, to compare T=0 and T=1
pairing
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An example of a “superfluid” nucleus (pairing rotations)
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The "experimental” way of extracting the collectivity of pairing
modes is from the enhancement of the two-particle cross section in
heavy-ion induced reactions with respect to the square of
probability of transferring just one particle.

This assumes that the transfer cross section is proportional to the
square of the pair-creation operator, besides other assumptions on
the reaction dynamics .........
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General problem: how separate the contribution of O+ states?



Proton transfer
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NEED FOR CONSTRUCTIVE INTERFERENCE

To display "collectivity” with respect to a definite operator one needs that
the matrix elements of this operator shows "constructive” interference
over the different components.

An example taken from a different mode: the case of the "so-called”
pygmy dipole state (PDR)
Structure calculation: HF+ discrete RPA (with SGIT interaction)

Import aspects: coherence plus shape of the transition density to
characterize the nature of the state
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Are these states collective or not collective?
It depends with respect to which operator
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Basic point to discuss: how reactions involving pair of nucleons (e.g.
two-particle transfer, two-particle break-up, two-particle knock-
out, Two-particle emission) can provide clear signature on the
properties (and on the "phase”) of nuclear systems.

This dynamical source of information should be complementary (but
as important) to the one associated to other properties (as energy
spectra and correlation energies or electromagnetic transition
rates, for example).

Clearly the probabilities for such processes must be influenced by
the particle-particle correlations and by the “collectivity” of the
tested modes, and these will depend on the specific "phase” of the
system. So, for example, they will be sensitive to any change in the
status of the system, for example along an isotope chain.



Unfortunately, at variance, for example, from low-energy
one-step Coulomb excitation, where the excitation
probability is directly proportional to the
B(EM) values, the reaction mechanism associated with the
simplest of the listed processes, i.e. pair transfer, is rather
complicated and the possibility of extracting spectroscopic
information on the pairing field is not obvious. The situation
is actually more complicated even with respect to other
processes (as inelastic nuclear excitation) that may need to
be treated microscopically, but where the reaction
mechanism is somehow well established.



To clarify the concept we consider again the case of dipole states
(described within HF+RPA) and calculate the cross sections to
inelastically excite these states via Coulomb or nuclear field
in the reaction alpha+124Sn (in DWBA).

These cross sections are then compared with the corresponding
isovector and isoscalar B(E1) values
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But if the qualitative behavior may be clear, the quantitative
aspects require a proper treatment of the reaction mechanism.
All approaches, ranging from macroscopic to semi-microscopic
and to fully microscopic, try to reduce the actual complexity of
the problem, which is a four-body scattering (the two cores
plus the two transferred particles), to more tractable
frameworks.

Two models are most popular:
A, Successive single-particle transfer
B. Cluster transfer



A

Sequential fwo-step process: each step transfers one particle

Pairing enhancement comes from the coherent interference of the
different paths through the different infermediate states in (a-1) and (A
+1) nuclei, due to the correlations in initial and final wave functions

Basic idea: dominance of mean field, which provides the framework for
defining the single-particle content of the correlated wave functions

Expansion to second-order in the transfer potential

Simultaneus + Sequential + hot-orthogonality
(first-order) (second-order) (second-order)
this is not the these two terms
cluster approximately cancel

contribution each other



Example with just two
components
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Example of calculation
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In this case the pairing enhancement factor in the cross section is about
a factor 2



The transfer probabilities vary strongly with the involved orbital.
In addition whether the final wave function only involves a "pure”

orbital, or whether it is correlated
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Does the two-particle transfer cross in superfluid systems
simply scale with the pairing gap value A ?

The two-particle transfer probability is enhanced by the pairing correlation but
does NOT scale simply with the value of the pairing gap A. In fact, if we alter
the sequence of single-particle levels, and change the value of the pairing
strength G to obtain the same A, the cross section will be different, due to
different interplay of the single-particle states

BCS 1 BCS 2 BCS 3
ez(MeV) BZ EZ(MGV) Bz EZ(MGV) BZ
0g7 /2 -0.027 0.75 -0.027 1.15 -2.027 0.64
1ds /2 0.882 1.13 -0.118 0.57 0.882 1.02
281 /2 1.330 0.53 -0.670 0.33 1.330 0.59
Ohyq /2 2.507 0.79 4.507 0.61 5.507 0.46
2d3 /9 2.905 0.39 2.905 0.26 2.905 0.27
o (mb) 2.5 3.4 1.3



We consider the same case as before, i.e. the transfer of two neutrons
from 10Sn to 1125n (O+; gs) using the reactions

(14C,120) or (180,160)

In addition to the information on the target, we need now to specify
on which orbit the particle are transferred in the projectile

In the (14C,12C) the In the (180,160) from
two neutrons are the pure d5/2 shell, or
assumed to be picked-up from a combination of

from the p1/2 shell. (d5/2)2 and (s1/2)2



single-particle orbital

Resulting two-particle transfer total cross sections:
the ranking of the different orbitals is different
with different projectiles

projectile
(t.0) (%C.”C) (%0.°0)
(0p1/2)*|(151/2)* | (0ps/2)? | (0ds/2)? || (0ds2)* | (1s1/2)* | Conf)
— 112gy,
Q I
g‘ (0g7/2)* ||2:86F-5 | 17355 | 1.19E-4 | 7.09E-4 | 9.00E-4 || 1.19E-3 | 2.01E-4 |1.24E-3
= (1ds,2)?(|1.13E-3) 3.00E-2 4.71E-3 | 5.54E-3 | 1.18E-3 || 3.55E-3 | 1.13E-2 |1.19E-2
;e‘_’ — | (251)2) TOSE?TBE{ 5.38E-3 ) 7.05E-3 | 1.16E-3 ;,o;zE-\3(142E-2 1.59E-2
< (1ds2)? ||4.73E-4|| 1.345-3 [ 27975 9.87E-3 |)4.14E-3(| 1.26E-2 | 6:62E-3 | 1.83E-2
| |(Oh11/2)? || 7.50E-5 || 7.77E-4 | 5.20E-5 | T:05E-1 | 7.65E-5 | T10E4 | 9.06E-5 | 1.88E-4
2.54E-3|| 8.77E-2 | 2.26E-2| 3.77E-2 | 1.21E-2 || 8.60E-3 | 1.95E-2 | 7.53E-2




Same results shown as histograms
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Another example of constructive interference over the
intermediate states: "deuteron " transfer
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Effect of contributions from L=0 and L=2 for 1+ states
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= Small components (2s1/2)(1d3/2) and (1d5/2)(1d3/2)
but they further increase the cross section



One more example of dependence on specific orbitals and consequent
strong variation of the cross section along an isotope chain
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Shape phase transition in Zr isotopes
between N=58 and 60
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Calculation of two-particle transfer reactions using:
sequential model for the reaction mechanism
one- and two-particle spectroscopic amplitudes from the Tokyo group
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B

Cluster-transfer model (suggested by the close radial correlation of the pairs)

— Initial and final cluster wave

Os functions are obtained by
taking the overlap between

the two-particle wave functions
and a Os wave function for

the relative motion

X7

Also in this case the resulting cross section depends on the specific single-particle
orbitals (via the Talmi-Moshinsky brackets), but the dependence is different
from the one associated with the sequential transfer



The preference to either model may depend on the colliding systems and on
kinematical conditions.

The proper approach will depend on the competition between the two colliding
single-particle mean fields and the residual two-body interaction (for relatively
weak interaction the mean fields will prevail, while in the other extreme of
infinite pairing correlation the cluster structure will fake over).



Space pair correlation

We conclude that the simple behavior of two-particle matrix
elements in not the end of the story, because the reaction
mechanism in a specific two-particle transfer reactions is

sensitive to the radial behavior of the pair wave function, and

therefore to the specific form of the single-particle states.

We have therefore to look at possible correlations in space and
to the dependence of this correlation on the specific involved
orbitals

A simple way of displaying the space correlations in the pair:
one puts one particle in one point and look at the probability
of finding the other one in another point
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particle-particle spatial correlations

|W(r,,r,)|2 as a function of r,, for fixed ry

Neutron addition mode: ground state of 219Pb
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Another representation of the pair transition density
in terms of Rand r

Catara etal
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A natural extension: effect of pairing on alpha-clustering
Catara, Insolia, Maglione, A.V.

O (Ra)=<P(r1n)d(r2n)P(rip)d(r2p) | D, (rn) Dy, (rp) Py, (rpn)>



Alpha-cluster probabilities in 232 Th, displayed in the intrinsic frame by
projecting over an alpha particle wave function

4 particles in pure (time-reversed)
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Alpha clusters transfer in terms of transfer of correlated nn and
pp pairs (and np pairs)
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Isotope dependence of
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6pP(er.)

HFB Cooper pairs

Pillet, Sandulescu, Schuck



A simple model to investigate the relative role of of the mean-field
and the residual interaction

ih%\l’(fcl, Lo, t) = H(x1, 22, 1)V (21,29, 1)

Two-body wavefunction

Hamiltonian: '
H(wy,29,t) = KIN + Vi(z1, 22) w Vine (21, 22)

Density dependent
residual interaction

pl(x1 +x2)/2]
Po

Vint(:cl,:z:g) — —V [ ] 6(331 — 172)




Two-particle correlated wave function: correlation clearly favors the situation

with the two particles on the same side

0.004 0.005 0.006 0.007

- —e

0 0.001 0.002 0.003

15

15




For comparison the situation with uncorrelated wave function
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We can now follow the evolution in time of the two-particle wave
function in the (x;,x,) plane, due to the action of the moving well

At the end of the process, from the final two-particle wave
function, we can separate different final states:

1. elastic/inelastic (both particles still in the initial well)
2. one-particle transfer (one particle in the initial well and one in
the moving one)
3. one-particle break-up (in particle in the continuum outside the
wells and one in the initial or final well)
4. two-particle transfer (both particles in the moving well)
5. two-particle break-up (both particles outside the wells)



We first consider the case of uncorrelated systems
(no residual interaction).

In this case the transfer process is induced by the mean-field of
the moving well, and in terms of reaction mechanism the two-particle
transfer can only be interpreted as obtained by the successive
transfer of single particles.

In such a situation, in a perturbative approach, we expect a pair
transfer probability

Pz"’(P1)2

Let us see what comes from the “"exact"” solution
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Let us see now the case of the "correlated” pair, due to the action
of the residual pairing interaction (density dependent, therefore
only acting when both particles are within a well, and not when
the particles are "in the air").
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Additional points that make not trivial the correspondence between
the pair-transfer cross section and the pairing matrix elements:
optical potentials
Q-value effects
continuum effects

For the optical potentials, to show the sensitivity of the results on their
choices, different options are used for the three relevant channels
(proton, deuteron, 3He)

Legenda:
ME: Menet forprotons,

CH: Chapel Hill 89 for protons,
LH: Lohr-Haeberli for deuteron,
DA: Daehnick for deuteron,
BG: Bechetti-Greenless for 3He,
PA: Pang for 3He.
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Q-value effect

Keeping fixed any other parameter, the probability for populating
a definite final channel depends on the Q-value of the reaction.
The dependence (in first approximation a gaussian distribution

centered in the optimum Q-value) is very strong in the case of
heavy-ion induced reactions, weaker in the case of light ions.

The optimum Q-value depends on the angular momentum transfer
and on the charge of the transferred particles. In the specific
case of L=0 two-neutron transfer, the optimal Q-value is zero.



Experimental evidence
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Playing with different combinations of projectile/target
(having different Q,,-value) one can favour different
energy windows

Example: Target 298Pb Final 21°Pb (at bombarding energy
Ecm =12 Ebar‘r‘ier)
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The width of the Q-value window increases
with the bombarding energy

Q-value cut-off factor




The pairing strength is therefore modulated by the Q-value cut-

off to yield the final two-particle cross section. And the
modulation depends on the specific reaction.

And the pairing interaction, by modifying via the correlation
energy the energies and the Q-value can in fact produce a
reduction of the pair transfer cross section
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strength (or cross section)
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Basic problem:

how is changed the picture as we move closer
or even beyond the drip lines?

What is the effect of continuum states in the
wave functions and of break-up channels in
the reaction mechanism?



Data from GANIL, Navin etal, 2011
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Extremely difficult to extract the fundamental 62/01 ratio
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ULi+p -> OLi+t

Data from ISAC-2,
TRIUMF

Tanihata, Thompson
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ULi+p -> SLi+t
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Systems
closer to the drip

one-particle lines
transfer to (infermediate
continuum bound and unbound

states)

A A+2

Example
|A=2>- { 2 X[a*a ]+ I dE X(E) [a*(E)a*(E)]o} | A>



— Systems

at the drip lines
(intermediate
unbound
states)

one-particle
transfer process

A+2

| A=2> = [ dEX(E) [a*(EB)a*(E)], | A>

Two-particle trasfer will proceed mainly by
constructive interference of successive transfers
through the (unbound) continuum intermediate states



one-particle
transfer process

Discretized
COTTiiraarn
/ A+l N
A+2
A

The integration over the continuum intermediate states
can becomes feasible by continuum discretization:

but how many paths should we include? Thousands or few,
for example only the resonant states?



