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Outline

Outline
Ø Emission of E0 transitions
Ø New tabulation of WCE(E0)
Ø e-g angular correlations of E0+M1+E2 transitions
Ø E0 transitions and the evolution of shape co-existence

q W-Os-Pt-Hg (Z=82, N=126)
q Fe (Z=N=28)
q 12C (Z=N=8)

Ø Monopole transitions in atomic nuclei – new review
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E0 transitions - 75 years on

Proc. Roy. Soc. (London) 129 (1931) 180-207

Charles 
Drummond Ellis 

(1895-1980)

Highly converted K, L1, M1 lines 
corresponding to 1.426 MeV 
transition

1.4155 MeV E0 in 214Po
T1/2=99(3) ps; r2=0.0013(2)

George Gamow (1904-1968)

1931: 
0 → 0 transition: 

quantum transition 
forbidden

6.05 MeV E0 pairs in 16O
Fowler & Lauritsen, Phys. Rev. 56 (1939) 840

6.05 MeV E0 (16O) E1+M1 double photon
Gorodetzky et al., Phys. Rev. Lett. 7 (1961) 170



174 I. M. BAND et al. 
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Fig. 1. The functions f(r) = c&(r)/anL are plotted for 2 = 72 and conversion electron energy 
E = 1 .Ol me’. The lower scale shows the positions of the principal maxima for the wave functions of 
corresponding electrons. The functions f(r) weakly depend on E for E ranging from 1.001 mc2 to 
I. 1 mc2. The variation may reach approximately 15 %. The functions f(r) are almost independent of 
principal quantum numbers N’ for atomic shells with the same quantum numbers 1’ andj’. Therefore 
each figure (a), (b) and (c) referes to all s-shells, p+ shells and fs shells respectively. The type and 
multipola~~ of the transition are indicated near each curve. The positions of the first nodes of the 
bound state wave functions G,,(r) are marked by indices fi. We can see that the region of ICC forma- 
tion in K, Lr, Mr, N,, Or, Pr shells is determined by the radius of the K orbit for Ml, M3, M5 
transitions (see fig. la), by the radius of the L orbit for Ml, M3, E2, E4 transitions in Ln, Mrr,Nn, 
Or1 shells (see fig. lb), and by the radii of the K and L orbits for M3, M4, E3, E4 transitions in the 

Nvrt shell (see fig. 1~). ICC are formed in the inner part of the atom. 

tions) (see fig. 2a). This fact is related to the position of the first nodes r. of functions 
G,(r) giving the main contribution to ICC!. For all the cases considered in figs. 1, 2 
and 3a 

ref 5 min (rb , ro). (9 

It is worthw~~ to note that ICC in f-shells for high multipole order transitions 

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University E0 Workshop, CEA 2017

Formation of E0 transitions

K
L

M

e-e+

pair g-ray CE Ø “Normal conversion” (L>0):
q Small contribution from inside the nucleus
q Inner part of the atom (K-L-M shells) 

Position of the principal maxima of WF (TF units)

Band, et al., NP A156 (1970) 170

S1/2 shells: K, L1, M1, N1

P1/2 shells: L2, M2, N2

F7/2 shell: N7

alL(r)/alL K

L

K  &  L

Ø E0 conversion electrons:
q Monopole potential 

localised inside the 
nucleus

q Point nucleus approx.: 
WE0 ⇒ vanishes

q Purely penetration 
effect
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E0 transitions

Transition probability
WT = Wg + WCE + Wp

Conversion coefficient
ace,p = Wce,p / Wg

CE & p
Wce,p = Wg × ace,p

E0  
Wce,p = r2(0+→0+) × Wce,p(Z,k)

Monopole strength parameter

𝝆 =
𝟎𝒇% ∑𝒆𝒋𝒓𝒋𝟐�

� 𝟎𝒊%

𝒆𝑹𝟐 =	
𝟎𝒇% 𝒎(𝑬𝟎) 𝟎𝒊%

𝒆𝑹𝟐

Reduced transition probability
B(E0) = e2 R4 r2

K
L

M

e-e+

pair g-ray CE
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Transition probability
WT = Wg + WCE + Wp

Conversion Coefficient
ace,p = Wce,p / Wg

CE & p
Wce,p = Wg × ace,p

E0  
Wce,p = r2(0+→0+) × Wce,p(Z,k)

nuclear atomic

K
L

M

e-e+

pair g-ray CE

Separation is less complete!  
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Piet Van Isacker (GANIL) talk on Monday

E0 transitions
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Transition probability
WT = Wg + WCE + Wp

Conversion Coefficient
ace,p = Wce,p / Wg

CE & p
Wce,p = Wg × ace,p

E0  
Wce,p = r2(0+→0+) × Wce,p(Z,k)

nuclear atomic

L≠0: Wg and Wce,p
L=0 i.e. E0: only Wce,p!

Need to measure electrons and/or 
electron-positron pairs 

K
L

M

e-e+

pair g-ray CE

E0 transitions
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W(E0) - theory
Ø Wk,p(E0) ~ Ik,p(E0)

Ø Only ratios of Wk,p(E0) could 
be measured
§ K/p
§ K/L, K/LM, K/MN
§ L/M

New WCE calculations 
Takahe (Jackson Dowie, ANU)

Ø Modified version of the CATAR code 
(Puli & Raff, 1975)

Ø Relativistic Hartree-Fock-Slater 
atomic model

Ø Sliv`s surface current model
Ø Directional & polarization particle 

parameters 
Ø Penetration parameters
Ø WCE electronic factors
Ø Z up to 126

WCE(E0), Mo (Z=42) 1000 keV
Takahe
(2017)

Bell et al. 
(1972)

Hager & 
Seltzer  
(1968)

K 1.454E+9 1.459E+9 1.438E+9

L1 1.629E+8 1.574E+8 1.611E+8
L2 1.358E+6 1.152E+6 1.346E+6
M1 2.913E+7
M2 2.566E+5
N1 4.983E+6
N2 3.788E+4
O1 3.807E+5

S1/2, P1/2 and P3/2 shells only
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W(E0) - how good are they?
Experiment Vs. Theory 

Ratios of WCE & Wp-20
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ICC(E2, Z=26)
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IPF

Ω(E0, Z=26)
E2 E0

Ø Z and atomic shell dependent
Ø Increases with energy
Ø K/L weak dependence on Z (4 to 9)
Ø Pair conversion dominant at low Z

E0 vs E2 transitions
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E0+M1+E2 transitions
T. R. GERHOLM AND B. G. PETTERSSON
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Fzo. 1.Arrangement of P spectrometer and gamma counter. A complete description is given in reference 10.

The activity was obtained by bombarding spectro-
scopically pure platinum with 16-Mev deuterons. The
gold activity was extracted in the form of gold chloride.
As backing, a 0.9 mg/cm' Mylar foil was used. On this
backing, a 500—1000 angstrom thick silver layer was
evaporated. The activity was electroplated on the
silver surface. This was obtained simply by putting the
Mylar backing with the silver layer into the chloride
solution for about half an hour. In this way the activity
was obtained as a weightless layer on the silver surface.
The experimental setup, as shown in Fig. 1, was a

beta-ray spectrometer specially adapted for correlation
measurements" and a 2 in. )&2-;-in. diameter NaI(Tl)
scintillation detector for the gamma rays.
Both electron-gamma and gamma-electron correla-

tions were determined. In each correlation experiment,
about 104 coincidences were counted at each of the
angles 90', 135', and 180'. The complete series of
measurements was made with three different sources.
The results obtained were in good agreement with each
other.
The A2 and A.4 coefficients have been determined by

a method given by Gimmi, Beer, and Scherrer. "The
coefficients were corrected for the 6nite solid angles of
the detectors. No correction for source scattering has
been applied. The experimental results are given in
Table I.
edited by K. Siegbahn (North-Holland Publishing Company,
1955), Chap. 19, Part 1."B.G. Pettersson and T. R. Gerholm, Nuclear Instr. (to be
published).
"Gimmi, Heer, and Scherrer, Helv. Phys. Acta 29, 147 (1956).

DISCUSSION

Gamma-Gamma Angular Correlation

The 334.0—356.5 kev cascade transition of Pt"' has
been carefully studied by Ste6en" and by Thieme and
Bleuler. " Their experimental results are in good
agreement and indicate an M1 admixture of 4.5&0.8%.
Steffen" reports 1/fi2= 22&4, where 5' is defined as

3f1 electromagnetic transition probability$2— (1)
E2 electromagnetic transition probability

8 is positive in the notation of Biedenharn and Rose.

Gamma-Electron Angular Correlation

According to Biedenharn and Rose,"the correlation
function is given by

W(y, e; M1+E2) =Po(cos8)
+b2'A2(v, y & M1+Z2)P2(cos9)

+b4'A4(y, y; M1182)P4(cos9), (2)
where b2' and b4' are the appropriate particle factors,
tabulated by Biedenharn and Rose.
In Table I the coefFicients A2('y, e) and A4(y, e)

calculated from (2) for 1/tl'=22&4 are compared with
the experimental results. This shows that within the
experimental errors we have obtained the unperturbed
correlation. The largest attenuation consistent with

"R.M. SteBen, Phys. Rev. 89, 665 (1953)."M.T. Thieme and E. Bleuler, Phys. Rev. 101, 1031 (1956).'4L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1953).

Church, Rose and Weneser (1958) 
Ø E0 can proceed in competition of E2 & M1
Ø e-g angular correlations: a sensitive test
Ø First observation: 334.0-356.5 cascade in 

196Pt (Gerholm & Pettersson 1958)

𝑊 𝒆𝜸, 𝑬𝟎 +𝑴𝟏 + 𝑬𝟐 = ;%𝒑𝟐

;%𝒑𝟐%𝒒𝟐𝑊 𝑒𝛾,𝑀1 + 𝐸2 +
𝒒𝟐

;%𝒑𝟐%𝒒𝟐 𝑃:+
𝒒

;%𝒑𝟐%𝒒𝟐 𝑏T𝑃>

𝑊 𝒆𝜸,𝑴𝟏 + 𝑬𝟐 = 𝑃: +
;

;%𝒑𝟐[𝑏>
?𝐴>?+2𝒑𝑏>𝐴>+𝒑𝟐𝑏>@𝐴>@]𝑃> +

;
;%𝒑𝟐 [𝑏D?𝐴D?]𝑃D

𝑊 𝜸𝜸,𝑴𝟏 + 𝑬𝟐 = 𝑃: +
;

;%𝜹𝟐[𝐴>
?+2𝜹𝐴>+𝜹𝟐𝐴>@]𝑃> +

;
;%BC [𝐴D?]𝑃D

𝒑𝟐 =
𝛼LH;

𝛼LG>
𝜹𝟐

𝒒𝟐 =
𝑁LG:

𝑁LG>Multi-detector electron-g arrays
Need to evaluate numerically the e-e/e-g correlation!

𝜹𝟐 =
𝑁FG>

𝑁FH;

Mixing ratios:
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E0+M1+E2 transitions

Mixed E0+M1+E2 conversion coefficients

𝒒𝟐 =
𝑁LG:

𝑁LG>
𝜹𝟐 =

𝑁FG>

𝑁FH;

𝛼L
?UV 𝐸0 + 𝑀1 + 𝐸2 =

1
1 + 𝛿> [𝛿

> 1 + 𝑞> 𝛼L 𝐸2 + 𝛼L 𝑀1 ]

Mixing ratios:

Reduced E0 matrix element

𝜌>(𝐸0)= ;
\(G:)×^(G:) = 𝒒𝟐 _`(G>)ab(G>) ^(G:)

B(E0)/B(E2) ratio (Rasmussen 1960)

𝑋 𝐸0/E2 = 	
𝜌>(𝑒0)𝑒>𝑅TD

𝐵(𝐸2) =
2.54×10k×𝐴D/l𝐸Fm𝑞>𝛼L(𝐸2)

ΩL(𝐸0)
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Evolution of shape co-existence

Heyde & Wood, Rev. Mod. Phys. 83 (2011) 1467

for some rare-earth nuclei and nuclei in the Pb region (Girod
and Reinhard, 1982; Girod et al., 1989). A more detailed
study was carried out for the 190;192;194Hg nuclei by Delaroche
et al. (1989). Recently, the full solution of the collective
5DCH has been studied within constrained HFB theory based
on the Gogny D1S force. Studies in the Pb mass region have
been carried out (Libert, Girod, and Delaroche, 1999), and
also studying shell closure for light nuclei at N ¼ 16
(Obertelli et al., 2005) and for the N ¼ 20 and N ¼ 28
neutron-rich nuclei (Peru, Girod, and Berger, 2000) and the
role of triaxiality in the light Kr nuclei (Girod et al., 2009).
An overview of low-lying collective properties over the
whole mass region has been given, using the same methods,
by Delaroche et al. (2010).

A different approach was proposed by Walecka who de-
veloped a relativistic mean-field formulation (RMF)
(Walecka, 1974). A detailed discussion on the Lagrangians
used is given in several review papers (Serot and Walecka,
1986; Reinhard, 1989; Serot, 1992; Ring, 1996). A study
within the relativistic Hartree-Bogoliubov (RHB) framework
was performed specifically concentrating on shape coexis-
tence in the Pt-Hg-Pb nuclei (Nikšić et al., 2002). Within the
RMF approach, beyond-relativistic-mean-field studies were
performed recently, also incorporating configuration mixing
of mean-field wave functions projected onto angular momen-
tum J and particle number ðN; ZÞ, using the GCM approach,
restricting to axially symmetric systems (encompassing vi-
brational and rotational degrees of freedom) with applications
for 32Mg and 194Hg (Nikšić, Vretenar, and Ring, 2006a) (only
J projected) and for 24Mg, 32S, and 36Ar (J and particle
number projected) (Nikšić, Vretenar, and Ring, 2006b).
Even more general studies have been performed using pro-
jected states starting from triaxial quadrupole constraints on
the mean-field level with applications to the neutron-rich Mg
nuclei (Yao et al., 2009) as well as using the resulting three-
dimensional relativistic mean-field wave functions in a GCM
configuration mixing calculation (Yao et al., 2010) with
application for 24Mg. We mention that more restricted studies
of potential energy surfaces, aiming at the study of triaxial
ground-state shapes for the Sm and Pt nuclei, making use of
the three-dimensional RHB model have been performed
(Nikšić et al., 2010) also.

Relativistic mean-field theory was also used to extensively
study the 5DCH, starting from the relativistic energy density
functional, and applied to the even-even Gd nuclei (Nikšić
et al., 2009) and recently to the study of even-even Ba and Xe
nuclei (Li et al., 2010).

C. Similarities between shell-model and mean-field approaches

We come to the point that shell-model and mean-field
approaches, if technically possible, lead to much the same
physics. It seems clear that starting from a spherical mean
field only, and getting both the advantages and disadvantages
from the ensuing spherical closed-shell configurations near
stability, one inevitably runs out of computer capabilities.
Moreover, the model wave functions do not give genuine
physics insight (billions of components). Still, this approach
is a consistent and robust approach with strong predictive
power, such that systematic deviations between experiment

and theory have to be taken seriously and cannot be hidden by
parameter changes. On the other hand, making use of self-
consistent mean-field methods, one starts from an effective
nucleon-nucleon interaction in order to derive an optimized
deformed (quadrupole deformation, pairing, etc.) basis
j !ðqÞi. Whereas the shell-model space itself is a Hilbert
space, the set of Slater determinants constitutes a geometrical
surface within the Hilbert space [see Rowe and Wood (2010)
for a more detailed exposition]. The mean-field method
produces an energy surface which is semiclassical. As a
consequence and in order to reach results to be compared
with the data in nuclei, one needs to go beyond the mean-field
approximation. Here the technicalities of projecting from the
intrinsic frame to the lab frame, with good J; N; Z; . . . are
demanding when exploring the full space of the !, " quad-
rupole variables. Moreover, one has to take into account
mixing of the various intrinsic projected states in order to
arrive at the exact eigenstates. Calculations starting from a
spherical shell-model basis, or, using mean-field methods
(applied to the Mg, S, and Zr istopes) resulted in a strong
resemblance [see Reinhard et al. (1999) for a detailed
discussion]. A particular example is 40Ca for which both
the shell-model results (see Sec. II.A.1 and Fig. 1) and
beyond-mean-field calculations (Bender, Flocard, and
Heenen, 2003) are available.

III. MANIFESTATION OF COEXISTENCE IN NUCLEI

The occurrence of energy gaps, due to spherical shells or
subshells, and the mixing of the resulting proton and neutron
configurations are the essential ingredients to a unified view
of coexistence in nuclei. Figure 8 shows the regions of shape
coexistence that are discussed in this review and their location
with respect to magic numbers.

We present the experimental data that motivate this unified
view in a particular order. We first review mass regions for
which extensive data support the widespread and unequivocal
manifestation of shape coexistence, i.e., the regions centered

FIG. 8 (color online). The main regions of nuclear shape coex-
istence discussed in Sec. III are shown in relationship to closed
shells. Regions A, F: see Sec. III.B.1; regions B, C, D, and E: see
Sec. III.B.2; region G: see Sec. III.A.8; region H: see Sec. III.A.5;
region I: see Sec. III.A.3; region J: see Sec. III.A.2; region K: see
Sec. III.A.4; and region L: see Sec. III.A.1.

1476 Kris Heyde and John L. Wood: Shape coexistence in atomic nuclei

Rev. Mod. Phys., Vol. 83, No. 4, October–December 2011

Z=82

Textbook example around Pb(Z=82): 
Hg(Z=80), Po(Z=84)

we discussed shape coexistence in and near the N=Z nuclei,
as well as addressed the issue of coexistence or islands of
inversion at (N, Z) ∼(8, 6); (20, 12), and (28, 14). We also
pointed out the close relation between multi-particle multi-
hole excitations across closed shells and the topic of clus-
tering in and near to N=Z nuclei (also see the focus article
by David Jenkins 2016). In all of the above, the identification

of shape coexistence (even including important mixing) has
been based on the actual data such as magnetic dipole
moments, charge radii, electric (diagonal and non-diagonal)
E2 matrix elements, r2 E0 transition strengths and isomeric
shifts. While shape coexistence has, to date, only been estab-
lished or inferred in a few hundred nuclei, there are compelling
reasons to believe that it is a universal feature of (almost) all

Figure 8. Selected excited states in the doubly even Hg isotopes. Note the near-parabolic systematics of the deformed bands. The figure is
adapted from (Elseviers et al 2011), with permission.

Figure 9. Systematics of the 3s1/2, 2d3/2, and 1h11/2 proton-hole states and the 1h9/2 proton-particle intruder state in the odd-mass Tl
isotopes. The intruder state is a deformed structure with large correlation energy. Note the similarity in the energies of the Tl intruder state
and the deformed states in the even-mass Hg isotopes (see also figure 8).

7

Phys. Scr. 91 (2016) 083008 Invited CommentHeyde & Wood, Phys. Scr. 91 (2016) 083008

Dracoulis PRC 49 (1994) 3324
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Evolution of shape co-existence
W-Os-Pt
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174Pt: Dracoulis, et al., PRC 44, R1246  (1991)
176Pt: Dracoulis, et al., J. Phys. G  12, L97  (1986)
172Os: Davidson, et al., Nucl. Phys.  A568, 90  (1994)
174-182Os: Kibedi, et al., Nucl. Phys.  A567, 183  (1994)
172-178W: Kibedi, et al., Nucl. Phys. A 688 669 (2001)

From radioactive 
decay: g, g-g, CE
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Evolution of shape co-existence
W-Os-Pt

T. Kibédi et al. / Nuclear Physics A 688 (2001) 669–715 695

Table 6
E0 component of J+

i → J+
f transitions in A = 170 to 178 tungsten isotopes (only for K-conversion

electron lines have been considered)

J+
i → J+

f A Eγ αK(exp) αK(E2) αK(M1) δ(E2/M1) q2(E0/E2) X(E0/E2)
[keV] ×100 ×100 ×100

0+β → 0+g 172 761.6 E0 3.6(11) 0.060(18)

174 792.2 E0 2.1(4) 0.041(2)
176 844.0 E0 2.5(6) 0.058(15)

0+3 → 0+g 178 1294.4 E0 26(2) 1.73(12)
2+β → 2+g 172 743.7 4.52(20) 0.677 1.78 −10.3+3.0−7.0 5.7(3) 0.153(8)

174 777.0 8.4(9) 0.618 16.0 −4.5+0.9−1.3 13.1(15) 0.39(5)
176 822.2 5.6(4) 0.551 1.38 −2.7+0.4−0.5 10.2+1.3−1.1 0.346+0.042−0.038
178 976.5 0.76(5) 0.392 0.902 −12.3+2.8−6.4 0.94+0.13−0.13 0.045+0.006−0.006

2+γ → 2+g 172 807.1 1.14(15) 0.572 1.45 +7.6+2.5−7.4 7.4(19) 0.17(4)
176 932.4 0.83(16) 0.429 1.01 +3.0+1.0−0.7 0.89+0.42−0.47 0.039+0.018−0.018
178 1004.6 0.90(8) 0.370 0.840 > +2 1.5+0.3−0.3 0.076+0.014−0.013

2+4 → 2+g 178 1311.5 1.49(13) 0.223 0.436 |> 2|a 6.9+0.7−1.7 0.61+0.07−0.15
4+β → 4+g 170 739.8 4.6(11) 0.684 1.81 −3.3+1.6 6.1(18) 0.16(5)

172 715.0 7.0(7) 0.735 1.97 −4.1+3.6−1.9 8.9(11) 0.221(26)
174 739.4 5.8(9) 0.685 1.81 −4.2+0.7−1.1 7.8(14) 0.21(4)
176 768.7 6.6(7) 0.632 1.64 −2.2+0.6−1.2 11.1+3.0−2.2 0.33+0.09−0.06
178 932.4 1.76(11) 0.429 1.01 −6.6+1.5−3.0 3.15+0.30−0.28 0.140+0.013−0.013

4+γ → 4+g 172 865.1 1.4(4) 0.497 1.22 +4.2+1.1−2.6 1.8(9) 0.007(3)
178 1037.4 0.51(5) 0.497 1.22 −1.9+0.7−1.2 0.7(5) 0.014(18)

4+4 → 4+g 178 1255.1 1.01(8) 0.242 0.485 |> 2|a 3.7+0.4−0.9 0.30+0.03−0.07
6+β → 6+g 170 702.8 6.7(15) 0.762 2.06 −1.7+0.8−2.5 10(3) 0.23(7)

172 694.1 6.4(14) 0.782 2.12 −5.0+3.2− 10(3) 0.23(7)
176 696.6 4.9(9) 0.776 2.10 |> 2|a 6.2+1.5−2.1 0.15+0.04−0.05

a Adopted value [48].

Three new levels at 1294.5, 1417.6 and 1598.0 keV with proposed spin–parities of
0+, 2+ and 4+ were observed, apparently members of a second excited K+ = 0+ band.
They are all connected to the ground-state band with highly converted transitions (see
Fig. 11). The experimental K-conversion coefficients of the 1311.5 and 1255.1 keV
transitions are 1.49(13) × 10−2 and 1.01(8) × 10−2, which are larger than the theoretical
M1 values of 0.436 × 10−2 and 0.485 × 10−2. Additional decay branches, the 1417.1
and 1491.9 keV transitions, both with experimental conversion coefficients close to the
theoretical E2 values, and a third, 335.3 keV transition to the 2+

β state were also observed.

172-178W: Kibedi, et al., 

Nucl. Phys. A 688 669 (2001)

Ø 0+ - 0+ E0 transitions (4)

Ø J+ - J+ (J=2,4,6) E0+M1+E2

transitions (19)

Ø No T1/2 – only X=B(E0)/B(E2)



Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University E0 Workshop, CEA 2017

Evolution of shape co-existence
W-Os-Pt

Level systematics
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we discussed shape coexistence in and near the N=Z nuclei,
as well as addressed the issue of coexistence or islands of
inversion at (N, Z) ∼(8, 6); (20, 12), and (28, 14). We also
pointed out the close relation between multi-particle multi-
hole excitations across closed shells and the topic of clus-
tering in and near to N=Z nuclei (also see the focus article
by David Jenkins 2016). In all of the above, the identification

of shape coexistence (even including important mixing) has
been based on the actual data such as magnetic dipole
moments, charge radii, electric (diagonal and non-diagonal)
E2 matrix elements, r2 E0 transition strengths and isomeric
shifts. While shape coexistence has, to date, only been estab-
lished or inferred in a few hundred nuclei, there are compelling
reasons to believe that it is a universal feature of (almost) all

Figure 8. Selected excited states in the doubly even Hg isotopes. Note the near-parabolic systematics of the deformed bands. The figure is
adapted from (Elseviers et al 2011), with permission.

Figure 9. Systematics of the 3s1/2, 2d3/2, and 1h11/2 proton-hole states and the 1h9/2 proton-particle intruder state in the odd-mass Tl
isotopes. The intruder state is a deformed structure with large correlation energy. Note the similarity in the energies of the Tl intruder state
and the deformed states in the even-mass Hg isotopes (see also figure 8).

7
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Kibedi, et al., Nucl. Phys. A 688 669 (2001)
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Evolution of shape co-existence
W-Os-Pt
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4-band mixing calculations
Ø K=0 g.s. unperturbed ground-state 

rotation
Ø K=0 ”deformed” band
Ø K=2 g-band
Ø K=0 “s”-band, unperturbed 

rotation-aligned band, back 
banding observed in (HI,xn)

Ø Parameters to fit excitation 
energies:
q Moment of inertia (VMI)
q Unperturbed band-head 

energies
q Spin-independent interactions
q aligned angular momentum of 

the s-band
Kibedi, et al., Nucl. Phys. A 688 669 (2001)
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Evolution of shape co-existence
W-Os-Pt

4-band mixing calculations
Ø K=0 g.s. unperturbed ground-state 

rotation
Ø K=0 ”deformed” band
Ø K=2 g-band
Ø K=0 “s”-band, unperturbed 

rotation-aligned band, back 
banding observed in (HI,xn)

Ø Interactions: 
q 150 keV (g-d)
q 30 keV (g-g)
q 5 keV (d-g)

Kibedi, et al., Nucl. Phys. A 688 669 (2001)
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Evolution of shape co-existence
W-Os-Pt

Ø Smooth evolution across Z=80 to 
74 and N=98 to 106

Ø Differences in deformation
Ø Unperturbed g and d bands 

shifted down in energy as Z >> 82

708 T. Kibédi et al. / Nuclear Physics A 688 (2001) 669–715

Fig. 17. Unperturbed band properties extracted from the four-band mixing calculations for
N = 98–106 and Z = 74–80 isotones. The bands are: ground-state band (g), “quasi”-β band
(Kπ = 0+), the “quasi”-γ band (Kπ = 2+) and the s-band (Kπ = 0+ (not shown)).

4.3.3. Transition rates
The model parameters and mixed wave function can also be used to calculate

electromagnetic transition rates, which in general can be written as

B(EL;Ji → Jf) =
[∑

jk

AijA
f
k⟨j |EL|k⟩

]2
, (9)

where j, k, etc. label the unperturbed bands and the Aij and Afk are the amplitudes from
the band-mixing calculations. The diagonal terms for quadrupole transitions are given as:

Kibedi, et al., Nucl. Phys. A 688 669 (2001)
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Evolution of shape co-existence
W-Os-Pt

710 T. Kibédi et al. / Nuclear Physics A 688 (2001) 669–715

Fig. 18. Comparison of calculated and experimental values of X = B(E0)/B(E2) (upper panel:
for J+

β → J+
g and J+

γ → J+
g transitions) and calculated B(E0) and B(E2) values (lower panel:

J+
β → J+

g transitions only). Calculations (open symbols) are from the band-mixing model.

are N = 104 isotones and in both nuclei the X value of the 2+
γ → 2+

g transition is
larger than for the 2+

β → 2+
g . This is due to strong β–γ mixing, which occurs here the

experimental 2+
γ –2

+
β separation is only 28.1 keV (178W) and 39.3 keV (180Os). In both

cases the calculated X(2+
γ → 2+

g ) value is much more smaller than the X(2+
β → 2+

g ).

4.3.5. Intruder bands or β-bands?
This question has not been addressed in a microscopic sense, however the comment

should be made that the results of the phenomenological model reinforce the view of
an excited 0+ band whose deformation may be somewhat larger than the γ -band, but
which otherwise tracks with it, maintaining relatively constant properties, despite a large
change in excitation energy compared to the (unperturbed) ground states. The major
differences observed, including the more obvious manifestations of shape coexistence, can
be attributed to the changing properties of the ground states. While the E0 components
are a distinctive experimental feature, translation of their values (as ratios) into a reliable
signature of the underlying structure has not been completely successful, at least within the
band-mixing scenario applied here.

B(E0)/B(E2)

B(E0)

B(E2)

Ø J-dependence

Ø E0 component of 
Jg – Jg transitions

Ø J-dependence from 
B(E2)

Ø B(E0) J-independent

Kibedi, et al., Nucl. Phys. A 688 669 (2001)
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Evolution of shape co-existence
x(E0/E2) systematics

r2(E0)
02 - 01

B(E0)/B(E2)
02 - 01

702 T. Kibédi et al. / Nuclear Physics A 688 (2001) 669–715

Fig. 15. Systematics of the monopole transitions in the N = 88–118 and Z = 62–82 region.
(a) ρ2(E0) monopole matrix element for the 0+β → 0+g transitions. The bottom three frames are
B(E0)/B(E2) ratios for (b) 0+β → 0+g , (c) 2+β → 2+g and (d) 2+γ → 2+g transitions. Please note the
logarithmic vertical axis and see text for details.

average orbit radii, through to 300–400 for either large amplitude β-vibrations in deformed
nuclei, or for transitions between mixed states of significantly different deformation, as can
occur with shape coexistence. Note that a large magnitude will not distinguish between the
latter two situations hence a detailed analysis of mixing amplitudes etc. is required. The
large values for 152Gd, 154Gd and 156Gd for example, in Fig. 15 are presumably indicative
of vibration, whereas the large values for some Hg cases have been interpreted as evidence
for shape coexistence [46].

B(E0)/B(E2)
22 - 21

B(E0)/B(E2)
2g - 21

15 data

42 data

39 data

24 data

Kibedi, et al., Nucl. Phys. A 688 669 (2001)
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Shape co-existence around 
N=Z=28

Heyde & Wood, Rev. Mod. Phys. 83 (2011) 1467

for some rare-earth nuclei and nuclei in the Pb region (Girod
and Reinhard, 1982; Girod et al., 1989). A more detailed
study was carried out for the 190;192;194Hg nuclei by Delaroche
et al. (1989). Recently, the full solution of the collective
5DCH has been studied within constrained HFB theory based
on the Gogny D1S force. Studies in the Pb mass region have
been carried out (Libert, Girod, and Delaroche, 1999), and
also studying shell closure for light nuclei at N ¼ 16
(Obertelli et al., 2005) and for the N ¼ 20 and N ¼ 28
neutron-rich nuclei (Peru, Girod, and Berger, 2000) and the
role of triaxiality in the light Kr nuclei (Girod et al., 2009).
An overview of low-lying collective properties over the
whole mass region has been given, using the same methods,
by Delaroche et al. (2010).

A different approach was proposed by Walecka who de-
veloped a relativistic mean-field formulation (RMF)
(Walecka, 1974). A detailed discussion on the Lagrangians
used is given in several review papers (Serot and Walecka,
1986; Reinhard, 1989; Serot, 1992; Ring, 1996). A study
within the relativistic Hartree-Bogoliubov (RHB) framework
was performed specifically concentrating on shape coexis-
tence in the Pt-Hg-Pb nuclei (Nikšić et al., 2002). Within the
RMF approach, beyond-relativistic-mean-field studies were
performed recently, also incorporating configuration mixing
of mean-field wave functions projected onto angular momen-
tum J and particle number ðN; ZÞ, using the GCM approach,
restricting to axially symmetric systems (encompassing vi-
brational and rotational degrees of freedom) with applications
for 32Mg and 194Hg (Nikšić, Vretenar, and Ring, 2006a) (only
J projected) and for 24Mg, 32S, and 36Ar (J and particle
number projected) (Nikšić, Vretenar, and Ring, 2006b).
Even more general studies have been performed using pro-
jected states starting from triaxial quadrupole constraints on
the mean-field level with applications to the neutron-rich Mg
nuclei (Yao et al., 2009) as well as using the resulting three-
dimensional relativistic mean-field wave functions in a GCM
configuration mixing calculation (Yao et al., 2010) with
application for 24Mg. We mention that more restricted studies
of potential energy surfaces, aiming at the study of triaxial
ground-state shapes for the Sm and Pt nuclei, making use of
the three-dimensional RHB model have been performed
(Nikšić et al., 2010) also.

Relativistic mean-field theory was also used to extensively
study the 5DCH, starting from the relativistic energy density
functional, and applied to the even-even Gd nuclei (Nikšić
et al., 2009) and recently to the study of even-even Ba and Xe
nuclei (Li et al., 2010).

C. Similarities between shell-model and mean-field approaches

We come to the point that shell-model and mean-field
approaches, if technically possible, lead to much the same
physics. It seems clear that starting from a spherical mean
field only, and getting both the advantages and disadvantages
from the ensuing spherical closed-shell configurations near
stability, one inevitably runs out of computer capabilities.
Moreover, the model wave functions do not give genuine
physics insight (billions of components). Still, this approach
is a consistent and robust approach with strong predictive
power, such that systematic deviations between experiment

and theory have to be taken seriously and cannot be hidden by
parameter changes. On the other hand, making use of self-
consistent mean-field methods, one starts from an effective
nucleon-nucleon interaction in order to derive an optimized
deformed (quadrupole deformation, pairing, etc.) basis
j !ðqÞi. Whereas the shell-model space itself is a Hilbert
space, the set of Slater determinants constitutes a geometrical
surface within the Hilbert space [see Rowe and Wood (2010)
for a more detailed exposition]. The mean-field method
produces an energy surface which is semiclassical. As a
consequence and in order to reach results to be compared
with the data in nuclei, one needs to go beyond the mean-field
approximation. Here the technicalities of projecting from the
intrinsic frame to the lab frame, with good J; N; Z; . . . are
demanding when exploring the full space of the !, " quad-
rupole variables. Moreover, one has to take into account
mixing of the various intrinsic projected states in order to
arrive at the exact eigenstates. Calculations starting from a
spherical shell-model basis, or, using mean-field methods
(applied to the Mg, S, and Zr istopes) resulted in a strong
resemblance [see Reinhard et al. (1999) for a detailed
discussion]. A particular example is 40Ca for which both
the shell-model results (see Sec. II.A.1 and Fig. 1) and
beyond-mean-field calculations (Bender, Flocard, and
Heenen, 2003) are available.

III. MANIFESTATION OF COEXISTENCE IN NUCLEI

The occurrence of energy gaps, due to spherical shells or
subshells, and the mixing of the resulting proton and neutron
configurations are the essential ingredients to a unified view
of coexistence in nuclei. Figure 8 shows the regions of shape
coexistence that are discussed in this review and their location
with respect to magic numbers.

We present the experimental data that motivate this unified
view in a particular order. We first review mass regions for
which extensive data support the widespread and unequivocal
manifestation of shape coexistence, i.e., the regions centered

FIG. 8 (color online). The main regions of nuclear shape coex-
istence discussed in Sec. III are shown in relationship to closed
shells. Regions A, F: see Sec. III.B.1; regions B, C, D, and E: see
Sec. III.B.2; region G: see Sec. III.A.8; region H: see Sec. III.A.5;
region I: see Sec. III.A.3; region J: see Sec. III.A.2; region K: see
Sec. III.A.4; and region L: see Sec. III.A.1.
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N=Z=28

N=Z=28 double magic 
Shape co-existence “could emerge”
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q Excited 0+ around N=Z=28: from 
mp-mh excitations from the 1f7/2
to the 1f5/2, 2p1/2 and 2p3/2 orbits

q E0 transitions: not very well 
known

q Aim: Characterise E0 transitions 
in Z=26, N=28,30,32

q E0`s in Ni isotopes talk by Adam 
Garnsworthy

Z=28

0.0063(10)
1-27

3.8(4) 0.19-54

<240

Motivation

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University E0 Workshop, CEA 2017



q (p,p’) reaction, Ep=6.7-7 MeV DC beam

q 1-2 mg/cm2 54,56,58Fe targets

q Singles gamma, conversion electron and pair 
conversion (Super-e)

E 
[keV]

CEK/IPF 
(Z=26)

1500 1.6

2500 0.066

4000 0.009

eCE=0.1-0.5%
eIPF=0.01%

Experiments 

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University E0 Workshop, CEA 2017



Extended level schemes
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Extended level schemes

26Fe30
56Fe30

58Fe3226Fe32

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University E0 Workshop, CEA 2017



Angular correlation of 0-2-0 cascades
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E0 transitions - 54Fe
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E0 transitions - 56Fe
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E0 transitions in 54,56,58Fe

Experimental monopole strength

Monopole strength and band mixing
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Z 20 22 24 26 28 30 32 34 36
Ge 32

Zn 30 3.84 0.19-54

Ni 28 0.006310 1-27

Fe 26 <80 3.211 <12

Cr 24

Ti 22

Ca 20 25.67 14012 14050 14.59

q New results in 54,56,58Fe: extended level schemes, new T1/2, d(E2/M1), 
E0 transitions, r2(E0) 

q Future: look for E0s between J>0 states to characterise bands built 
on excited 0+ states 

q Interpretation within the bandmixing approach
q E0s in Cr (Z=24) and Ti(Z=22) to explore N=28 isotones

Shape co-existence around N=Z=28 
Summary

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University E0 Workshop, CEA 2017
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The Hoyle state 

Heyde & Wood, Rev. Mod. Phys. 83 (2011) 1467

for some rare-earth nuclei and nuclei in the Pb region (Girod
and Reinhard, 1982; Girod et al., 1989). A more detailed
study was carried out for the 190;192;194Hg nuclei by Delaroche
et al. (1989). Recently, the full solution of the collective
5DCH has been studied within constrained HFB theory based
on the Gogny D1S force. Studies in the Pb mass region have
been carried out (Libert, Girod, and Delaroche, 1999), and
also studying shell closure for light nuclei at N ¼ 16
(Obertelli et al., 2005) and for the N ¼ 20 and N ¼ 28
neutron-rich nuclei (Peru, Girod, and Berger, 2000) and the
role of triaxiality in the light Kr nuclei (Girod et al., 2009).
An overview of low-lying collective properties over the
whole mass region has been given, using the same methods,
by Delaroche et al. (2010).

A different approach was proposed by Walecka who de-
veloped a relativistic mean-field formulation (RMF)
(Walecka, 1974). A detailed discussion on the Lagrangians
used is given in several review papers (Serot and Walecka,
1986; Reinhard, 1989; Serot, 1992; Ring, 1996). A study
within the relativistic Hartree-Bogoliubov (RHB) framework
was performed specifically concentrating on shape coexis-
tence in the Pt-Hg-Pb nuclei (Nikšić et al., 2002). Within the
RMF approach, beyond-relativistic-mean-field studies were
performed recently, also incorporating configuration mixing
of mean-field wave functions projected onto angular momen-
tum J and particle number ðN; ZÞ, using the GCM approach,
restricting to axially symmetric systems (encompassing vi-
brational and rotational degrees of freedom) with applications
for 32Mg and 194Hg (Nikšić, Vretenar, and Ring, 2006a) (only
J projected) and for 24Mg, 32S, and 36Ar (J and particle
number projected) (Nikšić, Vretenar, and Ring, 2006b).
Even more general studies have been performed using pro-
jected states starting from triaxial quadrupole constraints on
the mean-field level with applications to the neutron-rich Mg
nuclei (Yao et al., 2009) as well as using the resulting three-
dimensional relativistic mean-field wave functions in a GCM
configuration mixing calculation (Yao et al., 2010) with
application for 24Mg. We mention that more restricted studies
of potential energy surfaces, aiming at the study of triaxial
ground-state shapes for the Sm and Pt nuclei, making use of
the three-dimensional RHB model have been performed
(Nikšić et al., 2010) also.

Relativistic mean-field theory was also used to extensively
study the 5DCH, starting from the relativistic energy density
functional, and applied to the even-even Gd nuclei (Nikšić
et al., 2009) and recently to the study of even-even Ba and Xe
nuclei (Li et al., 2010).

C. Similarities between shell-model and mean-field approaches

We come to the point that shell-model and mean-field
approaches, if technically possible, lead to much the same
physics. It seems clear that starting from a spherical mean
field only, and getting both the advantages and disadvantages
from the ensuing spherical closed-shell configurations near
stability, one inevitably runs out of computer capabilities.
Moreover, the model wave functions do not give genuine
physics insight (billions of components). Still, this approach
is a consistent and robust approach with strong predictive
power, such that systematic deviations between experiment

and theory have to be taken seriously and cannot be hidden by
parameter changes. On the other hand, making use of self-
consistent mean-field methods, one starts from an effective
nucleon-nucleon interaction in order to derive an optimized
deformed (quadrupole deformation, pairing, etc.) basis
j !ðqÞi. Whereas the shell-model space itself is a Hilbert
space, the set of Slater determinants constitutes a geometrical
surface within the Hilbert space [see Rowe and Wood (2010)
for a more detailed exposition]. The mean-field method
produces an energy surface which is semiclassical. As a
consequence and in order to reach results to be compared
with the data in nuclei, one needs to go beyond the mean-field
approximation. Here the technicalities of projecting from the
intrinsic frame to the lab frame, with good J; N; Z; . . . are
demanding when exploring the full space of the !, " quad-
rupole variables. Moreover, one has to take into account
mixing of the various intrinsic projected states in order to
arrive at the exact eigenstates. Calculations starting from a
spherical shell-model basis, or, using mean-field methods
(applied to the Mg, S, and Zr istopes) resulted in a strong
resemblance [see Reinhard et al. (1999) for a detailed
discussion]. A particular example is 40Ca for which both
the shell-model results (see Sec. II.A.1 and Fig. 1) and
beyond-mean-field calculations (Bender, Flocard, and
Heenen, 2003) are available.

III. MANIFESTATION OF COEXISTENCE IN NUCLEI

The occurrence of energy gaps, due to spherical shells or
subshells, and the mixing of the resulting proton and neutron
configurations are the essential ingredients to a unified view
of coexistence in nuclei. Figure 8 shows the regions of shape
coexistence that are discussed in this review and their location
with respect to magic numbers.

We present the experimental data that motivate this unified
view in a particular order. We first review mass regions for
which extensive data support the widespread and unequivocal
manifestation of shape coexistence, i.e., the regions centered

FIG. 8 (color online). The main regions of nuclear shape coex-
istence discussed in Sec. III are shown in relationship to closed
shells. Regions A, F: see Sec. III.B.1; regions B, C, D, and E: see
Sec. III.B.2; region G: see Sec. III.A.8; region H: see Sec. III.A.5;
region I: see Sec. III.A.3; region J: see Sec. III.A.2; region K: see
Sec. III.A.4; and region L: see Sec. III.A.1.
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Yasuro Funaki, Phys. Rev. C 94 (2016) 024344
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The radiative width from pair 
conversion measurements
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Motivation:
Ø New data since the last evaluations

First pass of ENSDF: 174 j-j (j>0) 
transitions
Eg=[41.9:1877] keV
Ji=1[8], 2[109], 3[4], 4[32], 5[3], 6[6], 

8[2], 9[1], 10[1], 16[1]

With J.L. Wood and A. Garnsworthy

E0 strength model independent probe of 
co-existing structures –spin dependence

J. PARK et al. PHYSICAL REVIEW C 93, 014315 (2016)

FIG. 1. Systematic of low-lying 0+ and 2+ states in Sr isotopes
around N = 60. A sudden deformation in the ground state of 98Sr
occurs as the two 0+ states with very different shapes undergo
order inversion at N = 60. The data for these nuclei are taken from
Refs. [7–12].

the detectors by rolling the implanted tape region out of
the vacuum chamber. The master trigger condition allowed
the collection of only coincidence events of the form β-γ ,
β-ICE, γ -γ , ICE-ICE, and γ -ICE. The data were collected for
about 10 h. The HPGe detectors were calibrated for energy
and efficiency using the standard radioactive sources 133Ba,
152Eu, 60Co, and 56Co. PACES was calibrated for energy
and efficiency in the energy range from 35 to 273 keV using
the K-shell ICEs from well-known transitions in 98Sr and
98Y assuming theoretical internal conversion (IC) coefficients
from Ref. [18]. The evaluated half-life has been used in the
calculation of ρ2(E0) in this work; because of problems
with the time-to-digital converter modules, an independent
measurement of the half-life was impossible.

Figure 2 shows the background-subtracted energy spectrum
of ICEs detected in PACES, in coincidence with the (2+

2 ) → 0+
2

656-keV γ ray detected in one of the HPGe detectors of the
8π spectrometer. E0 transitions depopulating the 0+

2 state at
215 keV are clearly visible, in addition to the E2 transitions
in the low-lying states of 98Sr. By gating from above, side
feeding into the 144-keV 2+

1 state was eliminated and the
intensities of the 71-keV and the 144-keV E2 transitions were

FIG. 2. Energy spectrum of PACES after gating on the 656-keV
γ ray detected in the 8π spectrometer. The insert shows a partial level
scheme of 98Sr.

TABLE I. Transition energies, ICE energies, IC coefficients, and
electronic factors in 98Sr used in this work.

%E (keV) Shell Ee (keV) α ' (s−1)

71.2 3.55(5)
K 55.0 2.86(4)

144.2 0.267(4)
K 128.0 0.229(4)

215.4 K 199.2 2.160 × 108

L1 213.1 2.343 × 107

L2 213.3 5.774 × 104

consistent with each other. Counts in the K-shell ICE peaks
of the 71- and 144-keV transitions were corrected for detector
efficiency and scaled by the ratio (1 + αtot)/αK to determine
absolute intensities of the two E2 transitions, where α is the
IC coefficient [18].

The experimental electric monopole transition strength can
be obtained from the partial decay rate λ(E0) of the 0+

2 state
and the electronic factors 'K,L1,L2... of the E0 transition, given
by the atomic theory. The half-life of the 215-keV 0+

2 state has
been previously measured [14,15] with a weighted average
of 22.8(19) ns [10]. The weighted average of the intensities
of the 71- and 144-keV transitions was used for I (E2), and
the branching ratio I (E0)/I (E2) = 0.72(6) was used in the
calculation of λ(E0). The values for α and ' used in this work
are shown in Table I and were taken from Refs. [18,19]. For
', contributions from higher shells were negligible. Without
uncertainties on the theoretical ratio 'L/'K = 0.11, it is
impossible to determine whether it is consistent with the
experimental ratio of IL/IK = 0.14(1) for the E0 transition.

Combining the results together and following the deriva-
tion given in Ref. [14], the electric monopole transition
strength in 98Sr was calculated to be ρ2(E0) = 0.053(5).
This is consistent with the previous measured value of ρ2 =
0.051(5) [14,20]. An alternative formalism provided by Kibédi
and Spear [20] utilizes the intensity of ICEs from only the K
shell. Using this method, ρ2(E0) = 0.049(7) was obtained.

To interpret the significance of the ρ2(E0) value, the shape
coexistence scenario can be explored further using a simple
two-state mixing model under the assumption that each of the
two configurations has a well-determined rigid deformation.
Schussler et al. [14] proposed a mixing scenario where both the
0+

1,2 and the 2+
1,2 state pairs were admixtures of pure vibrational

(S) and rotational (D) configurations. Using the formalism
given in Ref. [14], the mixing is characterized by parameters
a0,2 (major component) and b0,2 (minor component) in the
following way:

|0+
1 ⟩ = a0|0+

D⟩ + b0|0+
S ⟩, (1)

|0+
2 ⟩ = a0|0+

S ⟩ − b0|0+
D⟩, with a2

0 + b2
0 = 1, (2)

|2+
1 ⟩ = a2|2+

D⟩ + b2|2+
S ⟩, (3)

|2+
2 ⟩ = a2|2+

S ⟩ − b2|2+
D⟩,with a2

2 + b2
2 = 1. (4)

Because the half-life of the 871-keV 2+
2 state of the S band

remains unknown, the mixing and the deformation parameters
cannot be determined unambiguously. Here, the 434-keV 4+
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order inversion at N = 60. The data for these nuclei are taken from
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β-ICE, γ -γ , ICE-ICE, and γ -ICE. The data were collected for
about 10 h. The HPGe detectors were calibrated for energy
and efficiency using the standard radioactive sources 133Ba,
152Eu, 60Co, and 56Co. PACES was calibrated for energy
and efficiency in the energy range from 35 to 273 keV using
the K-shell ICEs from well-known transitions in 98Sr and
98Y assuming theoretical internal conversion (IC) coefficients
from Ref. [18]. The evaluated half-life has been used in the
calculation of ρ2(E0) in this work; because of problems
with the time-to-digital converter modules, an independent
measurement of the half-life was impossible.

Figure 2 shows the background-subtracted energy spectrum
of ICEs detected in PACES, in coincidence with the (2+
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2

656-keV γ ray detected in one of the HPGe detectors of the
8π spectrometer. E0 transitions depopulating the 0+
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TABLE I. Transition energies, ICE energies, IC coefficients, and
electronic factors in 98Sr used in this work.

%E (keV) Shell Ee (keV) α ' (s−1)

71.2 3.55(5)
K 55.0 2.86(4)

144.2 0.267(4)
K 128.0 0.229(4)

215.4 K 199.2 2.160 × 108

L1 213.1 2.343 × 107

L2 213.3 5.774 × 104

consistent with each other. Counts in the K-shell ICE peaks
of the 71- and 144-keV transitions were corrected for detector
efficiency and scaled by the ratio (1 + αtot)/αK to determine
absolute intensities of the two E2 transitions, where α is the
IC coefficient [18].

The experimental electric monopole transition strength can
be obtained from the partial decay rate λ(E0) of the 0+

2 state
and the electronic factors 'K,L1,L2... of the E0 transition, given
by the atomic theory. The half-life of the 215-keV 0+

2 state has
been previously measured [14,15] with a weighted average
of 22.8(19) ns [10]. The weighted average of the intensities
of the 71- and 144-keV transitions was used for I (E2), and
the branching ratio I (E0)/I (E2) = 0.72(6) was used in the
calculation of λ(E0). The values for α and ' used in this work
are shown in Table I and were taken from Refs. [18,19]. For
', contributions from higher shells were negligible. Without
uncertainties on the theoretical ratio 'L/'K = 0.11, it is
impossible to determine whether it is consistent with the
experimental ratio of IL/IK = 0.14(1) for the E0 transition.

Combining the results together and following the deriva-
tion given in Ref. [14], the electric monopole transition
strength in 98Sr was calculated to be ρ2(E0) = 0.053(5).
This is consistent with the previous measured value of ρ2 =
0.051(5) [14,20]. An alternative formalism provided by Kibédi
and Spear [20] utilizes the intensity of ICEs from only the K
shell. Using this method, ρ2(E0) = 0.049(7) was obtained.

To interpret the significance of the ρ2(E0) value, the shape
coexistence scenario can be explored further using a simple
two-state mixing model under the assumption that each of the
two configurations has a well-determined rigid deformation.
Schussler et al. [14] proposed a mixing scenario where both the
0+

1,2 and the 2+
1,2 state pairs were admixtures of pure vibrational

(S) and rotational (D) configurations. Using the formalism
given in Ref. [14], the mixing is characterized by parameters
a0,2 (major component) and b0,2 (minor component) in the
following way:

|0+
1 ⟩ = a0|0+

D⟩ + b0|0+
S ⟩, (1)
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D⟩, with a2
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D⟩,with a2
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Because the half-life of the 871-keV 2+
2 state of the S band

remains unknown, the mixing and the deformation parameters
cannot be determined unambiguously. Here, the 434-keV 4+
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Approach
Ø Consistent treatment of the data known

q Combine data on 0+ → 0+ and J+ → J+

(J>0) transitions
q Collect and adopt T1/2, EM 

branching ratios, multipolarities, 
mixing ratios, experimental 
conversion coefficients from 
original references

q Accept data if: T1/2, ICC and 
mixing ratio are known

Ø New conversion coefficients, W(E0) 
electronic factors
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