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1. Quantum Chaos

Deterministic classical chaos: Trajectories in
phase space are instable. Exponential divergence
of trajectories that start from neighboring points in
phase space. Long-term behavior in time not
predictable either analytically or numerically.
Only probabilistic statements possible. (Maxwell,
Poincare, Kolmogorov).

(®)

Quantum chaos (“Quantum Manifestations
of Classical chaos”): Theory less completely
developed. Investigations on

* Spectra (eigenvalues and eigenfunctions)

or

* Time-evolution of wave packets (Chirikov).

Here: Discuss only spectra of completely
chaotic systems.

A. Lichtenberg M. Lieberman, Regular and Stochastic Motion



Can we make general statements on systems that are not integrable and
do not possess any symmetries? Yes, this is possible using

Random Matrices (Wigner).

Matrix representation H.. of Hamiltonian in Hilbert space. Indices
L,V =1, .. Nand N large. In systems with time-reversal invariance we can

always choose H.. = H.. real. Further symmetries shall not exist.

Essential Point: Consider ensemble of such Hamiltonian matrices.
How to choose ensemble? No preferred direction in Hilbert space:
Invariance under orthogonal transformations: “Gaussian Orthogonal
Ensemble” (GOE). All results derived by averaging (integrating)
over ensemble: Valid for “almost all” Hamiltonian systems.

N exp|[-trace(H )/A] M dH.

All states are coupled to each other. Only free parameter A determines mean level spacing. Gaussian
cutoff factor arbitrary but convenient. Quantitative and parameter-free predictions are possible. These
are universal and ergodic. Also other symmetry classes (GUE, GSE). r 1 nyson, 1 vatn phys. 3 (1962) 1199



Quantitative predictions:

(a) Distribution of spacings of
neighboring eigenvalues
(“nearest-neighbor spacing
distribution”).

s is the level distance in units of the mean
level spacing. Result is parameter-free.
Level repulsion at small distances.

(b) Variance of the number of levels
in interval of length L (“level
variance”).

L is measured in units of the mean level spacing.

Variance grows only logarithmically with L!
Dyson-Mehta or Delta 3 statistics used below
is directly related to level variance.

These are statistical measures.
Tests require large data sets.
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Studies of chaotic quantum systems have long history. Two cases that have
been studied intensely:
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(a) Hydrogen atom in strong magnetic 7 A=
52} /A 7/ ==
field. The field breaks the rotational V= //ﬁ/{;//%/ = ?
symmetry of the Coulomb potential. “Z7 // /f’ ,7// s
Only cylindrical symmetry about field - 77/’,’/?//%/ 7 =
direction remains. For Rydberg states, r | / i ; ////// i
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Numerical investigations of several
. . . D. Wintgen, A. Holle, G. Wiebusch, J. Main, H. Friedrich, K. H. Welge, J. Phys. B 19 (1986)
chaotic systems culminated in U557

(b) Sinai billard. A “toy model”. Has mirror
symmetry in regard to 4 axes. Generate
about 1000 lowest eigenvalues of states
with fixed symmetry numerically.

i

O. Bohigas, E. Giannoni, C. Schmit, Phys. Rev. Lett. 52 (1984) 1.




Investigate spectral fluctuations (distribution of eigenvalues and eigenfunctions)
with the measures provided by the theory of random matrices.
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O. Bohigas, E. M Giannoni and C. Schmit, Phys. Rev. Lett. 52 (1984) 1.
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“Bohigas-Giannoni-Schmit conjecture”: The spectral fluctuation properties of fully
chaotic quantum systems coincide with those of the random-matrix ensemble in the
same symmetry class. Many numerical studies confirm conjecture. Analytical proof
uses semiclassical approximation for level-level correlator. Random-matrix

predictions apply in energy interval of length A E =h /T with T = period of shortest

periOdiC ClaSSical traj ectory. S. Heusler, S. Miiller, A. Altland, P. Braun, F. Haake, New J. Phys. 11 (2009) 103025..
Proof for quantum graphs and for all correlators of both levels and scattering matrix

elements o Z.Pluhar and H. A. Weidenmueller, Phzs. Rev. Lett. 112 (2014) 144102.



Many-body systems

Levels with fixed quantum numbers: L.ong sequences of data
(neutron scattering near threshold or proton scattering near

Coulomb barrier)
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R. Haq, A. Pandey, O. Bohigas, Phys. Rev. Lett. 43 (1982) 1026
and Nuclear Data for Science and Technology, Riedel (1983) 209.

More but weaker evidence from other
types of nuclear data. Similar but weaker
evidence for complex atoms and molecules.
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2. Emergence of Order

So far focus on sequence of states with identical quantum numbers. In nuclei: Spin,
parity, isospin. Agreement of such a spectrum with RMT prediction implies zero
information content. But a (piece of a) single spectrum (fixed quantum numbers)
does not yield complete knowledge of the system. Relative order of spectra with
different quantum numbers? Defined for every dynamical Hamiltonian but no
prediction from RMT. Consider

Ensemble of single-particle Hamiltonians with random two-body interaction.
C. W. Johnson, G. F. Bertsch, D. J. Dean, Phys. Rev. Lett. 80 (1998) 2749.

Nucleons in degenerate single-particle states with spins j. Two-particle states
with spins (j, j’) coupled to spin I. States (I, ). For fixed I, matrix elements

V.o Of two-body interaction are Gaussian random variables with zero mean value
and unit variance. Choose

9] = {%, %, g} (dimension 12) and 7 = {%, %, %, %} (dimension 20).

Total spin J and isospin T (reflects neutron-proton symmetry) are good quantum
numbers.



TABLE I. Percentage of ground states (g.s.) of the RQE that have J = 0,T = T. for our
target nuclides, as compared to the percentage of all states in the model spaces that have these
quantum numbers.

J=0T-=T. J=0T=T.
Q Nucleus o.s. Total space
6 12 20 76% 9.8%
6 20 *Ca 75% 3.5%
N=4Z=4 12 *Mg 66% 1.1%

C. W. Johnson, G. F. Bertsch, D. J. Dean, Phys. Rev. Lett. 80 (1998) 2749.

Preponderance of ground states with spin zero!

Also found: Large gap between spin zero ground state and first
excited state. Large enhancement of transition strength between
ground state and first excited state compared to statistical estimate.

A flurry of activity uncovers similar regularities in bosonic and
electronic many-body systems with random two-body interactions.

R. Bijker, A. Frank, Phys. Rev. Lett. 84 (2000) 420;
P. Jaquod, A. D. Stone, Phys. Rev. Lett. 84 (2000) 3938;
V. Zelevinsky, A. Volya, Phys. Rep. 391 (2004) 311.



[ ]
T. Papenbrock , H. A. Weidenmiiller, Phys. Rev. Lett. 93 (2004) 132503,
3 . EXplanatlonS? R . Ph?i. Ree\xll. ce73 (2006) 014311.

Use single index (OéOf') — (Cl) and write for the random two-body matrix elements
Vaa' — Vg . For fixed total spin J Hamiltonian H(J) is linear in the two-body matrix

elements, H(J) = Za ’UaCa(J)

The matrices Ca(J) transport the random two-body interaction into the many-body
Hilbert space of states with spin J. These matrices depend only on the geometry of

the shell model. For J # J' , H(J) and H(J’) depend on same random variables and
are, therefore, correlated. Linear transformation among pairs of states {a} leads to

d=1(J)Trace[Cy(J)Cy(J)] = dap52(J) .

Key to understanding: Spectral widths (= r.m.s. widths of level densities for different
spin values) defined by

02(J) = d='(J)Trace[H2(J)] = 3, v2s2(J) -

The matrix elements Va are zero-centered independent Gaussian random variables
with unit variance. Spectral widths are correlated!

Preponderance of spin zero ground states depends on values of $ CQL (J) . These are
determined by the model space!



Spectral radius Ry = rjo(J) where 7 is not random and decreases strongly
with J. Correlations between spectral widths increase probability for ground
states with spin 7Z@Tr0. T Papenbrock, H. A. Weidenmiiller, Phys. Rev. Lett. 93 (2004) 132503,
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FIG. 1 (color online). Six fermions in a shell with spin j =
19/2. Top: Probability that the ground-state has spin J (data
points): probability that spin J has the largest spectral width
(solid line); probability that the product r;o; is maximal
(dashed line). Bottom: Scaling factor r; between the widths
and spectral radii. Inset: Spectral radius R, versus width o
(data points) and the linear fit (line) for total spin J = (.
(Results from 900 random realizations).

Preponderance of ground states with spin zero is caused by geometry of the
shell model.



4. Summary

In chaotic quantum systems, (pieces of spectra) of states with fixed quantum
numbers follow RMT predictions and carry zero information content.

Ensemble of random Hamiltonians displays preponderance of spin zero
ground states and other regularities.

Hamiltonians for different spin states are correlated. Correlations lead to a
quantitative understanding of preponderance of spin zero ground states.

Correlations reflect the geometry of the underlying dynamical system

(here: the shell model). Statistically, the geometry dominates the action of the
random two-body matrix elements. Not all, but unexpectedly many ground
states have spin zero.






1. Why random matrices? What are

random matrices?

Below the first threshold for
particle emission (and aside from
gamma decay), the spectra of
atoms, molecules, and atomic
nuclei are discrete. The states are
characterized by quantum

numbers that relate to symmetries:

spin < rotational symmetry,

parity < refleatfon symmetry,

1SOsSpin < neutron-proton-
symmetry.
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J. Aizenberg-Selove, Nucl. Phys. A 475 (1987)



Such spectra can frequently be
reproduced using simple,
iIntegrable models: regular
dynamics.

Regular: Rotational bands with spin / parity
0+, 2+, 4+, ...and excitation energies proportional
to J(J+1). In molecules and in atomic nuclei.

Regular: Motion of independent particles in
the mean field. In atoms and in atomic nuclei
(“nuclear shell model”).

Strong evidence for the validity of both
models for regular motion in atoms,
molecules, and atomic nuclei. Applies
typically to low-lying states with a variety of
guantum numbers.

14 2597.1
12 20201
10 14856
8 1009.41
) 608.36
A 297.44
2 91.00
0 0
Kr = 01+

A =15.29 keV
B=-21eV

8 1631
b 1308
4 1063
2 901
0 . 828
A =12.3 keV
B=-30eV

A. Bohr and B. Mottelson, Nuclear Structure



But there is also strong evidence for non-regular behavior!

In atomic nuclei there exist long sequences (about 150 to 200 elements) of states
with identical quantum numbers.

Niels Bohr: The
narrow and narrowly
spaced resonances

are not compatible
with the motion of
independent particles
in the nucleus. The
“compound nucleus”
is a system of strongly
interacting nucleons.

N. Bohr, Nature 137 (1936) 344.




Conclusion:

The spectral fluctuations of sufficiently complex many-body systems
follow predictions of random-matrix theory. Reason not completely
understood.

Questions:

How can random-matrix theory be reconciled with the
nuclear shell model (integrable)?

That is the status of about 1990. Since then an
explosion of random-matrix theory and its
applications.



4. Chaotic Scattel‘_jg_l__g

Resonances seen in neutron
scattering cross section follow
random-matrix predictions. Is it
possible to develop a theory of
resonance scattering based
upon random-matrix theory?
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O. Héusser et al., Nucl. Phys. A 109 (1968) 329.



Closely related scattering problems arise in many parts of physics:
nuclear physics, transport of electrons through disordered solids,
transmission of light through a medium with a disordered index of
refraction, transmission of radio waves through the turbulent
atmosphere, transmission of electromagnetic waves through
cavities in the form of chaotic billiards, ...

A unified approach to all these scattering problems in terms of a
random-matrix description has emerged in the last 20 years.

How to build such a theory? A nutshell description follows.



The amplitude for quantum-mechanical resonance scattering from
channel a to channel b depends on energy E, on the Hamiltonian H
describing the resonances, and on matrix elements that couple channels
and resonances. The universal form is (generalized Breit-Wigner)

Sab(E) = Sab - i 0 Zyv Wap [ (E = H + 2§ T WTW)" Juv Wob

Replace in that S matrix the actual Hamiltonian H by a random-matrix
ensemble of proper symmetry. This generates ensemble of scattering
matrices which is used to calculate properties of chaotic scattering.
The cross section is proportional to the square of the scattering amplitude.

The parameters are A (given by the mean spacing of the resonances) and the quantities
21 Wap Wb / A. The number of the latter exactly corresponds to the number of average
S-matrix elements. Therefore it is possible to predict cross-section averages and
fluctuations in terms of average S-matrix elements.

The average cross section is known analytically for all parameter values.

J. J. M. Verbaarschot, H. A. Weidenmiiller and M. R. Zirnbauer, Phys. Rep. 129 (1985) 367.



Example: Microwave resonator as chaotic billiard

A flat microwave resonator (height d = 0.84 cm) admits only a single
vertical mode of the electric field up to a frequency

of 18.75 GHz. In that frequency domain, the "
Helmholtz equation is equivalent to the Sost
Schrodinger equation for a two-dimensional
billiard. For a proper choice of the shape, the g

billiard is chaotic. Measurements of the output
amplitudes versus input amplitudes allow for a
precise test of chaotic scattering theory.
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Flat microwave resonator (left) as a model for compound-nucleus scattering

(right) or any other stochastic scattering process. Autocorrelation function and log of its Fourier
transform for weakly overlapping resonances.

Notice the non—exponential decay in time.
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B. Dietz et al., Phys. Rev. E 78 (2008) 055204R.



5. Random matrices in condensed-matter
physics and in QCD

Condensed matter: Transmission of electrons through quantum dots with disorder.
Representation of the insulator - conductor transition
(Anderson) with random matrices. New classes of random
matrix

ensembles in Andreev scattering. Topological insulators.

Andreev scattering: Interphase of superconductor and disordered normal conductor.
Electron in normal conductor cannot penetrate into superconductor (pairing gap).
Picks up second electron and leaves a hole. Near Fermi energy that process creates
several new classes of random-matrix ensembles. .« i e b e re 55 0007 100

QCD: In the low-energy domain, QCD is equivalent to a random-matrix ensemble
with chiral symmetry. This generates additional classes of random-matrix
ensembles. These are used, for instance, for extrapolating lattice-gauge
calculations to infinite System SizZe. & sk a1 verarschor, Nucl phys. A 560 (1993 306

There exists a total of ten random-matrix ensembles.



6. Mathematical aspects

The need to work out answers from random-matrix theory has triggered
important developments in mathematical physics.

Examples: Supersymmetry (combination of commuting and anticommuting
integration variables). Exploration of symmetric Riemannian spaces.

There is a very curious connection between GUE and number theory. According
to the Riemann hypothesis, all non-trivial zeros of the Riemann zeta function,

C(s) =] —1/p*)"
p
in the complex s-plane lie on a straight line parallel to imaginary axis.
Numerical results up to millions of zeros show that distribution of spacings
follows those of GUE. Use this fact and known properties of GUE to conjecture
properties of that distribution in analytical form. What have prime numbers to
do with randomness?



7. Summary

A rich and quickly growing field.
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