Shape coexistence in the A \sim 40 region

Magda Zielińska IRFU/DPhN, CEA Saclay, France

Highly-deformed structures in the A \sim 40 region

- spherical and highly-deformed magic numbers appear at similar particle numbers – dramatic shape coexistence
- intense transitions linking very deformed structures to ground-state bands — mixing of configurations

Identification of 4p-4h and 8p-8h structures in ⁴⁰Ca

R. Middleton et al, Phys. Lett. 39B (1972) 339

High-spin spectroscopy around ⁴⁰Ca

 regular rotational bands built on 0⁺ states observed up to spin 14⁺ – 16⁺ in ⁴⁰Ca, ³⁸Ar, ³⁶Ar...

Lifetime measurements in deformed bands

• ⁴⁰Ca: B(E2; $4_{SD}^+ \rightarrow 2_{SD}^+$) = 170 Wu • band built on 0_2^+ : Q₀ = 0.74 ± 0.14 eb (β = 0.27)

³⁶Ar: lifetimes of individual SD states determined, Q₀ not constant in the band: 4⁺ → 2⁺: 114(9) eb (β = 0.46), 6⁺ → 4⁺: 121(9) eb, 8⁺ → 6⁺: 116(9) eb, 10⁺ → 8⁺: 97(11) eb, 12⁺ → 10⁺: 89(9) eb (β = 0.35)

Highly-deformed structures in the A \sim 40 region

isotope	experimental β_2	configuration	0 ⁺ energy	
⁴⁰ Ca	$0.59\substack{+0.11\\-0.07}$	8p-8h	5.2 MeV	E. Ideguchi et al., PRL 81 (2001) 222501
	0.27 ± 0.05	4p-4h	3.4 MeV	
³⁶ Ar	0.46±0.03	4p-8h	4.3 MeV	C. Svensson et al., PRL 85 (2000) 2693
³⁸ Ar	$(0.42\substack{+0.11\-0.08})$	4p-6h	3.4 MeV	R. Austin, PhD thesis (2004)
	>0.68	4p-6h	4.7 MeV	
⁴⁰ Ar	$0.48^{+0.16}_{-0.10}\pm0.05$	4p-4h	2.1 MeV	E. Ideguchi et al., PLB 686 (2010) 18
⁴⁴ Ti	not known	8p-4h	3.1 MeV	D. O'Leary et al., PRC 61 (2000) 064314
⁴² Ca	0.43(4) (02+)	6p-4h	1.8 MeV	K. Hadyńska-Klęk, PRL 117 (2016) 062501
	0.45(4) (2 ⁺ ₂)	6p-4h		

- ${}^{40}Ca$, ${}^{40}Ar$: fit of one Q_0 to the entire band
- ³⁶Ar: individual lifetimes determined, β_2 from those of 4⁺, 6⁺ and 8⁺
- ³⁸Ar: various fit methods tested, results strongly depend on assumptions
- ⁴²Ca: Coulomb excitation

SD bands throughout the nuclear chart

K. Hadyńska-Klęk, PRC submitted

- SD bands in the A ${\sim}150,$ A ${\sim}190$ and A ${\sim}230$ regions clearly separated from normal-deformed states
- those for A<150 span a broad range of deformations and are closer to the $A^{-1/3}$ line

Transition probabilities in ⁴²**Ca**

• measured quadrupole moment of 2^+_2 corresponds to $\beta = 0.48(14)$

K. Hadyńska-Klęk, PRL 117 (2016) 062501

Comparison with theoretical calculations

K. Hadyńska-Klęk, PRC submitted

- Large-Scale Shell Model: F.Nowacki, H.Naïdja, B.Bounthong (Strasbourg)
- Beyond Mean Field calculations with Gogny D1S: T. R. Rodriguez (Madrid)

Shape parameters of 0⁺ and 2⁺ states in ⁴²Ca

K. Hadyńska-Klęk, PRL 117 (2016) 062501

deformation in the side band: $\bar{\beta}$ =0.43(4), $\bar{\gamma}$ =13(6)° ground-state band: $\bar{\beta}$ =0.26(2), $\bar{\gamma}$ =29(2)° (?) are these static deformations, or fluctuations?

softness in β : $\sigma(Q^2) = \sqrt{\langle Q^4 \rangle - \langle Q^2 \rangle^2}$

Comparison with theoretical calculations

- coexistence of two very different structures reproduced by both theories, slightly triaxial SD minimum present in both potential maps
- deformation in the ground-state band increases with spin contrary to theoretical predictions \rightarrow mixing seems to be underestimated by calculations

Configurations of ND and SD structures

⁴²Ca

⁴⁰Ca

F.Nowacki, H.Naidja, B.Bounthong Universiet de Strasbourg, France

state	2p-0h	4p-2h	6p-4h	8p-6h
01	40	40	17	3
2^{+}_{1}	45	36	16	3
41	55	35	9	1
6 ⁺	55	35	9	1
02	10	18	49	23
2^{+}_{2}	12	13	50	24
4^+_2	1	15	62	22
6^+_2	1	24	61	14
23	0	14	59	26
3 ⁺	0	4	66	30

E.Caurier, J.Menendez, F.Nowacki and A.Poves, Phys. Rev. C 75, 054317 (2007)

Table V: np-nh structure of the superdeformed band of ⁴⁰Ca.

J	0p-0h	2p-2h	4p-4h	6p-6h	8p-8h
0	-	-	9	4	87
2	-	-	11	4	85
4	-	-	8	5	87
6	-	-	3	5	91
8	-	-	2	6	91
10	-	-	1	12	87
12	-	-	2	29	69
14	-	-	11	27	63
16	-	-	0	40	60

TABLE IV. Percentage of np-nh components and energy of the first three 0⁺ states (GS, ND, and SD) of ⁴⁰Ca.

	0p-0h	2p-2h	4p-4h	6p-6h	8p-8h	E(th)	E(exp)
$\overline{0_{GS}^+}$	65	29	5	-	-	0	0
0^+_{ND}	1	1	64	25	9	3.49	3.35
0^+_{SD}	-	-	9	4	87	4.80	5.21

state	$\langle Q^2 angle_{ m exp}$	$\langle Q^2 angle_{ m SM}$	$\sigma(Q^2)_{\rm SM}$	$\langle Q^2 \rangle_{\rm BMF}$	$\sigma(Q^2)_{\rm BMF}$
0_{1}^{+}	500 (20)	240	470	100	250
2_{1}^{+}	900 (100)	250	490	100	310
0_{2}^{+}	1300 (230)	1200	500	1900	520
2 ⁺ ₂	1400 (250)	1130	500	1900	300
state	$\langle \cos(3\delta) angle_{exp}$	$\langle \cos(3\delta) angle_{SM}$		(cos($\left \delta \right\rangle angle_{BMF}$
01+	0.06 (10)	0.34		0.34	
0_{2}^{+}	0.79 (13)	0.67		0.49	

 $\sigma(Q^2)$ comparable with $\langle Q^2 \rangle$ for the ground-state band

 \rightarrow fluctuations about a spherical shape

excited band: $\sigma(Q^2)$ few times lower than $\langle Q^2 \rangle$

ightarrow static deformation

Two-states mixing model applied to ⁴²Ca

• we assume that physical states are linear combinations of pure spherical and deformed configurations:

$$\begin{aligned} |\mathbf{I}_{1}^{+}\rangle &= +\cos\theta_{\mathbf{I}} \times |\mathbf{I}_{p}^{+}\rangle + \sin\theta_{\mathbf{I}} \times |\mathbf{I}_{s}^{+}\rangle \\ |\mathbf{I}_{2}^{+}\rangle &= -\sin\theta_{\mathbf{I}} \times |\mathbf{I}_{p}^{+}\rangle + \cos\theta_{\mathbf{I}} \times |\mathbf{I}_{s}^{+}\rangle \end{aligned}$$

	Experiment	SM	BMF	
$\cos^2(\theta_0)$	0.88(4)	0.85	0.96	
$\cos^2(\theta_2)$	0.39(8)	0.83	0.97	

• $\cos^2(\theta_0)$ can be also extracted from E0 transition strength:

$$\rho^{2}(E0) = \left(\frac{3Z}{4\pi}\right)^{2} \cos^{2}(\theta_{0}) \sin^{2}(\theta_{0}) \cdot \left[\left(\beta_{1}^{2} - \beta_{2}^{2}\right) + \frac{5\sqrt{5}}{21\sqrt{\pi}} \left(\beta_{1}^{3} \cos\gamma_{1} - \beta_{2}^{3} \cos\gamma_{2}\right) \right]^{2}$$

- obtained value of 0.84(4) is in perfect agreement with that extracted from E2 matrix elements
- $\cos^2(\theta_2) < 0.5$: two-state mixing model cannot be applied to 2⁺ states in ⁴²Ca

Population of the deformed structure in one-neutron transfer

C. Ellegaard et al, Phys. Lett. 40B (1972) 641 • equal population of 2_1^+ and 2_2^+ in (d,p) – configuration mixing

• 4_1^+ populated in one-nucleon transfer – it is not a two-phonon state, so the increase of $\langle Q^2 \rangle$ in the g.s. cannot be interpreted as resulting from the vibrational character of 2_1^+

Gamma deformation

• K=2 band identified in (p,t) and (α , γ) studies of ⁴⁴Ti

• is there a similar band built on 2_3^+ in ${}^{42}Ca$?

Outlook

	N=18		N=20		N=22			_
		⁴² V	⁴³ V	⁴⁴ V	⁴⁵ V	⁴⁶ V	⁴⁷ V	
³⁹ Ti	⁴⁰ Ti	⁴¹ Ti	⁴² Ti	⁴³ Ti	44 Ti	⁴⁵ Ti	⁴⁶ Ti	z
³⁸ Sc	³⁹ Sc	⁴⁰ Sc	⁴¹ Sc	⁴² Sc	⁴³ Sc	⁴⁴ Sc	⁴⁵ Sc	
³⁷ Ca	³⁸ Ca	³⁹ Ca	⁴⁰ Ca	⁴¹ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	z
³⁶ K	³⁷ K	³⁸ K	³⁹ K	⁴⁰ K	⁴¹ K	⁴² K	⁴³ K	
³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar	³⁹ Ar	⁴⁰ Ar	⁴¹ Ar	⁴² Ar	z
³⁴ CI	³⁵ CI	³⁶ CI	³⁷ CI	³⁸ CI	³⁹ CI	⁴⁰ CI	⁴¹ CI	

- ²⁼²² are there similar structures in ^{40,42}Ti and ³⁸Ca?
- e₌₂₀ what about odd-mass nuclei?
 - ³⁸Ar seems not well understood

²⁼¹⁸ • role of triaxiality?