# Proton-neutron pairing and alpha-like quartetting in nuclei 

Nicolae Sandulescu

National Institute of Physics and Nuclear Engineering, Bucharest

# Proton-neutron pairing \& alpha-like quartetting the biginning 

```
SUPERFLUIDITY OF LIGHT NUCLEI
V. B. BELYAEV, B. N. ZAKHAR'EV, and V. G. SOLOV'EV
    Joint Institute of Nuclear Research
    Submitted to JETP editor October 12, }195
    J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 952-954 (March, 1960)
```

"we must take into consideration the quadruple correlation of alpha-particle-like nucleons in addition to pair correlations; these new correlations evidently play a very important role and somewhat mask the effect of pair correlations"

## pioneering studies on pn pairing \& alpha correlations

V. G. Soloviev NP18 (1960)
B. Bremond and J. G. Valatin NP41 (1963)
B. H. Flowers and M. Vijicic,NPA49(1963)
A. Arima and V. Gillet, Ann. Phys. 66 (1971)
J. Eichler and M. Yamamura, NPA 182(1972)
alpha-like quartet $=$ collective state of two neutrons and two protons coupled to $\mathrm{T}=0$ and $\mathrm{J}=0$

## why alpha-like quartets for pairing ?

they are the simplest structures which conserve exactly the isospin and spin \&
provide accurate descriptions of pn pairing Hamiltonians !

## Isospin conservation and quarteting: $\mathrm{T}=1$ pairing

$$
\begin{gather*}
H=\sum_{i} \varepsilon_{i}\left(N_{i}^{(v)}+N_{i}^{(\pi)}\right)+g \sum_{i, \tau} P_{i, \tau}^{+} P_{j, \tau} \\
P_{i 0}^{+} \propto v_{i}^{+} \pi_{i}^{+}+\pi_{i}^{+} v_{i}^{+} \\
P_{i 1}^{+} \propto v_{i}^{+} v_{i}^{+} \\
P_{i-1}^{+} \propto \pi_{i}^{+} \pi_{i}^{+}
\end{gather*}
$$

collective pn pairs
pair condensate

$\Gamma_{\pi v}^{+}=\sum_{i} x_{i}\left(v_{i}^{+} \pi_{i}^{+}+\pi_{i}^{+} v_{i}^{+}\right) \quad\left(\Gamma_{v \pi}^{+}\right)^{\frac{N+Z}{2}} \mathrm{I}->\quad$ no well-defined isospin!
collective quartet

$$
Q^{+}=\sum_{i j, \tau} x_{i j}\left[P_{i \tau}^{+} P_{j \tau^{\prime}}^{+}\right]^{T=0} \propto \sum_{i j \tau} x_{i j}\left(P_{v v, i}^{+} P_{\pi \pi, j}^{+}+P_{\pi \pi, i}^{+} P_{v v, j}^{+}-P_{v \pi, i}^{+} P_{v \pi, j}^{+}\right)
$$

quartet condensate

$$
\left|Q C M>=Q^{+n_{q}}\right|->\quad(\text { has } \mathrm{T}=0, \mathrm{~J}=0)
$$

## Quartet condensation and Cooper pairs

$$
\begin{array}{ll}
\left|Q C M>=Q^{+n_{q}}\right|-> & Q^{+}=\sum_{i j} x_{i j}\left[P_{i t}^{+} P_{i \tau}^{+}\right]^{T-0} \\
Q^{+}=2 \Gamma_{v v}^{+} \Gamma_{\pi \pi}^{+}-\Gamma_{v \pi}^{+} \Gamma_{v \pi}^{+} & \Gamma_{\tau}^{+}=\sum_{i} x_{i} P_{i, \tau}^{+}
\end{array} \quad \text { collective pairs } .
$$

entangled collective pairs !
entangled collective pairs !

$$
\left|Q C M>=\left(2 \Gamma_{v v}^{+} \Gamma_{\pi \pi}^{+}-\Gamma_{v \pi}^{+} \Gamma_{v \pi}^{+}\right)^{n_{q}}\right|->
$$

'coherent' mixing of condenstates formed by $\mathrm{nn}, \mathrm{pp}$ and pn pairs

## calculations

$$
\delta_{x}<Q C M|H| Q C M>=0
$$

method of reccurence relations
(24 non-linear coupled equations !)

## Quartet condensation versus pair condensation

$$
H=\sum_{i} \varepsilon_{i} N_{i}+\sum_{i j} V_{J=0}^{T=1}(i, j) \sum_{t} P_{i t}^{+} P_{j t}
$$

pairing forces extracted from SM interactions

$$
\left(Q^{+}\right)^{n_{q}} \quad\left(\Gamma_{v v}^{+} \Gamma_{\pi \pi}^{+}\right)^{n_{q}} \quad\left(\Gamma_{v \pi}^{+2}\right)^{n_{q}}
$$

|  | SM | QCM | PBCS 1 | PBCSO |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{21} \mathrm{Ne}$ | 9.173 | 9.170 (0.033\%) | 8.385 (8.590S) | 7.413 (19.187\%) |
| ${ }^{24} \mathrm{Mg}$ | 14.460 | 14.436 (0.166\%) | 13.250 (8.3685) | 11.801 (18.389\%) |
| ${ }^{33} \mathrm{Si}$ | 15.787 | 15.728 (0.374\%) | 14.531 (7.956\%) | 13.102 (17.008\%) |
| ${ }^{3} \mathrm{~S}$ | 15.844 | 15.795 (0.309\%) | 14.908 (5.908\%) | 13.881 (12.389\%) |
| ${ }^{4} \mathrm{Ti}$ | 5.973 | 5.964 (0.151/8) | 5.487 (8.134 \% ) | 4.912 (17.763\%) |
| ${ }^{43} \mathrm{Cr}$ | 9.593 | 9.569 (0.250\%) | 8.799 (8.277\%) | 7.885 (17.805\%) |
| ${ }^{31} \mathrm{Fe}$ | 10.768 | 10.710 (0.539\%) | 9.815 (8.85018) | 8.585 (20.273\%) |
| ${ }^{104} \mathrm{Te}$ | 3.831 | 3.829 (0.052\%) | 3.607 (5.847\%) | 3.356 (12.399\%) |
| ${ }^{165} \mathrm{Xe}$ | 6.752 | 6.696 (0.829\%) | 6.311 (6.531s) | 5.877 (12.959\%) |
| ${ }^{112} \mathrm{Ba}$ | 8.680 | 8593 (1.002\%) | 8.101 (6.670\%) | 13.064 (13.064\%) |

- ı=т paırıng is accurateıy descridea dy quartets, not dy pairs

Conclusions

- there is not a pure condensate of isovector pn pairs in $N=Z$ nuclei


## Quartet condensation versus isospin-projected BCS

$$
\begin{aligned}
& H=\sum_{i} \varepsilon_{\mathrm{i}}\left(\mathrm{~N}_{\mathrm{i}}^{(\nu)}+\mathrm{N}_{\mathrm{i}}^{\mathrm{r}}\right)-\mathrm{g} \sum_{\mathrm{i}, \mathrm{\tau}} \mathrm{P}_{\mathrm{i}, \tau}^{+} \mathrm{P}_{\mathrm{j}, \tau} \\
& \left|Q C M>\equiv\left(Q^{+}\right)^{n_{q}}\right|->\quad|\operatorname{PBCS}(N, T)\rangle=\hat{P}_{T} \hat{P}_{N}|B C S\rangle \\
& E_{\text {corr }}=E_{0}-E \\
& { }^{52} \mathrm{Fe} \\
& \text { Exact value: 8.29 MeV } \\
& \text { PBCS(N,T): 7.63 MeV (8\%) (Chen et al , Nucl. Phys.A 1978) } \\
& \text { QCM: } \quad 8.25 \mathrm{MeV} \text { (0.5\%) }
\end{aligned}
$$

QCM state describes additional quartet-type correlations

## Isovector pairing in QCM: Wigner energy

$$
\begin{gathered}
E(N, Z)=E(N=Z)+a_{s} \frac{(N-Z)^{2}}{A}+a_{W} \frac{|N-Z|}{A}+\delta E_{\text {shell }}+\delta E_{P} \\
E(N, Z)=E(N=Z)+\frac{T_{z}\left(T_{z}+X\right)}{2 \Theta} \quad T_{z}=0,2,4
\end{gathered}
$$



BCS fails to describe the Wigner energy
$\mathrm{T}=1$ pairing, when treated accurately, is able to describe well the Wigner !

## Wigner energy: comparison with earlier calculations

Bentley \& Frauendorf PRC(2013)

$$
H_{V}=\sum_{k} \epsilon_{k} \hat{N}_{k}-G_{V} \sum_{k k, T} \hat{P}_{k, t}^{+} \hat{F}_{k, t}+C \vec{T} \cdot \vec{T}
$$



Negrea \& Sandulescu PRC(2014)

$$
H_{V}=\sum_{k} \epsilon_{k} \hat{N}_{k}-G_{V} \sum_{k k^{\prime}, \tau} \hat{P}_{k, \tau}^{+} \hat{P}_{k^{\prime}, \tau}
$$



## Symmetry energ̀y: comparison with earlier calculations

Bentley \& Frauendorf PRC(2013)

$$
H_{V}=\sum_{k} \epsilon_{k} \hat{N}_{k}-G_{V} \sum_{k k^{\prime}, \tau} \hat{P}_{k, T}^{+} \hat{T}_{k^{\prime}, \tau}+C \vec{T} \cdot \vec{T}
$$




Atomic Mass Number (A)

Negrea \& Sandulescu PRC(2014)

$$
H_{V}=\sum_{k} \epsilon_{k} \hat{N}_{k}-G_{V} \sum_{k k^{\prime}, \tau} \hat{P}_{k, \tau}^{+} \hat{P}_{k^{\prime}, \tau}
$$ tomic Mass Number (A)

## Isoscalar and ísovector pairs in $\mathrm{N}=\mathrm{Z}$ nucleí

( $\mathrm{T}=1, \mathrm{~J}=0$ ) pairs

$$
\left.P_{i, T_{z}}^{+}=a_{i}^{+} a_{i}^{+}\right]_{T_{z}}^{T=1, J=0}
$$

$$
\Gamma_{\tau}^{+}=\sum_{i} x_{i} P_{i, \tau}^{+}
$$

pair condensate

$$
\left(\Gamma_{v \pi}^{+}\right)^{2 n_{q}} \mid->
$$

not well-defined isospin

$$
N=Z
$$




( $\mathrm{T}=0, \mathrm{~J}=1$ ) pairs

$$
D_{i j, J_{z}}^{+}=\left[a_{i}^{+} a_{j}^{+}\right]_{J_{z}}^{J=1, T=0}
$$

$$
\Delta_{0}^{+}=\sum y_{i} D_{i, 0}^{+}=
$$

pair condensate

$$
\left(\Delta_{0}^{+}\right)^{2 n_{q}}|0\rangle
$$

## Quartetting ior ísovector $\mathbf{(}=\mathbf{0}$ ) and isoscalar $(\mathbf{J}=\mathbf{1}$ ) pairing

$$
H=\sum \varepsilon_{i} N_{i}+\sum_{i j} V_{J=0}^{T=1}(i, j) \sum_{\tau} P_{i \tau}^{+} P_{j \tau}+\sum_{i j} V_{J=1}^{T=0}(i j, k l) \sum_{\sigma} D_{i j \sigma}^{+} D_{k l \sigma}
$$

isovector
isoscalar

$$
P_{i, T_{z}}^{+}=\left[a_{i}^{+} a_{i}^{+}\right]_{T_{z}}^{T=1, J=0} \quad D_{i j, J_{z}}^{+}=\left[a_{i}^{+} a_{j}^{+}\right]_{J_{z}}^{J=1, T=0}
$$

collective quartets

$$
Q_{i v}^{+}=\sum_{i, j} x_{i j}\left[P_{i}^{+} P_{j}^{+}\right]^{T=0}
$$

$$
Q_{i s}^{+}=\sum_{i, j} y_{i j, k l}\left[D_{i j}^{+} D_{k l}^{+}\right]^{J=0}
$$

generalised quartet

$$
Q^{+}=Q_{i v}^{+}+Q_{i s}^{+}
$$

ground state

$$
\left|Q C M>=Q^{+n_{q}}\right|->
$$

superposition of $\mathrm{T}=0$ and $\mathrm{T}=1$ quartets

Quartet condensation versus pair condensation ior isovector \& isoscalar pairing


- quartet condensation wins over Cooper pair condensates
- $\mathrm{T}=1$ and $\mathrm{T}=0$ pairing correlations always coexist in quartets


## Isovector-isoscalar pairing and quartetiing for $\mathrm{N}>$ Z nuclei

$$
\text { nuclei with } N-Z=2 n_{N}
$$

$$
N>Z
$$

ansatz

- all protons are correlated in alpha-like quartets
- neutrons in excess form a pair condensate

$$
\begin{aligned}
\mid Q C M> & =\left(\tilde{\Gamma}_{v v}^{+}\right)^{n_{N}}\left(Q_{T=1}^{+}+\Delta_{0}^{+2}\right)^{n_{q}} \mid-> \\
& Q_{T=1}^{+}=2 \Gamma_{v v}^{+} \Gamma_{\pi \pi}^{+}-\Gamma_{v \pi}^{+2} \quad \Delta_{0}^{+}=\sum y_{i} D_{i, 0}^{+}:
\end{aligned}
$$

how fast are suppressed the pn correlations away of $\mathrm{N}=\mathrm{Z}$ ?

## Isovector-isoscalar pairing and quartetting ior $\mathrm{N}>$ Z nucleí

$$
\begin{aligned}
\boldsymbol{H}= & \sum \varepsilon_{i} N_{i}+g_{T=1} \sum_{i j, \tau} P_{i \tau}^{+} P_{j \tau}+g_{T=0} \sum_{i j} D_{i 0}^{+} D_{j 0} \quad g_{T=0}=1.5 \mathrm{~g}_{T=1} \\
& \left|Q C M>=\left(\tilde{\Gamma}_{v v}^{+}\right)^{n_{N}}\left(Q_{T=1}^{+}+\Delta_{0}^{+2}\right)^{n_{q}}\right|->\quad \Delta_{0}^{+}=\sum y_{i} D_{i, 0}^{+}=
\end{aligned}
$$




pn pairing and quartet correlations survive in $\mathrm{N}>\mathrm{Z}$ nuclei !

## Quartet correlations for general two-body forces?

## Quartet correlations ior general two-body forces

$$
\begin{aligned}
H= & \sum_{i} \varepsilon_{i}\left(N_{i}^{(n)}+N_{i}^{(p)}\right)+\sum_{i i^{\prime}, j j^{\prime}, J, T, T} V_{J T}\left(i i^{\prime} ; j j^{\prime}\right)\left[A_{i i^{\prime}, T^{\prime}}^{+} A_{j j^{\prime}, J^{\prime} T^{\prime}}\right]^{J=0, T=0} \\
& \left|Q C M>=Q^{+n_{q}}\right|->\quad Q^{+}=\sum_{i i^{\prime}, j j^{\prime}, J T} x_{i i^{\prime}, j j^{\prime}}\left[A_{i i^{\prime}, J T}^{+} A_{j j^{\prime} J T}^{+}\right]^{0,0}
\end{aligned}
$$

|  | $E_{\text {corr }}(S M)$ | $E_{\text {corr }}(Q C M)$ | $E_{\text {corr }}(Q M)$ | $\langle S M \mid Q C M\rangle$ |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{20} \mathrm{Ne}$ | 24.77 | 24.77 | 24.77 | 1 |
| ${ }^{24} \mathrm{Mg}$ | 55.70 | $53.04(4.77 \%)$ | $53.24(4.41 \%)$ | 0.85 |
| ${ }^{28} \mathrm{Si}$ | 88.75 | $86.52(2.52 \%)$ | $87.12(1.84 \%)$ | 0.86 |
| ${ }^{32} \mathrm{~S}$ | 122.51 | $122.02(0.40 \%)$ | $122.29(0.18 \%)$ | 0.98 |

$$
E\left(n_{q}\right)=n_{q} \times E(1)+\frac{n_{q}\left(n_{q}-1\right)}{2} \times V\left(n_{q}\right),
$$

the interaction between the quartets is small compared to their binding energies
quartets acts as weakly interacting building blocks

How to identify the transition to a quartet condensate ?

## Long-range correlations of superiluidity-type and density matrix

> Penrose (1951) , Penrose and Onsager (1956), C. N. Yang (1962)
$n$-body long-range correlations $\Longleftrightarrow$ a large eigenvalue of $n$-body density

Example: pair condensation

$$
\begin{aligned}
& \rho^{(2)}\left(r_{1}, r_{2} ; r_{1}^{\prime}, r_{2}^{\prime}\right)=\left\langle\Phi_{0}^{(N)}\right| \hat{\Psi}^{+}\left(r_{1}\right) \hat{\Psi}^{+}\left(r_{2}\right) \hat{\Psi}\left(r_{2}^{\prime}\right) \hat{\Psi}\left(r_{1}^{\prime}\right)\left|\Phi_{0}^{(N)}\right\rangle \\
& \rho^{(2)}\left(r_{1}, r_{2} ; r_{1}^{\prime}, r_{2}^{\prime}\right)=\lambda_{0} \phi_{0}^{*}\left(r_{1}, r_{2}\right) \phi_{0}\left(r_{1}^{\prime}, r_{2}^{\prime}\right)+\sum_{n>0} \lambda_{n} \phi_{n}^{*}\left(r_{1}, r_{2}\right) \phi_{n}\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \\
& \text { long-range correlations: } \quad \lambda_{0} \gg \lambda_{n \neq 0} \quad \text { ("off-diagonal long-range order") }
\end{aligned}
$$

$\lambda_{0}$ - associated to the number of "condensed" pairs

Eigenvalues of two-body density matrix for like-particle pairing

$$
H=\sum_{i} \varepsilon_{i} N_{i}-k \sum_{i j} V(i, j) P_{i}^{+} P_{j}
$$

( $k$ is a scaling factor)
two-body density $\quad \rho_{i, j}^{(2)}=\langle\Psi| P_{i}^{+} P_{j}|\Psi\rangle \quad P_{i}^{+}=a_{i}^{+} a_{i}^{+}$

at physical strength : $\lambda_{0}>1\left(\lambda_{n>0}<1\right)$

Eigenvalues of 4-body density matrix ior $\mathrm{T}=1$ pairing: ${ }^{288} \mathrm{Si}$

4-body density

$$
\rho_{i, j}^{(4)}=\langle\Psi| q_{i}^{+} q_{j}|\Psi\rangle
$$

$$
q_{i}^{+}=\left(a_{i_{1}}^{+} a_{i_{2}}^{+} a_{i 3}^{+} a_{i 4}^{+}\right)^{T=0}
$$



in the physical region $\lambda_{0}^{(4)}>1$

## 4-body density for general two-body iorces: sd-shell nulcei

$$
\begin{gathered}
H=\sum_{i} \varepsilon_{i}\left(N_{i}^{(n)}+N_{i}^{(p)}\right)+\sum_{i i^{\prime}, j j^{\prime}, J^{\prime}, T^{\prime}} V_{J T}\left(i i^{\prime} ; j j^{\prime}\right)\left[A_{i i^{\prime} J^{\prime} T^{\prime}}^{+} A_{j j^{\prime} J^{\prime} T^{\prime}}\right]^{J=0, T=0} \\
\rho_{i, j}^{(4)}=<S M\left|q_{i}^{+} q_{j}\right| S M>\quad q_{i}^{+}=\left(a_{i_{1}}^{+} a_{i_{2}}^{+} a_{i_{3}}^{+} a_{i 4}^{+}\right)^{T=0}
\end{gathered}
$$

Largest 5 eigenvalues for sd-shell nuclei

| ${ }^{24} \mathrm{Mg}$ | $\mathbf{1 . 1 8}$ | 0.15 | 0.03 | 0.29 | 0.01 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| ${ }^{28} \mathrm{Si}$ | $\mathbf{1 . 1 9}$ | 0.47 | 0.27 | 0.20 | 0.12 |
| ${ }^{32} \mathrm{~S}$ | $\mathbf{1 . 5 1}$ | 0.83 | 0.74 | 0.59 | 0.53 |

there is one eigenvalue larger than 1
fingerprints of long-range quartet correlations

## Evolution of the largest eigenvalue of 4-body density matrix: ${ }^{32}$ S

$$
H=\sum_{i} \varepsilon_{i}\left(N_{i}^{(n)}+N_{i}^{(p)}\right)+k \sum_{i i^{\prime}, j j^{\prime}, J^{\prime}, T^{\prime}} V_{J T}\left(i i^{\prime} ; j j^{\prime}\right)\left[A_{i i^{\prime}, T^{\prime} T}^{+} A_{\left.j j^{\prime}, T^{\prime}\right]^{\prime}}\right]^{J-0, T-0}
$$



Indication of a fast transition towards a quartet condensate !

Evolution of the largest eigenvalue for 2-body density matrix: $\mathrm{J}=0, \mathrm{~T}=1$

signature of weak long-range correlations !

Evolution of the largest eigenvalue for 2-body density matrix: $J=1, T=0$


## Summary and Conclusions

Main message: isovector and isoscalar pairing are accurately described by alpha-like quartets, not by Cooper pairs

- isovector pairing gives a significant contribution to Wigner energy
- isoscalar and isovector pairing always coexist in the ground state of $N=Z$ nuclei
- quarteting appears to be a general feature in $N=Z$ nucle $i$
- 4-body density matrix indicates long-range correlations of "condensate" type
pairing correlations are "masked" by quartetting ?!


## Perspectives

- testing the quartet condensation by alpha transfer reactions ?
- unified microscopic treatment of quartetting and clustering ?


## Testing alpha-like quartet condensation in $\mathrm{N}=\mathrm{Z}$ nucleí ?

- test of pair condensation: pair transfer

$$
\langle P B C S(A+2)| C_{c_{i}^{+}}^{+}|P B C S(A)\rangle \quad|P B C S\rangle=\left(\Gamma^{+}\right)^{N / 2} \mid->
$$

fingerprint of pairs condensation:
plateau in the two-neutron transfer cross section


- test of quartet condensation: alpha particle transfer along $N=Z$ line

$$
<Q C M(A+4)\left|Q^{+}\right| Q C M(A)>\quad\left|Q C M>\equiv\left(Q^{+}\right)^{n_{q}}\right|->
$$

plateau in alpha transfer cross section?

$$
{ }^{16} \mathrm{O} \quad \alpha \quad{ }^{20} \mathrm{Ne} \quad \stackrel{\alpha}{ }{ }^{24} \mathrm{Mg} \quad \underline{\alpha} \quad{ }^{28} \mathrm{Si} \quad \alpha \quad{ }^{32} \mathrm{~S}
$$

experiments for heavier $\mathrm{N}=\mathrm{Z}$ nuclei (ph-shell) ?

## Alpha-like quartetiing versus alpha clustering

unified microscopic treatment?


Thanks for your attention !

## Quartet condensation in the excited states?

$$
\begin{aligned}
H= & \sum_{i} \varepsilon_{i}\left(N_{i}^{(n)}+N_{i}^{(p)}\right)+\sum_{i i^{\prime}, j j^{\prime}, J^{\prime}, T^{\prime}} V_{J T}\left(i i^{\prime} ; j j^{\prime}\right)\left[A_{i i^{\prime} J^{\prime} T^{\prime}}^{+} A_{j j^{\prime} J^{\prime} T^{\prime}}\right]^{J=0, T=0} \\
& \left|0_{n}^{+} ; Q C M\right\rangle=\left(Q_{n}^{+}\right)^{n_{q}}|-\rangle \quad Q_{n}^{+}=\sum_{i i^{\prime}, j j^{\prime}, J T} x_{i i^{\prime}, j j^{\prime}}^{(n)}\left[A_{i i^{\prime}, J T}^{+} A_{j j^{\prime} J T}^{+}\right]^{0,0}
\end{aligned}
$$

First excited $0^{+}$

|  | $E_{0_{1}^{+}}(S M)$ | $E_{0_{1}^{+}}(Q C M)$ | $\langle S M \mid Q C M\rangle$ |
| :---: | :---: | :---: | :---: |
| ${ }^{20} \mathrm{Ne}$ | $-33.77(6.7)$ | $-33.77(6.7)$ | 1 |
| ${ }^{24} \mathrm{Mg}$ | $-79.76(7.34)$ | $-76.97(7.47)$ | 0.70 |
| ${ }^{28} \mathrm{Si}$ | $-131.00(4.84)$ | $-126.91(6.71)$ | 0.65 |
| ${ }^{32} \mathrm{~S}$ | $-178.98(3.46)$ | $-178.04(3.92)$ | 0.95 |

SM is a QCM state !?
Second excited $0^{+}$

|  | $E_{0_{2}^{+}}(S M)$ | $E_{0_{2}^{+}}(Q C M)$ |
| :---: | :---: | :---: |
| ${ }^{20} \mathrm{Ne}$ | $-28.56(11.91)$ | $-28.56(11.91)$ |
| ${ }^{24} \mathrm{Mg}$ | $-77.43(9.67)$ | $-70.85(13.59)$ |
| ${ }^{28} \mathrm{Si}$ | $-128.51(7.33)$ | $-120.64(12.99)$ |
| ${ }^{32} \mathrm{~S}$ | $-175.04(7.4)$ | $-170.84(11.12)$ |

superposition of many shell-model states: cluster- type excitations?

## Isovector ( $\mathbf{J}=\mathbf{0}$ ) pairing versus isoscalar ( $\mathbf{J}=\mathbf{1}$ ) pairing

$$
\begin{gathered}
|Q M\rangle=\prod_{\nu=1}^{N_{Q}} Q_{\nu}^{\dagger}|0\rangle . \quad Q_{\nu}^{+}=Q_{\nu}^{+(i v)}+Q_{\nu}^{+(i s)} \\
|i s\rangle=\prod_{\nu=1}^{N_{Q}} Q_{\nu}^{\dagger(i s)}|0\rangle \quad|i v\rangle=\prod_{\nu=1}^{N_{Q}} Q_{\nu}^{\dagger(i v)}|0\rangle
\end{gathered}
$$

|  | QM | iv | is | $<Q M \mid i v>$ | $<Q M \mid i s>$ | $<i v \mid i s>$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{20} \mathrm{Ne}$ | 15.985 | $14.402(9.9 \%)$ | $15.130(5.35 \%)$ | 0.884 | 0.953 | 0.843 |
| ${ }^{24} \mathrm{Mg}$ | 28.625 | $23.269(18.71 \%)$ | $26.925(5.94 \%)$ | 0.650 | 0.910 | 0.336 |
| ${ }^{28} \mathrm{Si}$ | 35.386 | $28.896(18.34 \%)$ | $33.377(5.68 \%)$ | 0.590 | 0.910 | 0.341 |
| ${ }^{32} \mathrm{~S}$ | 38.844 | $33.958(12.58 \%)$ | $37.881(2.48 \%)$ | 0.640 | 0.974 | 0.587 |
| ${ }^{44} \mathrm{Ti}$ | 7.02 | $6.27(10.6 \%)$ | $4.92(30 \%)$ | 0.90 | 0.68 | 0.3 |
| ${ }^{48} \mathrm{Cr}$ | 11.624 | $10.59(8.9 \%)$ | $7.38(36.5 \%)$ | 0.906 | 0.497 | 0.22 |
| ${ }^{52} \mathrm{Fe}$ | 13.823 | $12.814(7.3 \%)$ | $9.98(27.83 \%)$ | 0.927 | 0.753 | 0.74 |
| ${ }^{104} \mathrm{Te}$ | 3.147 | $3.041(3.37 \%)$ | $1.549(50.78 \%)$ | 0.978 | 0.489 | 0.314 |
| ${ }^{108} \mathrm{Xe}$ | 5.495 | $5.240(4.64 \%)$ | $2.627(52.19 \%)$ | 0.958 | 0.354 | 0.234 |
| ${ }^{112} \mathrm{Ba}$ | 7.035 | $6.614(5.98 \%)$ | $4.466(36.52 \%)$ | 0.939 | 0.375 | 0.376 |

T=1 and T=0 pairing correlations always coexist \&
difficult to disentangle

## Isovector (J=0) and isoscalar (J=1) pairing: alpha-like quartetiing

$$
H=\sum \varepsilon_{i} N_{i}+\sum_{i j} V_{J=0}^{T=1}(i, j) \sum_{\tau} P_{i \tau}^{+} P_{j \tau}+\sum_{i j} V_{J=1}^{T=0}(i, j) \sum_{\sigma} D_{i \sigma}^{+} D_{j \sigma}
$$

pairing forces: from standard shell model interactions

$$
\left|Q M>==Q_{1}^{+} Q_{2}^{+} \ldots Q_{n_{q}}^{+}\right|->\quad\left|Q M(l . o)>==Q^{+}\right| Q C M\left(n_{q}-1\right)>
$$

|  | $N_{Q}$ | exact | QM | QM(l.0.) | I<QMIQM(I.o.)>1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{24} \mathrm{Mg}$ | 2 | -28.694 | $-28.626(0.24 \%)$ | $-28.592(0.35 \%)$ | 0.9993 |
| ${ }^{28} \mathrm{Si}$ | 3 | -35.600 | $-35.396(0.57 \%)$ | $-35.307(0.82 \%)$ | 0.9980 |
| ${ }^{32} \mathrm{~S}$ | 4 | -38.965 | $-38.865(0.25 \%)$ | $-38.668(0.76 \%)$ | 0.9942 |
| ${ }^{48} \mathrm{Cr}$ | 2 | -11.649 | $-11.624(0.21 \%)$ | $-11.614(0.30 \%)$ | 0.9996 |
| ${ }^{52} \mathrm{Fe}$ | 3 | -13.887 | $-13.823(0.46 \%)$ | $-13.804(0.60 \%)$ | 0.9994 |
| ${ }^{108} \mathrm{Xe}$ | 2 | -5.505 | $-5.495(0.18 \%)$ | $-5.490(0.27 \%)$ | 0.9995 |
| ${ }^{112} \mathrm{Ba}$ | 3 | -7.059 | $-7.035(0.34 \%)$ | $-7.025(0.48 \%)$ | 0.9987 |

alpha-like quartets appear as relevant degrees of freedom in $\mathrm{N}=\mathrm{Z}$ nuclei

## Isoscalar and isovector proton-neutron pairing in time-reversed states

$$
\begin{gathered}
\hat{H}=\sum_{i, \tau= \pm 1 / 2} \varepsilon_{i \tau} N_{i \tau}+\sum_{i, j} V^{T=1}(i, j) \sum_{t=-1,0,1} P_{i, t}^{+} P_{j, t}+\sum_{i, j} V^{T=0}(i, j) D_{i, 0}^{+} D_{j, 0} \\
\text { isovector } \\
\text { isoscalar } \\
P_{i, 0}^{+}=\left(\nu_{i}^{+} \pi_{\bar{i}}^{+}+\pi_{i}^{+} \nu_{\bar{i}}^{+}\right) / \sqrt{2} . \quad D_{i, 0}^{+}=\left(\nu_{i}^{+} \pi_{\bar{i}}^{+}-\pi_{i}^{+} \nu_{\bar{i}}^{+}\right) / \sqrt{2} \\
P_{i 1}^{+}=v_{i}^{+} \nu_{\bar{i}}^{+} \quad P_{i-1}^{+}=\pi_{i}^{+} \pi_{\bar{i}}^{+} \\
Q_{T=1}^{+}=\sum_{i j} x_{i} x_{j}\left[P_{i \tau}^{+} P_{j \tau^{\prime}}^{+}\right]^{T=0} \\
\text { ansatz for ground state } \\
\quad \Delta_{0}^{+}=\sum y_{i} D_{i, 0}^{+}= \\
\left|\Psi>=\left(Q_{T=1}^{+}+\Delta_{0}^{+2}\right)^{n_{q}}\right|->
\end{gathered}
$$

## Competition between isovector and isoscalar pairing

pairing on top of deformed Skyrme-HF

$$
\begin{array}{rr}
V_{\text {paring }}^{T=\{0,1\}}=\mathrm{v}_{0}^{T=\{0,1\}} \delta\left(r_{1}-r_{2}\right) \hat{P}_{S=\{0,1\}} & \mathrm{v}_{0}^{T=0}=1.5 \mathrm{v}_{0}^{T=1} \\
\left(Q_{T=1}^{+}+\Delta_{0}^{+2}\right)^{n_{q}} & \left(Q_{T=1}^{+}\right)^{n_{q}}
\end{array}
$$

|  | exact | $\|\Psi\rangle$ | $\|i v\rangle$ | $\|i s\rangle$ | $\langle i v \mid i s\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{20} \mathrm{Ne}$ | 11.38 | $11.38(0.00 \%)$ | $11.31(0.62 \%)$ | $10.92(4.00 \%)$ | 0.976 |
| ${ }^{24} \mathrm{Mg}$ | 19.32 | $19.31(0.03 \%)$ | $19.18(0.74 \%)$ | $18.93(2.00 \%)$ | 0.980 |
| ${ }^{28} \mathrm{Si}$ | 18.74 | $18.74(0.01 \%)$ | $18.71(0.14 \%)$ | $18.54(1.07 \%)$ | 0.992 |
| ${ }^{44} \mathrm{Ti}$ | 7.095 | $7.094(0.02 \%)$ | $7.08(0.18 \%)$ | $6.30(10.78 \%)$ | 0.928 |
| ${ }^{48} \mathrm{Cr}$ | 12.78 | $12.76(0.1 \%)$ | $12.69(0.67 \%)$ | $12.22(4.37 \%)$ | 0.936 |
| ${ }^{52} \mathrm{Fe}$ | 16.39 | $16.34(0.26 \%)$ | $16.19(1.17 \%)$ | $15.62(4.65 \%)$ | 0.946 |
| ${ }^{104} \mathrm{Te}$ | 4.53 | $4.52(0.06 \%)$ | $4.49(0.82 \%)$ | $4.02(11.26 \%)$ | 0.955 |
| ${ }^{108} \mathrm{Xe}$ | 8.08 | $8.03(0.61 \%)$ | $7.96(1.45 \%)$ | $6.75(16.47 \%)$ | 0.814 |
| ${ }^{112} \mathrm{Ba}$ | 9.36 | $9.27(0.93 \%)$ | $9.22(1.43 \%)$ | $7.50(19.81 \%)$ | 0.784 |

isovector and isoscalar pairing always coexist together large overlaps between |iv> and |is>

## Suppresion of isoscalar and isovector pairing by spin-orbit



FIG. 1: Correlation energies (in MeV ) provided by the QCM approach in corresponence with the Hamiltonian (1) for 1, 2 and 3 quartets moving in the orbits $f_{7 / 2}$ and $f_{5 / 2}$. Dashed lines refer to the isovector Hamiltonian ( $g_{1}=-1, g_{0}=0$ ) while full lines refer to the isoscalar Hamiltonian ( $g_{1}=0, g_{0}=-1$ ). On the horizontal axis we show the spin-orbit energy splitting between the two orbits (in MeV).

## Isovector and isoscalar pairing in odd-odd $\mathrm{N}=\mathrm{Z}$

## Low Lying States in Odd-Odd Z=N nuclei

- Below $A=34$, the g.s. has $T=0$, the $T=1,0^{+}$state becomes progressively disfavoured.


From Y. Tanimura, H. Sagawa, K. Hagino, PTEP, 053D02, (2014)

strong $\mathrm{T}=0$ pairing for odd-odd $\mathrm{N}=\mathrm{Z}$ nuclei with $\mathrm{A}<40$ ?

## Isovector and isoscalar pairing in odd-odd $\mathrm{N}=\mathrm{Z}$

$$
\begin{gathered}
\hat{H}=\sum_{i, \tau= \pm 1 / 2} \varepsilon_{i \tau} N_{i \tau}+\sum_{i, j} V^{T=1}(i, j) \sum_{t=-1,0,1} P_{i, t}^{+} P_{j, t}+\sum_{i, j} V^{T=0}(i, j) D_{i, 0}^{+} D_{j, 0} \\
\mathrm{~T}=1 \text { state } \quad\left|i \mathrm{v} ; Q C M>=\tilde{\Gamma}_{v \pi}^{+}\left(Q_{T=1}^{+}+\Delta_{v \pi}^{+2}\right)^{n_{q}}\right|-> \\
\mathrm{T}=0 \text { state } \quad\left|i s ; Q C M>=\tilde{\Delta}_{v \pi}^{+}\left(Q_{T=1}^{+}+\Delta_{v \pi}^{+2}\right)^{n_{q}}\right|->
\end{gathered}
$$




$$
V_{\text {paring }}^{T=\{0,1\}}=V_{0}^{T=\{0,1\}} \delta\left(r_{1}-r_{2}\right) \hat{P}_{S=\{0,1\}} \quad w=\frac{V_{0}^{T=0}}{V_{0}^{T=1}}
$$

what we can learn about the structure of the states?

## The structure of lowest $\mathrm{T}=\mathbf{0}$ and $\mathrm{T}=\mathbf{1}$ states

$\mathrm{T}=0$ ground state

Exact $\quad \tilde{\Delta}_{v \pi}^{+}\left(Q_{T=1}^{+}+\Delta_{v \pi}^{+2}\right)^{n_{q}} \quad \tilde{\Delta}_{v \pi}^{+}\left(Q_{T=1}^{+}\right)^{n_{q}} \quad\left(\Delta_{v \pi}^{+}\right)^{2 n_{q}+1} \quad \tilde{\Delta}_{v \pi}^{+}\left(\Gamma_{v \pi}^{+2}\right)^{n_{q}}$

| ${ }^{30} \mathrm{P}$ | $\mathrm{T}=0$ | 12.66 | $12.60(0.44 \%)$ | $12.55(0.86 \%)$ | $11.96(5.86 \%)$ | $11.94(5.95 \%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## $\mathrm{T}=1$ ground state

Exact $\quad \tilde{\Gamma}_{v \pi}^{+}\left(Q_{T=1}^{+}+\Delta_{v \pi}^{+2}\right)^{n_{q}} \quad \tilde{\Gamma}_{v \pi}^{+}\left(Q_{T=1}^{+}\right)^{n_{q}} \quad \tilde{\Gamma}_{v \pi}^{+}\left(\Delta_{v \pi}^{+2}\right)^{n_{q}} \quad\left(\Gamma_{v \pi}^{+}\right)^{2 n_{q}+1}$

| ${ }^{54} \mathrm{Co}$ | $\mathrm{T}=1$ | 16.14 | $16.12(0.14 \%)$ | $16.09(0.28 \%)$ | $15.67(3.01 \%)$ | $15.86(1.78 \%)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

conclusion
isovector correlations are stronger in both $\mathrm{T}=0$ and $\mathrm{T}=1$ low-lying states

## Spin-aligned J=9 pairs in ${ }^{92}$ Pd ?


B. Cederwall et al, Nature 469 (2011)68

## Role of spin-aligned pairs in ${ }^{92} \mathbf{P d}$

$$
Q_{\alpha, J M, T T_{z}}^{+}=\sum_{i_{1} j_{1} J_{1} T_{1} i_{i} j_{2} J_{2} T_{2}} C_{i_{1} j_{1} J_{1} T_{1}, i_{2} j_{2} J_{2} T_{2}}^{(\alpha)} \times\left[\left[a_{i_{1}}^{+} a_{j_{1}}^{+}\right]^{J_{1} T_{1}}\left[a_{i_{2}}^{+} a_{j_{2}}^{+}\right]^{J_{2} T_{2}}\right]_{M T_{2}}^{J T}, \quad\left[Q_{\alpha_{1}, J^{\prime}, T^{\prime}}^{+} \otimes Q_{\alpha_{2}, J^{\prime \prime}, T^{\prime \prime}}^{+}\right]^{J, T},
$$


the structure of ${ }^{92} \mathrm{Pd}$ is not dominated by $\mathrm{J}=9$ pairs ground state is mainly built by $\mathrm{J}=0$ and $\mathrm{J}=1$ pairs
M. Sambataro and N. S, PRC91 (2015)

## Role of spin-aligned pairs in ${ }^{96} \mathrm{Cd}$


M. Sambataro and N. Sandulescu, PRC91 (2015)

