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⦿Part I: Relative nature of many-body correlations

○ Introduction: quasiparticles, correlations & many-body methods

○ Examples in nuclei and nuclear matter

○ Nuclear Hamiltonians & similarity renormalisation group techniques

○ Single-nucleon shells  ⇿  correlated nucleon dynamics

○ Definition & properties of effective single-particle energies

○ Correlations and resolution scale

○ Scale dependence & non-observability of effective single-particle energies

○ Fermi gaps & spectroscopic factors



Part I
Relative nature of many-body correlations



Physical systems as a many-body problem
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⦿ At a given A, how to minimise correlations?

⦿ Quantum/mesoscopic system as many-body problem

⦿ Choice of degrees of freedom

   Physical system in terms of correlations between d.o.f.

⦿ Many-body Schrödinger equation

○ Exact solution for A=2, 3, 4

○ Approximated solution for A ≳ 5

   Accuracy/difficulty depend on correlations

⦿ When increasing A, how to monitor the accuracy?



Quasiparticles

⦿ Difficulty as the number of particles increases  →  how to picture/model many-body correlations?

⦿ Easy to deal with independent particles →  reformulate in terms of A × one-body problems

⦿ Can we change the (nature of the) chosen degrees of freedom & eliminate many-body correlations?

Many-body problem of interacting particles  →  one-body problem of (independent) quasiparticles

⦿ Concept of (Landau) quasiparticles

Entities with modified (in-medium, renormalised, …) properties w.r.t. the bare d.o.f.

[figure from R. D. Mattuck]



⦿ In some cases, quasiparticles can be constructed explicitly

⦿ In most cases, quasiparticles-like excitations emerge from the many-body dynamics

A(k,ω)

ω

4

Tracing the latter matrices over the one-body Hilbert space H
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provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H

1
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.

�k

A(k,ω)

ωωk

Infinitely-lived (=independent) quasiparticle Decaying (=interacting) quasiparticle

○ Spectral function A(k,ω) embodies quasiparticle features & many-body correlations

○ For free particles A(k,ω) = ẟ(ω - k2/2m)

⦿ Quasiparticles with finite lifetime → departure from independent (quasi)particle picture

⦿ Many-body correlations as residual interactions between quasiparticles

Interacting quasiparticles



Particle-hole expansions

⦿ Hartree-Fock method as an optimised independent-particle description

○ (Many-body) correlations: everything beyond Hartree-Fock

⦿ Independent-particles as 0th-order tenet of numerous many-body methods

○ Perturbation theory

○ Nuclear shell model

○ Density functional theory

⦿ Beyond-Hartree-Fock methods as expansions in particle-hole excitations

+ + +  …   + +  …   +

○ Simplest: MBPT

○ Exact (= whole expansion): Configuration interaction / No-core shell model

○ Freedom to choose the interaction such that HF is the closest to the exact solution?



Correlations in different schemes will be different by construction

⦿ Why don’t include some correlation in the interaction itself?   → effective interactions

⦿ Why don’t limit ourselves to part of the Hilbert space   → valence space methods

○ One aims at limiting the complications of ph expansions

○ One aims at the exact solution in the limited Hilbert space

○ Interaction traditionally phenomenological, recently also ab initio

○ Interaction traditionally phenomenological, possible to derive one ab initio?

⦿ Methods based on particle-hole expansions face severe scaling
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Different schemes for different correlations



Correlations via symmetry breaking & restoration

⦿ Correlations can be grasped by exploiting (breaking & restoration of) symmetries

⦿ Can the two types be related?

⦿ Can the two types be combined?

○ Correlations included via symmetry breaking might be very hard to get via ph expansion

○ For near-degenerate systems essential to expand around a symmetry-breaking reference

○ In nuclear physics: U(1)  ⇿  pairing correlations;    SU(2)  ⇿  quadrupole correlations

○ Symmetry broken & restored MBPT and CC

○ Gorkov Green’s functions

○ Multi-reference IM-SRG

○ Many-body driven EDF

○ Symmetry breaking & restoration + truncated CI

see Thomas’, Denis’, … talks

[Somà, Duguet, Barbieri 2011]

[Hergert et al. 2013]

[Duguet 2015, Duguet, Signoracci 2016]

[Duguet et al. 2015]

[Ripoche et al. 2017]

○ And viceversa



Nuclear Hamiltonians

⦿ Phenomenological Hamiltonians (80’s & 90’s)
○ Hard core

○ Three-body forces?

⦿ Chiral EFT interactions (from 00’s)
○ Softer core

○ Three-body forces consistent

⦿ SRG techniques

○ Unitary transformation of the Hamiltonian

○ Trade hard core for higher-body forces

⦿ Early Hamiltonians (60’s & 70’s)
○ Soft core
○ Could not reproduce nuclear saturation

[Kohno 2015]
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Figure 1: NN phase shifts for the Argonne v18 [18] (solid), CD-Bonn [19] (dashed), and one of the chiral
N3LO [20] (dotted) potentials in selected channels (using nonrelativistic kinematics). All agree with
experiment up to about 300MeV.

and techniques have been developed. The RG allows continuous changes in “resolution” that decouple
the troublesome high-momentum modes and can be used to evolve interactions to nuclear structure
energy and momentum scales while preserving low-energy observables [5–7]. Such potentials, known
generically as “low-momentum interactions,” are more perturbative and generate much less correlated
wave functions [8–17]. This greatly simplifies the nuclear many-body problem, making structure and
reaction calculations more convergent, while variations of the resolution provide new tools to assess
theoretical errors.

In this review, we survey the technical and phenomenological aspects of the low-momentum methods.
Although there are multiple paths to low-momentum interactions, we focus on the RG-based techniques
(known as “Vlow k” or “SRG” potentials), which provide new perspectives that mesh constructively with
the developments of EFT for nuclear forces. When combined with advances in many-body methods and
the increases in computer power, EFT and RG make feasible a controlled description, grounded in QCD
symmetries, of nuclei across the nuclear many-body landscape. At the same time, the RG approach
leads to reinterpretations of the physics or the role of different parts of the physics, such as what causes
nuclear saturation. An unintended consequence is that many misconceptions or misinterpretations have
arisen. A principal goal of this review is to address these.

1.1 Nuclear forces

Establishing an interparticle Hamiltonian, which is the most basic precursor to many-body calculations,
is a difficult and on-going challenge for low-energy nuclear physics. The two-body sector has been
“solved” in the sense that various interactions are available that reproduce phase shifts with χ2/dof ≈ 1
in the elastic regime (up to roughly 300–350MeV energy in the laboratory frame, see Fig. 1). The
unsettled frontier is three- and higher-body forces, although there remain important open questions
about the systematic construction of NN potentials using EFT.

Figure 2(a) shows nuclear interactions in the 1S0 channel for several phenomenological NN poten-
tials. The longest range feature is one-pion exchange, which is justified by quantum chromodynamics
(via the spontaneous breaking of chiral symmetry) and is a common feature of most potentials. The
midrange part, which has a net attraction, has usually been associated with two-pion and/or heavy
meson exchange (ρ, ω, “σ”). The short-range part of the potentials in Fig. 2(a) is a repulsive core
(often called a “hard core”).

Nuclear structure calculations are complicated due to the coupling of low to high momenta by these
potentials. This is made clear by the Fourier transform (that is, the Bessel transform in a given partial
wave), as shown in Fig. 2(b). We feature the Argonne v18 potential [18] because it is used in the most
successful high precision (! 1% accuracy) nuclear structure calculations of nuclei with mass number
A " 12 [22–24]. For our purposes, the equivalent contour plot in Fig. 3(a) is a clearer representation
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○ Universality at low energy scales
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FIG. 3: Variation of LOBT saturation curves in symmetric nuclear matter under the change of a low-momentum cutoff
scale Λlowk. Results for two NN potentials, AV18 [34] and CD-Bonn [36], are shown. The broad hatch is a rough guide
for the band in which saturation minima locate.

where 1
ω−t is a free nucleon propagator and T -matrix is given by T = V + V 1

ω−tT in the entire space.
It is straightforward to do nuclear matter LOBT calculations by taking the low-momentum interaction as

the input NN interaction. Because high-momentum components are eliminated, the G-matrix equation is not
meant for taking care of them, but the G-matrix equation and the self-consistency of single-particle energies
take into account ladder correlations together with certain higher order correlations in the low-momentum
space. By definition, low-momentum interaction is regarded as obtained by a unitary transformation, because
low-momentum interaction in the Lee-Suzuki method [38, 39] is identical to that of the renormalization group
consideration [30]. In this sense, the low-momentum interaction is a soft version of the original bare interaction
by some appropriate unitary transformation. Thus we expect that the saturation point obtained by Vlowk with
a different low-momentum scale moves in the Coester band. As an illustration, the AV18 [34] and CD-Bonn [36]
potentials [34, 36] are taken as a starting bare potential and construct low-momentum interaction for the cutoff
of Λlowk = 6, 5, 4, and 3 fm−1, respectively. The saturation curves obtained in the LOBT with these potentials
are plotted in Fig. 3. Varying the low-momentum cutoff Λlowk, the saturation point systematically shifts on the
Coester band. The similar result was presented before by Kuckei et al. [40]. The difference of the saturation
curves obtained from the AV18 and CD-Bonn is seen to gradually reduce by lowering the low-momentum scale
Λlowk.
The unitary transformation of the NN interaction preserves corresponding on-shell properties of the original

interaction in the low-momentum space. However, it induces many-body interactions when practiced in a many-
body space. If these induced many-body interactions are included, the result of the original bare interaction
should be recovered. The occurrence of this restoration was actually demonstrated in few-body calculations in
the similarity renormalization group method [41]. In the case of low-momentum interaction method, the unitary
transformation to the low-momentum space is to be carried out in the many-body space. Such a framework to
include the induced interaction was developed by Suzuki, Okamoto, and Kumagai [42] as the unitary-model-
operator-method (UMOA), and was applied for 16O and 40Ca in [43]. However, an explicit application of this
method in nuclear matter has not been undertaken. The inclusion of higher-order correlations are beyond the
scope of the present paper.
The necessity of incorporating the induced many-body interaction to recover the result of the original bare

force is analogous to the introduction of the 3NF and the cutoff-scale dependence of its contributions. This
point is discussed in the following sections.

7

cD = cE = 0. Therefore, the main 3NF contributions come from the terms of the coupling constants c1, c3 and
c4 which are settled in the NN sector, though there is a possibility of carefully tuning cD and cE in a natural
size to achieve a good description of finite nuclei.

B. Results of LOBT calculations

Figure 4 shows saturation curves obtained by the N3LO Ch-EFT NN interaction with the three choices of
the cutoff scale: Λ = 450, 550, and 600 MeV, respectively. The results of the AV18 force [34] shown in Fig. 3
are also included for comparison. As low-energy effective theory, the Ch-EFT potential is not applied to the
high momentum region. Hence, the LOBT calculation in Fig. 4 is limited below kF = 1.8 fm−1. The Ch-EFT
potential with Λ = 550 MeV is seen to possess a similar saturation property in LOBT to that of AV18. Larger
(smaller) cutoff energy affords stronger (weaker) tensor components, and the saturation minimum obeys the
Coester band.
When the cutoff scale is small, Λ = 450 MeV, the tensor component is relatively small and thus the central

component gives larger attraction which is not much suppressed by the Pauli blocking. On the other hand, if
the attraction provided by the tensor correlation is large in the free space, the attraction is sensitive to the Pauli
effect. This explains that the saturation point appears at the lower density with the smaller binding energy. If
E/A in fm−1 is supposed to scale linearly with kF in fm−1, saturation minima yield the Coester band.
The results with included the 3NF effects are shown in Fig. 5. The N2LO 3NF V123 of the chiral effective field

theory is first reduced to an effective NN interaction V12(3) by folding third single-nucleon degrees of freedom.

⟨k′
1σ

′
1τ

′
1,k

′
2σ

′
2τ

′
2|V12(3)|k1σ1τ1,k2σ2τ2⟩A

≡
∑

k3,σ3τ3

⟨k′
1σ

′
1τ

′
1,k

′
2σ

′
2τ

′
2,k3σ3τ3|V123|k1σ1τ1,k2σ2τ2,k3σ3τ3⟩A, (11)

where σ and τ denote spin and isospin indices.The density-dependent effective NN force from the N2LO 3NF
was first discussed by Holt, Kaiser, and Wesie [24]. Here, the approximation for the off-diagonal metrix elements
in their paper is not used. The detailed expressions of the partial wave decomposition are given in Appendices
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FIG. 4: LOBT saturation curves in symmetric nuclear matter with the continuous choice for intermediate spectra, using
the N3LO NN interaction with three choices of the cutoff energy: Λ = 450, 550, and 600 MeV, respectively. The results
of the AV18 force [34] shown in Fig.3 are also plotted for comparison.

[Bogner et al. 2010]



Long- vs short-range correlations
488 W.H. Dickhoff, C. Barbieri / Progress in Particle and Nuclear Physics 52 (2004) 377–496
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Fig. 55. The distribution of single-particle strength in a nucleus like 208Pb. The present summary is a synthesis of
experimental and theoretical work discussed in this review. A slight reduction (from 15% to 10%) of the depletion
effect due to SRC must be considered for light nuclei like 16O.

in 1981 that one can “measure” the square of the 1s wave function of the hydrogen atom
in momentum space [277]. Similar results for electron wave functions in the medium have
been obtained for a wide range of atoms and molecules [275]. Similar wave function results
for nuclei are given in Fig. 10 of Section 3. This technique may also become successful in
identifying the properties of electrons in solids [278]. In nuclear physics the improved
analysis of two-nucleon knockout reactions is expected to provide detailed information
about the short-range interaction of nucleons in the nuclear medium. With the additional
improvement of the analysis of experiments that probe high-momentum nucleons in the
nucleus, one may therefore look forward to an even deeper understanding of nucleon
properties and their interactions in the future.

7. Summary and outlook

Several recent developments have been reported that are of general importance to the
understanding of nuclei. We single out here the improved understanding of the nuclear-
matter saturation problem and in particular the essentially complete understanding of the

(a) (b)

Figure 2: (a) Several phenomenological NN potentials in the 1S0 channel from Ref. [21]. (b) Momentum-
space matrix elements of the Argonne v18 (AV18) 1S0 potential after Fourier (Bessel) transformation.1

and we use such plots throughout this review.1 The elastic regime for NN scattering corresponds to
relative momenta k ! 2 fm−1. The strong low- to high-momentum coupling driven by the short-range
repulsion is manifested in Fig. 3(a) by the large regions of non-zero off-diagonal matrix elements. A
consequence is a suppression of probability in the relative wave function (“short-range correlations”),
as seen for the deuteron in Fig. 3(b).

The potentials in Fig. 2(a) are partial-wave local; that is, in each partial wave they are functions
of the separation r alone. This condition, which simplifies certain types of numerical calculations,2

constrains the radial dependence to be similar to Fig. 2(a) if the potential is to reproduce elastic phase
shifts, and in particular necessitates a strong short-range repulsion in the S-waves. The similarity
of all such potentials, perhaps combined with experience from the Coulomb potential, has led to the
(often implicit) misconception that the nuclear potential must have this form. This prejudice has been
reinforced recently by QCD lattice calculations that apparently validate a repulsive core [25–28].

For finite-mass composite particles, locality is a feature we expect at long distances, but non-local
interactions would be more natural at short distances. In fact, the potential at short range is far
removed from an observable, and locality is imposed on potentials for convenience, not because of
physical necessity. Recall that we are free to apply a short-range unitary transformation U to the
Hamiltonian (and to other operators at the same time),

En = ⟨Ψn|H|Ψn⟩ =
(
⟨Ψn|U †

)
UHU †

(
U |Ψn⟩

)
= ⟨Ψ̃n|H̃|Ψ̃n⟩ , (1)

and the physics described by H and H̃ is indistinguishable by experiment. Thus there are an infinite
number of equally valid potentials, and once we allow non-locality, a repulsive core and the strong low-
to high-momentum coupling is no longer inevitable.

The EFT approach uses this freedom to construct a systematic expansion of the Hamiltonian. A
particular EFT is associated with a momentum scale Λb that is the dividing point between resolved,

1In units where ! = c = m = 1 (with nucleon mass m), the momentum-space potential is given in fm. In addition, we
typically express momenta in fm−1 (the conversion to MeV is using !c ≈ 197MeVfm).

2For example, in current implementations of Green’s Function Monte Carlo (GFMC) calculations [22], the potential
must be (almost) diagonal in coordinate space, such as the Argonne v18 potential.
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FIG. 2. Gorkov ADC(3) diagrams of class B
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FIG. 3. Gorkov ADC(3) diagrams of class C

Notes on Gorkov ADC(3) formalism
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(Dated: March 19, 2015)

We extend Gorkov-Green’s function formalism to the algebraic diagrammatic construction scheme
at third order [ADC(3)].

I. INTRODUCTION

There are 17 topologically distinct diagrams contribut-
ing to Gorkov ADC(3), all containing three interaction
lines. One interaction line is always connected to the in-
coming propagator, another one to the outgoing propaga-
tor. The diagrams can be then divided into three classes
depending on the nature of the intermediate interaction
line (not connected to any external line):

• Class A (intermediate “particle-particle1”)

• Class B (intermediate “hole-hole”)

• Class C (intermediate “particle-hole”)

We can further label a diagram according to the posi-
tion of the “hole” line (first from the left, second or third)
in the top and bottom interaction respectively, i.e. each
diagram will be denoted with Xij , where X ∈ {A,B,C}
and {i, j} ∈ {1, 2, 3}. In Figs. 1, 2 and 3 diagrams of
class A, B and C respectively are displayed.

1
4

A33

1
2

A32 = A31

1
2

A23 = A13 A11 = A22 = A12 = A21

FIG. 1. Gorkov ADC(3) diagrams of class A

∗ c.barbieri@surrey.ac.uk
† thomas.duguet@cea.fr
‡ vittorio.soma@cea.fr

1 In Dyson language.

Short-range Long-range

⦿ Hard core induces strong short-range correlations

○ Sophisticated many-body methods needed

○ Strong correlations fragmentation of s.p. strength

○ pp/ph excitation  ⇿  short-/long-range physics

[Dickhoff, Barbieri 2004]
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Fragmentation of single-particle strength in infinite matter

"2ðkÞ ¼ "1ðkÞ $ Im~!ðk; "1ðkÞÞIm
1

1$ ~!0ðz1ðkÞÞ
; (11)

"2ðkÞ ¼ "1ðkÞRe
1

1$ ~!0ðz1ðkÞÞ
: (12)

In the context of nuclear physics, it has generally been

assumed that the dependence of ~! on the imaginary part of
z is soft and can be ignored in the previous derivatives [9].
This gives rise to a slightly different qp pole:

"20ðkÞ ¼ "1ðkÞ; (13)

"20ðkÞ ¼ "1ðkÞ
1

1$ Re~!0ð"1ðkÞÞ
: (14)

As we shall see, this approximation is well justified only
above kF.

In the following, we present our fully dressed results and
compare them to previous approximations at ! ¼
0:16 fm$3. The upper panels of Fig. 2 show the SCGF
spectral function, as a function of energy, for three differ-
ent characteristic momenta (k ¼ 0, kF, and 2kF). These
have been obtained from a T ¼ 0 CD-Bonn self-energy
[21]. The lower panels give the absolute value of the
analytically continued propagator. Contour levels unam-
biguously demonstrate the existence of a pole in ~G. The
location of the fully dressed pole is consistent with the
numerical solution of Eq. (8), shown with a cross.
Differences between this pole and the first or second
renormalization properties are visible at k ¼ 0. At and
above the Fermi surface, discrepancies disappear and the
fully dressed pole coincides with first and second renorm-
alizations. This points towards a very soft dependence of!
on the imaginary part of z for k % kF. Note that, at the

Fermi surface, calculations yield a zero width, providing a
verification of Fermi liquid theory from a self-consistent
perspective [8].
Nuclear many-body calculations are subject to uncer-

tainties associated to the underlying N-N interaction as
well as to the approximation scheme itself. To assess them,
we summarize in Fig. 3 the results obtained with two
different phase-shift equivalent potentials, the CD-Bonn
[24] and the Argonne v18 (Av18) [25] interactions, at ! ¼
0:16 fm$3 and a finite, but rather small, temperature of
T ¼ 5 MeV. The upper panels show the three approxima-
tions to qp spectra discussed earlier as a function of mo-
mentum. While above the Fermi surface the agreement
between all approximations is good, below kF the fully
dressed pole (solid line) is always more attractive than "1
(dashed line). In contrast, the second renormalization spec-
trum (dash-dotted line) is more repulsive. This indicates
that successive renormalizations might not yield results
closer to the fully dressed pole. The inverse qp lifetime,
shown in the central panels, is bell shaped. Remarkably,
below the Fermi surface the lifetime is finite. Close to kF,
its absolute value becomes small, but not zero due to
thermal correlations [7]. Although not shown here, we
have found that the effect of 3BF at this density is small
in all the quantities shown [21]. In contrast, many-body
approximations other than GF’s would yield rather
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FIG. 2 (color online). Upper panels: spectral function at ! ¼
0:16 fm$3 and T ¼ 0 MeV for the CD-Bonn interaction. Lower
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○ Well-defined (long-lived) quasiparticles at the Fermi surface

○ Long mean free path for E < EF
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⦿ Spectral function depicts correlations

○ Broad peak signals depart from 

[Rios, Somà 2012]



Renormalisation-group techniques for nuclear forces

⦿ SRC generated by couplings between low and high momenta

○ Large model spaces needed to converge ➝  applicability limited to light nuclei

⦿ Are high momenta, i.e. high resolution, necessary to compute low-energy observables?

Resolution: The higher the better?

• resolution of very small (irrelevant) structures can obscure this information

• small details have nothing to do with long-wavelength information!

in the nuclear physics here we are interested in low-energy observables

(long-wavelength information!)

Strategy: Use a low-resolution version

• long-wavelength information is preserved

• distortion at small distance significantly reduced

• much less information necessary

In nuclear physics: 
Use renormalization group (RG) to change resolution! 

Strategy: Use a low-resolution version

• long-wavelength information is preserved

• distortion at small distance significantly reduced

• much less information necessary

In nuclear physics: 
Use renormalization group (RG) to change resolution! 
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○ Small-distance details irrelevant

○ Change the resolution ➝  “integrate out” unnecessary information

○ Interested in long-wavelength information



Low-momentum evolutions

⦿ (Unitary) transformation to change the resolution scale of the Hamiltonian
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Figure 9: Schematic illustration of two types of RG evolution for NN potentials in momentum space:
(a) Vlow k running in Λ, and (b) SRG running in λ. At each Λi or λi, the matrix elements outside of the
corresponding lines are zero, so that high- and low-momentum states are decoupled.

60, 61], as shown, for example, in Fig. 8. For variable-cutoff potentials, three-body (and higher-body)
interactions evolve naturally with the resolution scale.

1.3 Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for
calculating low-energy observables can be captured in the scale-dependent coefficients of operators
in a low-energy Hamiltonian [29]. This principle does not mean that high-energy and low-energy
physics is automatically decoupled in every effective theory. In fact, it implies that we can include as
much irrelevant coupling to incorrect high-energy physics as we want by using a large cutoff, with no
consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting
the necessary degrees of freedom. This decoupling can be efficiently achieved by evolving nuclear
interactions using RG transformations designed to handle similar problems in relativistic field theories
and critical phenomena in condensed matter systems.6

The general purpose of the RG when dealing with the large range of scales in physical systems was
eloquently explained by David Gross [63]:

“At each scale, we have different degrees of freedom and different dynamics. Physics at a
larger scale (largely) decouples from the physics at a smaller scale. . . . Thus, a theory at a
larger scale remembers only finitely many parameters from the theories at smaller scales,
and throws the rest of the details away. More precisely, when we pass from a smaller scale
to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the
RG method is to explain how this decoupling takes place and why exactly information is
transmitted from scale to scale through finitely many parameters.”

The common features of RG for critical phenomena and high-energy scattering are discussed by Steven
Weinberg in an essay in Ref. [64]. He summarizes:

“The method in its most general form can I think be understood as a way to arrange in
various theories that the degrees of freedom that you’re talking about are the relevant degrees
of freedom for the problem at hand.”

6For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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Figure 10: Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600MeV)
of Ref. [44] in the 3S1 channel: (a) Vlow k running in Λ, and (b) SRG running in λ (see Fig. 27 for plots
in k2, which show the diagonal width of order λ2).

This is the heart of what is done with low-momentum interaction approaches: arrange for the degrees
of freedom for nuclear structure to be the relevant ones. This does not mean that other degrees of
freedom cannot be used, but to again quote Weinberg [64]: “You can use any degrees of freedom you
want, but if you use the wrong ones, you’ll be sorry.”

There are two major classes of RG transformations used to construct low-momentum interactions,
which are illustrated schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering
a momentum cutoff Λ above which matrix elements go to zero. In the SRG approach, decoupling is
achieved by lowering a cutoff λ (in energy differences λ2) using flow equations, which means evolving
toward the diagonal in momentum space. The technology for carrying these out is outlined in Section 3,
but the effects can be readily seen in the series of contour plots in Figs. 10(a) and 10(b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction,
but shifts contributions between the interaction strengths and the sums over intermediate states in loop
integrals. The evolution of phenomenological or chiral EFT interactions to lower resolution is beneficial
because these shifts can weaken or largely eliminate sources of nonperturbative behavior, and because
lower cutoffs require smaller bases in many-body calculations, leading to improved convergence for
nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-order contributions,
to neglected many-body interactions or to an incomplete many-body treatment. When initialized with
different orders of chiral EFT interactions, we have a powerful tool for extrapolations to the extremes
and for assessing the uncertainties of key matrix elements needed in fundamental symmetry tests.

The idea of effective interactions in a limited model space is an old and well-exploited one in nuclear
physics. However, we will emphasize the flexibility of the RG compared to effective interaction methods.
The continuous “cutoff” variation (in quotes because it may not be an explicit cutoff) is a valuable new
tool for nuclear physics (see Section 2.6). The RG methods are versatile and suggest new ways to make
progress (for example, using the in-medium SRG, discussed in Section 4.3). In addition, RG combined
with EFT is a natural framework for uncovering universal behavior.

We note that the RG is an integral part of any EFT. Matching of the EFT at a given truncation
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⦿ Two main types of transformation

[Bogner et al. 2010]



Example: deuteron binding energy
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Figure 11: NN phase shifts for the Argonne v18 potential [18] and the SRG-evolved potential for
λ = 2 fm−1 with all momenta included (two indistinguishable solid lines) and with the exclusion of
momenta k > kmax = 2.2 fm−1 (Argonne v18 dotted, SRG-evolved dashed) [68].
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Figure 12: Expectation values in the deuteron of the kinetic ⟨T ⟩ (dashed), potential ⟨V ⟩ (dot-dashed),
and total energy (solid) evaluated in momentum space as a function of the maximum momentum kmax,
see Eq. (3). Results are shown for the Argonne v18 potential [18] (left), the SRG-evolved potential Vs

for λ = 2 fm−1 (middle), and the smooth-cutoff Vlow k interaction with Λ = 2 fm−1 (right) [68].

In Ref. [68], the decoupling of high-energy details from low-energy phase shifts and the deuteron
binding energy was demonstrated by setting Vs(k, k′) to zero for all k, k′ above a specified momentum
kmax (using a smooth regulator function). Phase shifts for kmax = 2.2 fm−1 are shown in Fig. 11 for
the initial Argonne v18 potential and for the SRG-evolved Vs with λ = 2 fm−1. The phase shifts for
the initial potential in the lower partial waves bear no relation to the result without a kmax cutoff. In
contrast, the low-energy phase shifts for the SRG-evolved potential are unchanged, even though the
high-energy phase shifts above kmax are now zero.

The deuteron binding energy provides another clear example of how the contributions of different
momentum components to a low-energy observable depend on the resolution scale (as measured by Λ
or λ, see Fig. 9). In Fig. 12, we show the kinetic, potential, and total energy from an integration in
momentum space including momenta up to kmax. That is, we plot

Ed(k < kmax) =

∫ kmax

0

dk

∫ kmax

0

dk′ ψ†
d(k;λ)

(
k2δ3(k− k′) + Vs(k,k

′)
)
ψd(k

′;λ) , (3)

where ψd(k;λ) is the momentum-space deuteron wave function from the corresponding potential Vs

(without kmax). Figure 12 shows that if one excludes momenta greater than 2 fm−1 in the Argonne v18
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⦿ Performing RG changes weights of different parts of the Hamiltonian

⦿ Observable binding energy remains unchanged

⦿ High momenta not needed for softened interactions

⦿ Simply cutting off high momenta doesn’t work
[Bogner et al. 2010]



Short-range correlations & momentum distribution

⦿ Short-range correlations change drastically with resolution scale
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Figure 3: (a) Momentum-space matrix elements of the Argonne v18 1S0 potential. (b) Probability
density for the S-wave part of the deuteron wave function for Argonne v18 and smooth Vlow k potentials
with several cutoffs Λ. The probability suppression at short distances is called “short-range correlation”.

long-range physics, which is treated explicitly, and unresolved, short-range physics, which is expanded
in contact interactions. Results are given order-by-order in Q/Λb, where Q is a generic momentum (or
light mass) scale of the process being calculated. There is also a cutoff Λ needed to regulate the theory,
which suppresses high momenta. Thus Λ acts as a resolution scale for the theory. If Λ is chosen to
be less than Λb, then the truncation error for the EFT will be dominated by powers of Q/Λ rather
than Q/Λb. In principle one could take Λ as large as desired but in practice this only works if the
renormalization and the numerics involved in matching to data are sufficiently under control [29].

In general, the forces between nucleons depend on the resolution scale Λ and are given by an
effective theory for scale-dependent two-nucleon VNN(Λ) and corresponding many-nucleon interactions
V3N(Λ), V4N(Λ) and so on [5,30,31]. This scale dependence is analogous to the scale dependence of parton
distribution functions. At very low momenta Q ≪ mπ, the details of pion exchanges are not resolved
and nuclear forces can be systematically expanded in contact interactions and their derivatives [30].
The corresponding pionless EFT (for which Λb ∼ mπ) is very successful in capturing universal large
scattering-length physics (with improvements by including effective range and higher-order terms) in
dilute neutron matter and reactions at astrophysical energies [30, 32–35].

For most nuclei, the typical momenta are Q ∼ mπ and therefore pion exchanges are included
explicitly in nuclear forces. The corresponding chiral EFT has been developed for over fifteen years as
a systematic approach to nuclear interactions [30, 31, 36, 37]. This provides a unified approach to NN
and many-body forces, and a pathway to direct connections with QCD through lattice calculations (see,
for example, Ref. [38]). Examples of order-by-order improved calculations of observables are shown in
Figs. 4(b), 5(a), and 5(b). However, some open questions remain [31]: understanding the power counting
with singular pion exchanges [39–41], including ∆ degrees of freedom, the counting of relativistic 1/m
corrections. Resolving these questions is important for improving the starting Hamiltonian for low-
momentum interactions, but does not affect our discussion of RG technology.

In chiral EFT [30, 31, 36, 37], the expansion in powers of Q/Λb has roughly Λb ! mρ. As shown
in Fig. 4(a), at a given order this includes contributions from one- or multi-pion exchanges and from
contact interactions, with scale-dependent short-range couplings that are fit to low-energy data for each
Λ (experiment captures all short-range effects). There are natural sizes to many-body force contributions
that are made manifest in the EFT power counting and which explain the phenomenological hierarchy

5

10

Figure 7. (color online) fL calculated for E0 = 30 MeV and
q2 = 25 fm�2 (point “30” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. Prominent enhance-
ment with evolution of the current only and suppression with
evolution of the initial state and the final state only, respec-
tively.

approximation is smaller than fL calculated by including
the final-state interactions.

a. Evolving the initial state Let us first consider the
e↵ect of evolving the initial state only. We have

h f |J0| �
i i = h�|J0| �

i i + h�|t† G†

0 J0| �
i i . (38)

As seen in Eq. (7), in the term h�|J0| �
i i the deuteron

wave function is probed between |p0 � q/2| and p0 + q/2.
These numbers are (1.2, 2.9) fm�1 and (1.7, 3.4) fm�1

for E0 = 30 MeV, q2 = 16 fm�2 and E0 = 30 MeV,
q2 = 25 fm�2, respectively. The evolved deuteron wave
function is significantly suppressed at these high mo-
menta. This behavior is reflected in the deuteron mo-
mentum distribution plotted in Fig. 8. The deuteron
momentum distribution n(k) is proportional to the sum
of the squares of S- andD- state deuteron wave functions.
Thus, the first (IA) term in Eq. (38) is much smaller than
its unevolved counterpart in Eq. (13), for all angles. We
note that even though we only use the AV18 potential
to study changes due to evolution, these changes will be
significant for other potentials as well.

Evaluation of the second (FSI) term in Eq. (38)
involves an integral over all momenta, as indicated
in Eq. (19). We find that |h�|t† G†

0 J0| �
i i| <

|h�|t† G†

0 J0| ii|. As mentioned before, because the terms

h�|J0| ii and h�|t† G†

0 J0| ii add constructively below
the quasi-free ridge and because the magnitude of both
these terms decreases upon evolving the wave function,
we have

|h f |J0| �
i i| < |h f |J0| ii| . (39)

The above relation holds for most combinations of mJd

and msf . For those mJd and msf for which Eq. (39) does
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Figure 8. (color online) Momentum distribution for the
deuteron for the AV18 [48], CD-Bonn [51], and the Entem-
Machleidt N3LO chiral EFT [52] potentials, and for the AV18
potential evolved to two SRG �’s.

not hold, the absolute value of the matrix element is much
smaller than for those for which the Eq. (39) does hold,
and therefore we have fL calculated from h f |J0| �

i i
smaller than the fL calculated from h f |J0| ii, as seen
in Figs. 6 and 7.
b. Evolving the final state As indicated in Eq. (26),

evolving the final state entails the evolution of the t-
matrix. The overlap matrix element therefore is

h �
f |J0| ii = h�|J0| ii + h�|t†� G†

0 J0| ii . (40)

The IA term is the same as in the unevolved case. The
SRG evolution leaves the on-shell part of the t-matrix—
which is directly related to observables—invariant. The
magnitude of the relevant o↵-shell t-matrix elements de-
creases on evolution, though. As a result we have

|h �
f |J0| ii| < |h f |J0| ii| . (41)

This is reflected in fL as calculated from the evolved final
state, and seen in Figs. 6 and 7.
The e↵ect of evolution of the initial state and the final

state is to suppress fL. When all the three components
are evolved, we reproduce the unevolved answer as indi-
cated in Fig. 6 and 7. It is therefore required that we find
a huge enhancement when just the current is evolved.
The kinematics E0 = 30 MeV, q2 = 25 fm�2 is fur-

ther away from the quasi-free ridge than E0 = 30 MeV,
q2 = 16 fm�2. The e↵ects due to evolution discussed
above get progressively more prominent the further away
one is from the quasi-free ridge. This can be verified by
comparing the e↵ects due to evolution of individual com-
ponents in Figs. 6 and 7.
As remarked earlier, away from the quasi-free ridge the

FSI become important. Nonetheless, it is still instructive
to look at fL calculated in the IA at these kinematics.

○ Separation between structure and reaction is scale-dependent

⦿ How to explain the momentum distribution “extracted” from experiment?

○ Operators & currents have to evolved consistently with the Hamiltonian

○ E.g. what is a one-body current at one scale, gets shifted in two-body currents at another

[M
ore et al. 2015]
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FIG. 1. (Color online) Nuclear matter energy per particle versus Fermi momentum kF at the Hartree-Fock level (left) and including
second-order (middle) and third-order particle-particle/hole-hole contributions (right), based on evolved N3LO NN potentials and 3NF fit to
E3H and r4He. Theoretical uncertainties are estimated by the NN (lines)/3N (band) cutoff variations.

as in Ref. [22]. Our 3NF central fit values are given in Table I;
we estimate that cD has an uncertainty of approximately 0.4
due to the uncertainties of the charge radius in 4He. We use
a 3NF regulator of the form exp{−[(p2 + 3/4q2)/!2

3NF]nexp}
with nexp = 4, where the 3N cutoff !3NF is allowed to vary
independently of the NN cutoff, which probes the sensitivity to
short-range three-body physics. The shaded regions in Fig. 1
show the range of results for 2.0 fm−1 < !3NF < 2.5 fm−1

at fixed ! = 2.0 fm−1.
Nuclear matter is calculated in three approximations:

Hartree-Fock (left), Hartree-Fock plus second-order contribu-
tions (middle), and additionally summing third-order particle-
particle and hole-hole contributions (right). The technical
details regarding the treatment of the 3NF and the many-body
calculation are as for neutron matter in Ref. [16]. We first
construct a density-dependent two-body interaction from the
3NF by summing one particle over occupied states in the Fermi
sea (see also Ref. [23]). This conversion simplifies the many-
body calculation significantly and allows the inclusion of
all 3NF double-exchange terms beyond Hartree-Fock, which
were only approximated in Refs. [10,15]. Furthermore, we
have corrected the combinatorial factors at the normal-ordered

TABLE I. Results for the cD and cE couplings fit to E3H =
−8.482 MeV and to the point charge radius r4He = 1.464 fm (based
on Ref. [26]) for the NN/3N cutoffs and different EM/EGM/PWA
ci values used. For Vlow k (SRG) interactions, the 3NF fits lead to
E4He = −28.22 . . . − 28.45 MeV (−28.53 . . . − 28.71 MeV).

Vlow k SRG

! or λ/!3NF (fm) cD cE cD cE

1.8/2.0 (EM ci’s) +1.621 −0.143 +1.264 −0.120
2.0/2.0 (EM ci’s) +1.705 −0.109 +1.271 −0.131
2.0/2.5 (EM ci’s) +0.230 −0.538 −0.292 −0.592
2.2/2.0 (EM ci’s) +1.575 −0.102 +1.214 −0.137
2.8/2.0 (EM ci’s) +1.463 −0.029 +1.278 −0.078
2.0/2.0 (EGM ci’s) −4.381 −1.126 −4.828 −1.152
2.0/2.0 (PWA ci’s) −2.632 −0.677 −3.007 −0.686

two-body level of the 3NF from 1/6 to 1/2 in diagrams
beyond Hartree-Fock used in these references (see Refs. [9,16]
for detailed discussions of these factors, which are correctly
included in Refs. [3,5,16,17]). To our knowledge, previous
calculations in the literature of nuclear matter using normal-
ordered 3NF contributions need the same correction.

The dashed lines in the left panel of Fig. 1 (for ! =
1.8 and 2.8 MeV) show the exact Hartree-Fock energy in
comparison with the results obtained using the effective
two-body interaction (solid lines). The excellent agreement
supports the use of this density-dependent two-body ap-
proximation for symmetric nuclear matter. For the results
beyond the Hartree-Fock level we use full momentum-
dependent single-particle Hartree-Fock propagators. We have
checked that the energies obtained using a self-consistent
second-order spectrum overlap with the band of curves
in Fig. 1.

The Hartree-Fock results show that nuclear matter is
bound even at this simplest level. A calculation without
approximations should be independent of the cutoffs, so
the spread in Fig. 1 sets the scale for omitted many-body
contributions. The second-order results show a significant
narrowing of this spread over a large density region. It is
encouraging that our results agree with the empirical saturation
point within the uncertainty in the many-body calculation and
omitted higher-order many-body forces implied by the cutoff
variation (the greater spread compared to Ref. [15] is mostly
attributable to the corrected combinatorial factor). We stress
that the cutoff dependence of order 3 MeV around saturation
density is small compared to the total size of the kinetic energy
(≈23 MeV) and potential energy (≈−38 MeV) at this density.
Moreover, the cutoff dependence is smaller at kF ≈ 1.1 fm−1,
which more resembles the typical densities in medium-mass
to heavy nuclei (ρ = 0.11 fm−3). For all cases in the right
panel of Fig. 1, the compressibility K = 175–210 MeV is in
the empirical range.

The inclusion of third-order contributions gives only small
changes from second order except at the lowest densi-
ties shown. This is consistent with nuclear matter being

031301-2
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○ Smaller model spaces & less refined many-body truncations needed
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Figure 19: (a) Particle-particle contributions to the energy per nucleon in symmetric nuclear matter
as a function of the Fermi momentum kF for the initial Argonne v18 potential and the RG-evolved
Vlow k with Λ = 2.1 fm−1 [9]. (b) Pair-distribution function g(r) in nuclear matter for kF = 1.35 fm−1 at
different resolutions, for details see Ref. [10].

behavior are resolution-dependent,7 because they depend on the degree of coupling between low- and
high-momentum states [6, 7, 9, 12]. Consequently, RG methods can be used to improve perturbative
convergence and reduce the short-range strength of the associated correlations in the wave functions,
as shown for symmetric nuclear matter in Figs. 19(a) and 19(b), respectively.

We can quantify the perturbativeness of the potential as we evolve to lower Λ for Vlow k (or λ for
SRG) interactions by using the eigenvalue analysis introduced long ago by Weinberg [75] and applied
to Vlow k and SRG potentials in Refs. [6,7,9,12]. Consider the Born series for the T matrix at energy E
with Hamiltonian H = H0 + V ,

T (E) = V + V
1

E −H0
V + . . . . (4)

By finding the eigenvalues and eigenvectors of the operator (E −H0)−1V ,

1

E −H0
V |Γν⟩ = ην(E)|Γν⟩ , (5)

and then acting with T (E) on the eigenvectors,

T (E)|Γν⟩ =
(
1 + ην(E) + η2ν(E) + . . .

)
V |Γν⟩ , (6)

it follows that nonperturbative behavior at energy E is signaled by one or more eigenvalues with
|ην(E)| ! 1 [75]. A rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ην(E) as
an energy-dependent coupling that must divide V to produce a solution to the Schrödinger equation at
energy E. For negative energies, a purely attractive V gives positive real ην(E) values, while a purely
repulsive V gives negative eigenvalues. For this reason, we refer to negative eigenvalues as repulsive
and positive ones as attractive, although the eigenvalues become complex for positive E.

7This is in contrast to non-perturbative features like low-energy bound or nearly bound states in the S-waves and the
pairing instability at finite density that are insensitive to the short-distance details.
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Fig. 9. Convergence of 4He, 16O, and 40Ca IM-SRG(2) charge radii w.r.t. single-particle basis size emax, for a chiral N3LO NN interaction with � = 1 (left
panels) and � = 2.0 fm�1 (right panels). The gray dashed lines indicate experimental charge radii from [83].

where the isospin operator projects on protons, and R is the center of mass. We obtain the charge radii by applying the
corrections due to the mean-square charge radii of proton and neutron (see, e.g., [84]):

Rch ⌘
r

R2
p + r2p + N

Z
r2n =

q

R2
p + (0.8775 fm)2 � 0.1161 fm2, (72)

with values of r2p and r2n taken from [85].
Focusing on the results for the bare N3LO interaction first, we find satisfactory convergence of the charge radii at a level of

1% over a wide region of basis parameters h̄!. For different emax, the curves intersect in the vicinity of the h̄! that minimizes
the ground-state energies (cf. Fig. 3). The IM-SRG(2) result for the charge radius of 4He is quite close to the experimental
value. It is somewhat counter-intuitive, however, that the radius is slightly underpredicted, while about 1 MeV binding
energy is missing (see Table 1). For 16O, the binding energy is similarly close to the experimental one, but the charge radius
is already too small by almost 10%, while overbinding and underestimation of the radius are consistent on a superficial level
with 40Ca.

Using the softened N3LO interaction with � = 2.0 fm�1 as input, convergence of the radii improves dramatically over
the bare N3LO case. On the scales shown in Fig. 9, results from emax = 10 onwards are all but indistinguishable. At the
same time, the underestimation of the radii becomes worse, which is consistent with the increased binding energies that
are reported in Section 5.2. Part of the problem is that the change of the resolution scale of the N3LO interaction induces
3N, . . . interactions which have not been taken into account. These induced interactions give repulsive contributions to the
g.s. energy, and are therefore also expected to increase the radii to some extent (see Section 9 and Refs. [22,24–27,49,56,73,
74,86–88]).

Under a change of resolution scale �, the radius operator (or any other observable) should be transformed consistently
with the Hamiltonian, causing it to gain induced many-body contributions. Since RG transformations like the free-space
SRG, and related methods like Lee–Suzuki, are designed to deal with high-momentum/short-distance physics, their effect
on the radius and other long-ranged operators, and therefore the size of induced contributions, was expected to be small
[9,61,89,90]. A recent free-space SRG study suggests that induced contributions may be small but not negligible in view of
the discrepancies between experimental and calculated radii from state-of-the-art ab initiomany-body calculations [91].

A related issue is the use of simple one-body ansätze like (71) for the mean-square proton radius and other radius
or transition operators. These specific forms neglect two- and higher many-body contributions which are generated by
exchange currents, for instance, and should be included in the ‘‘bare’’ operator in the first place. Chiral EFT provides a
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Fig. 5. IM-SRG(2) ground-state energies of 40Ca obtained with different choices of the generator, as a function of h̄! and the single-particle basis size
emax. The interaction is the chiral N3LO potential with � = 1 (top panels) and � = 2.0 fm�1 (bottom panels), respectively. The dashed lines indicate
extrapolated energies. For the Wegner generator, the shaded area indicates the variation from using different data sets for the extrapolation (see text).

IM-SRG ground-state energies adversely. While computational issues pertaining to the storage of 3N matrix elements
present a challenge, ab initio calculations with NN + 3N interactions for the A ⇠ 100 region have now become possible
[27,49,73,74].

5.3. Choice of generator

Let us now study the effect of our choice of generator on the IM-SRG(2) ground-state energies. In Fig. 5, we show
the IM-SRG(2) ground-state energies for the five different generators discussed in Section 4. Note that the panels for
the White and imaginary-time generators show curves for both the Epstein–Nesbet and Møller–Plesset choices for the
energy denominators and sign functions, respectively. The resulting ground-state energies for 40Ca agree within 15 keV.
Remarkably, this agreement holds for both the softened and bare N3LO interactions, and irrespective of the used basis
parameters emax and h̄!. The extrapolated energies therefore also only differ by small amounts.

It is evident from Fig. 5 that the White and imaginary-time generators give very similar results. For the bare N3LO
interaction, the extrapolated 40Ca ground-state energies are �368.9 MeV and �367.7 MeV, respectively, which is a
difference of about 0.3%. For any h̄! in the studied range, the energy differences between the two types of generators drop
below 1% from emax = 8 onward. As expected, the differences become smaller when the resolution scale of the interaction
is lowered to � = 2.0 fm�1. The extrapolated energies are �596.0 MeV and �595.6 MeV for the White and imaginary-
time generators, respectively, which amounts to a relative difference of order 10�4. The extrapolated values are affected by
slightly larger differences for small and large h̄!. Near the energy minima with respect to h̄!, where the results are better
converged, absolute differences are typically below 10 keV.

For the soft interaction, the results for the Wegner generator agree very well with those for the other generators: The
extrapolated 40Ca ground-state energy is �595.4 MeV. The situation is quite different for the bare interaction, though. To
understand what we see, we first consider the convergence pattern that is predicted for a (quasi)-variational theory by
the extrapolation formula (69) [71,72]. At fixed emax, the derivative of Eq. (69) with respect to the oscillator parameter h̄!
indicates that the ultraviolet (UV) and infrared (IR) correction terms are minimized at large and small h̄!, respectively. The
exponents of the UV and IR terms behave like⇤2

UV ⇠ emax and LIR ⇠ p
emax as emax increases, hencewe expect IR corrections
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⦿ Drawback: additional many-body forces generated through unitary transformation

[Hergert et al. 2016]
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Figure 35: Ground-state energy of (a) 3H and (b) 4He as a function of λ. For details see Ref. [85].

with Vs defined by Eq. (39). The corresponding equations for each of the two-body potentials (which
are completely determined by their evolved matrix elements in the two-body systems) are

dV12

ds
= [[T12, V12], (T12 + V12)] , (43)

and similarly for V13 and V23. After expanding Eq. (42) using Eq. (39) and the different decompositions
of Trel, it is straightforward to show that the derivatives of two-body potentials on the left side cancel
precisely with terms on the right side, leaving

dV123

ds
= [[T12, V12], (T3 + V13 + V23 + V123)] + [[T13, V13], (T2 + V12 + V23 + V123)]

+ [[T23, V23], (T1 + V12 + V13 + V123)] + [[Trel, V123], Hs] . (44)

The importance of these cancellations is that they eliminate the “dangerous” delta functions, which
make setting up the integral equations for the three-body system problematic [135]. We emphasize that
the s-dependence of the two-body potentials on the right side of Eq. (44) is completely determined by
solving the two-body problem in Eq. (22). This is in contrast to RG methods that run a cutoff on the
total energy of the basis states (as in the Bloch-Horowitz or Lee-Suzuki approaches). Such methods
generate “multi-valued” two-body interactions, in the sense that the RG evolution of two-body operators
in A > 2 systems depends on the excitation energies of the unlinked spectator particles [109, 136].

Further simplifications of Eq. (44) follow from antisymmetrization and applying the Jacobi identity,
but this form is sufficient to make clear that there are no disconnected pieces. The problem is thus
reduced to the technical implementation of a momentum-space decomposition analogous to Eq. (22).
A diagrammatic approach is introduced in Refs. [137, 138] to handle this decomposition. Work is in
progress on evolving 3N forces in momentum space. It has been verified that this formalism leaves
eigenvalues invariant for three-particle systems described by simple model Hamiltonians, such as a
two-level system of bosons [137].

To summarize, because only the Hamiltonian enters the SRG flow equations, there are no difficulties
from having to solve T matrices (bound state plus scattering wave functions) in all three-body (including
breakup) channels, as required by the analogous three-body Vlow k evolution equations. In a momentum
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Fig. 2. Schematic representation of the initial and final Hamiltonians,H(0) andH(1), in themany-bodyHilbert space spanned by particle–hole excitations
of the reference state.

diagonalization increases factorially with the single-particle basis, and it is precisely this high computational effort that
motivated the development of mildly scaling methods like CC or the IM-SRG. A more efficient alternative for the evaluation
of observables exists in the form of the so-called Magnus expansion [62,63], which we briefly discuss in Section 9.4.

4. Choice of generator

4.1. Decoupling

After setting up the general IM-SRG flow equation framework in Section 3, we have to specify the generator ⌘. To this end,
we first need to identify the off-diagonal parts of the Hamiltonian that the IM-SRG transformation is supposed to suppress
for s ! 1. The freedom to partition the Hamiltonian into suitably defined diagonal and off-diagonal pieces gives the
IM-SRG flexibility to target different states, and is key to extending the method to open-shell nuclei, see Sections 9.2 and
9.3. To illustrate the general idea of a targeted decoupling, let us assume our goal is to extract the ground-state energy of a
closed-shell nucleus, i.e., the lowest eigenvalue of the nuclear many-body Hamiltonian. In the left panel of Fig. 2, we show a
schematic representation of the initial Hamiltonian H(0), in a basis consisting of A-particle–A-hole (ApAh) excitations of the
reference state |�i. For the following illustration of the IM-SRG’s basic concept, we assume that H(0) has been truncated
to two-body operators, that is, it can at most couple npnh to (n± 2)p(n± 2)h states. The extension to three-body operators
is straightforward.

The 0p0h reference state is coupled to 1p1h and 2p2h excitations by the matrix elements

h�|H(0) :aÑpah : |�i = fph, (37)

h�|H(0) :aÑpaÑp0ah0ah : |�i = �pp0hh0 , (38)

and their Hermitian conjugates. Thus, we define the off-diagonal part of the Hamiltonian as

Hod(s) =
X

ph

fph :aÑpah : +1
4

X

pp0hh0
�pp0hh0 :aÑpaÑp0ah0ah : +H.c. (39)

During the flow, matrix elements between the reference state and higher excitations acquire non-zero values,

h�|H(s) :aÑp1 . . . aÑpAahA . . . ah1 : |�i 6= 0, (40)

because H(s > 0) has induced 3�, . . . , A-body contributions (cf. Eq. (24)), just as in a free-space SRG evolution [9,34,35].
By truncating operators to two-body rank in the IM-SRG(2) (or any rank n  A in a higher truncation), we force these
(and other) matrix elements to vanish, at the cost of violating unitarity. We will have to check that this violation remains
sufficiently small in practical calculations.

If we eliminate the matrix elements (37), (38) as s ! 1, the final IM-SRG(2) Hamiltonian H(1) has the shape shown in
the right panel of Fig. 2: the one-dimensional 0p0h space spanned by the reference state is completely decoupled from other
states, and therefore an eigenspace of H(1), with the eigenvalue given by the corresponding matrix element. In essence,
thismeans that the IM-SRG provides amapping between the reference state |�i and an exact eigenstate | i of the nucleus.

At this point, a few remarks are in order. In a finite system, i.e., in the absence of phase transitions, it is always possible to
obtain amapping between the reference state |�i and an exact bound eigenstate | i ofH by performing a diagonalization,
provided there are no symmetry or other restrictions on the ApAh basis built from |�i. Thus, the IM-SRG is guaranteed to

⦿ Why don’t evolve to the point where correlations have disappeared?

At very low scales, many-
body (A>3) forces explode

However, if done step by step keeping 
normal-ordered parts at each step…

In-medium Similarity Renormalisation Group

⦿ Combine with another many-body method (e.g. NCSM) to access wide range of observables

174 H. Hergert et al. / Physics Reports 621 (2016) 165–222

Fig. 2. Schematic representation of the initial and final Hamiltonians,H(0) andH(1), in themany-bodyHilbert space spanned by particle–hole excitations
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By truncating operators to two-body rank in the IM-SRG(2) (or any rank n  A in a higher truncation), we force these
(and other) matrix elements to vanish, at the cost of violating unitarity. We will have to check that this violation remains
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If we eliminate the matrix elements (37), (38) as s ! 1, the final IM-SRG(2) Hamiltonian H(1) has the shape shown in
the right panel of Fig. 2: the one-dimensional 0p0h space spanned by the reference state is completely decoupled from other
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thismeans that the IM-SRG provides amapping between the reference state |�i and an exact eigenstate | i of the nucleus.
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⦿ Unpractical to evolve in medium every operator we are interested in
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Single-nucleon shell structure

⦿ Correlated many-body system ⇿ description in terms of independent particles

○ Can a one-to-one correspondence be established?

⦿ Concept of single-nucleon shells

○ Basic pillar of the shell model
○ Provides interpretation of nuclear (low-energy) observables

○ Leads to considering a single-particle spectrum (magicity, shell evolution, …)

Useful interpretation, but which degree of reality?

0p1/2 
0p3/2 
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16O ⇿
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Single-nucleon shell structure

To what extent the single-particle energy spectrum relates to low-energy observables?

4

II. NUCLEAR SHELL ENERGIES

A. Rationale

As already alluded to above, the interest of referring to
single-nucleon shells resides in the hypothesis that low-
energy observables reflect key patterns of the ESPE spec-
trum. Besides 2+ excitation energies, this is supposed to
apply first and foremost to one-nucleon separation ener-
gies E±

k . Such a rationale translates into the assumption
that the observables can be partitioned into a dominant
“independent-particle-like” component complemented by
many-body correlations, i.e., that one can write schemat-
ically

E±
k

︸︷︷︸

Outcome of Schr. equation

= ep
︸︷︷︸

Ind. particles

+ ∆Ep→k
︸ ︷︷ ︸

Correlations

.

(2)

Equation (2) is a basic tenet of numerous many-body
methods. For instance, in many-body perturbation the-
ory, the independent-particle-like contribution refers to
a chosen zeroth-order approximation. As such, it is the
eigenvalue associated with an ad hoc one-body poten-
tial given a priori, e.g., of harmonic-oscillator (HO) or
Woods-Saxon type. Alternatively, it can stem from a
one-body potential that is derived from an auxiliary con-
dition, e.g., the Hartree-Fock (HF) potential that results
from minimizing the correlation contribution to the total
binding energy. Another prime example is density func-
tional theory (DFT), where single-particle energies are
generated by a local one-body potential that emerges as
a result of the constraint that the one-body local den-
sity of the Kohn-Sham Slater determinant matches the
one of the exact A-body ground-state4. Consequently,
the single-particle energies typically discussed in the lit-
erature reflect a choice (among infinitely many) made
by a practitioner. As such, they do not carry any deep
meaning, and they certainly do not reflect a unique and
unambiguous one-nucleon shell structure of the studied
nucleus. Let us now introduce a superior definition of
ESPEs [10, 13].

4 Interestingly, such a constraint forces the single-particle energy of
the last occupied Kohn-Sham orbital to match the one-fermion
removal energy to the ground-state of the (A-1)-body system.
This property is usually referred to as Koopmans’-like theorem
of DFT. It, however, does not apply to any of the other Kohn-
Sham single-particle energies that happen to have a non-trivial
connection to one-nucleon separation energies [24]. In practice,
the validity of Koopmans’-like theorem of DFT is often compro-
mised by spurious self-interaction problems [25]. Correcting for
such an issue typically calls for orbital-dependent density func-
tionals [26, 27].

B. Definition

The model-independent definition of effective single-
particle energies relates them unambiguously to the pro-
cess of adding (removing) a nucleon to (from) the ground-
state of the A-body system of interest in (from) a specific
single-particle state. The single-nucleon states in ques-
tion are not known a priori, but emerge together with
ESPEs (see Eq. (11)).
We first specify the second-quantized form of the

Hamiltonian entering Eq. (1). It is expressed in an arbi-
trary single-particle basis as

H = T + V 2N + V 3N + . . . (3a)

=
∑

pq

tpqa
†
paq

+

(
1

2!

)2 ∑

pqrs

v2Npqrsa
†
pa

†
qasar

+

(
1

3!

)2 ∑

pqrstu

v3Npqrstua
†
pa

†
qa

†
rauatas

+ . . . , (3b)

where v2Npqrs and v3Npqrstu denote antisymmetrized matrix
elements of 2N and 3N interactions while dots symbolize
omitted higher-body forces.
Next, we introduce the probability amplitudes Uµ

(Vν) to reach a specific eigenstate |ΨA+1
µ ⟩ (|ΨA-1

ν ⟩) of
the A+1 (A-1) system by adding (removing) a nucleon
in (from) a single-particle state to (from) the ground
state |ΨA

0 ⟩ of an even-even system. Those amplitudes
characterize direct one-nucleon addition and removal pro-
cesses and can be expanded in an arbitrary, e.g., spheri-
cal, single-particle basis {a†p} according to5

Up
µ ≡ ⟨ΨA

0 |ap|Ψ
A+1
µ ⟩ , (4a)

V p
ν ≡ ⟨ΨA

0 |a
†
p|Ψ

A-1
ν ⟩ . (4b)

From these amplitudes, one builds spectroscopic prob-
ability matrices for the nucleon addition and removal,
S+
µ ≡ UµU

†
µ and S−

ν ≡ V∗
νV

T
ν , respectively. Their ele-

ments are

S+pq
µ ≡ ⟨ΨA

0 |ap|Ψ
A+1
µ ⟩⟨ΨA+1

µ |a†q|Ψ
A
0 ⟩ , (5a)

S−pq
ν ≡ ⟨ΨA

0 |a
†
q|Ψ

A-1
ν ⟩⟨ΨA-1

ν |ap|Ψ
A
0 ⟩ . (5b)

5 Considering that |ΨA
0 ⟩ is a Jπ = 0+ state and working with

a spherical basis {a†p}, i.e. p ≡ (n, π, j,m, τ), Wigner-Eckart’s
theorem states that the single-particle operator picks out the
angular momentum, the parity and the isospin projection of the
A±1 state the transfer goes to; i.e. jp = Jk, π = Πk and τ =
Tk − T0. Additionally, one can prove that m = M (−M) for Uk

(Vk) where M is the total angular-momentum projection of the
A±1 state.

⦿ Quantum mechanical nuclear many-body problem

○ Many-body Schrödinger equation   ⇾   one-nucleon addition/removal energies
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body Schrödinger equation with sufficient accuracy in or-
der to check whether the picture associated with a magic
number holds.
As such, the characterization of the (non-)magic char-

acter of a nucleus is based on a set of many-body observ-
ables, and does not involve the concept of single-nucleon
shells. Still, effective single-particle energies [10] (ES-
PEs)1 associated with an auxiliary independent-particle-
like problem appear as a useful tool to interpret the evo-
lution of many-body observables in terms of simpler the-
oretical ingredients. The typical picture is that the size
of the first 2+ excitation energy of even-even isotopes as
well as the size of the gap between their one-nucleon ad-
dition and removal spectra reflect (at least) qualitatively
the size of the particle-hole gap in the ESPE spectrum
and the value of the associated spectroscopic factors. For
instance, a large gap at the Fermi energy in the ESPE
spectrum is manifested as a large 2+ excitation energy
with a reduced electric quadrupole transition probability
B(E2) to the ground state. Figure 1 illustrates such a
correlation for the first 2+ excitation energy of selected
Ca isotopes on the basis of a pf shell-model calculation.
The phenomenological GXPF1 [11] and KB3G [12] in-
teractions both yield a high 2+ excitation energy and a
large neutron p3/2− f7/2 shell gap in 48Ca, but give very
different predictions for the neutron-rich 54Ca: GXPF1
predicts a large f5/2−p1/2 gap and high 2+ energy, KB3G
the opposite.
It is thus fair to say that the current paradigm under-

lining our understanding of nuclear structure provides
the single-nucleon shell structure with a certain degree
of “reality”. As a matter of fact, reference to an un-
derlying single-particle spectrum is almost systematically
made to explain the characteristics and the evolution of
low-energy observables in nuclei. Still, such a systematic
reference raises basic questions given that individual nu-
cleons do not occupy stationary single-particle states in-
side a correlated system. This relates to the fact that the
only unambiguously defined problem that one can aim at
addressing is the interacting many-body problem, which
translates into solving the A-body Schrödinger eigenvalue
equation

H |ΨA
k ⟩ = EA

k |Ψ
A
k ⟩ , (1)

and/or its time-dependent counterpart. While the out-
come of the former takes the form of A-body energies
EA

k and associated A-body states |ΨA
k ⟩, the latter pro-

1 It must be made very clear that “ESPE” refers throughout the
present paper to the full Baranger-French definition of single-
particle energies. In the traditional shell model, “ESPE” usually
refers to single-particle energies obtained by averaging over the
monopole part of the Hamiltonian on the basis of a naive filling
in an a priori given single-particle basis. The latter denotes an
approximate version of the full Baranger-French definition ob-
tained by omitting the correlations at play in the exact solution
of the many-body problem.
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FIG. 1. (Color online). Shell-model calculation of selected Ca
isotopes performed in the pf valence space with GXPF1 [11]
and KB3G [12] empirical interactions. Upper panel: effec-
tive single-particle energies. Lower panel: first 2+ excitation
energy.

vides reaction cross sections σ(Ak+Bl → Cm+Dn) as-
sociated with many-body systems transitioning from an
initial state |ΨA+B

initial⟩ = |ΨA
k ⟩ ⊗ |ΨB

l ⟩ to a final state
|ΨC+D

final ⟩ = |ΨC
m⟩ ⊗ |ΨD

n ⟩. As such, single-nucleon shells
do not appear explicitly in the formulation of the prob-
lem of interest.
The closest accessible quantities relate to the dynamics

of a nucleon that is added to or removed from the A-body
correlated system, i.e., one-nucleon addition and removal
energies E±

k ≡ ±
(

EA±1
k − EA

0

)

along with associated2

reaction cross sections σ±
k . As will be discussed in de-

tail below, the computation of ESPEs, ecentp (λ), combines

one-nucleon addition and removal energies E±
k with as-

sociated spectroscopic probability matrices, S±
k (λ). The

dependence of ESPEs on the latter make them intrin-
sically non-observable quantities that change with the
resolution scale λ employed in the theoretical descrip-
tion of the system. Thus, a unitary transformation of
the Hamiltonian H(λ) → H(λ′) changes the ESPE spec-
trum ecentp (λ) ̸= ecentp (λ′) while leaving true observables

invariant, e.g. E±
k (λ) = E±

k (λ′). Expanding on the brief

2 The shorthand notation σ±
k is used as a way to avoid specifying

which reaction mechanism, e.g. which companion nucleus, is
used to transfer a nucleon to/from the nucleus of interest.
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vides reaction cross sections σ(Ak+Bl → Cm+Dn) as-
sociated with many-body systems transitioning from an
initial state |ΨA+B

initial⟩ = |ΨA
k ⟩ ⊗ |ΨB

l ⟩ to a final state
|ΨC+D

final ⟩ = |ΨC
m⟩ ⊗ |ΨD

n ⟩. As such, single-nucleon shells
do not appear explicitly in the formulation of the prob-
lem of interest.
The closest accessible quantities relate to the dynamics

of a nucleon that is added to or removed from the A-body
correlated system, i.e., one-nucleon addition and removal
energies E±

k ≡ ±
(

EA±1
k − EA

0

)

along with associated2

reaction cross sections σ±
k . As will be discussed in de-

tail below, the computation of ESPEs, ecentp (λ), combines

one-nucleon addition and removal energies E±
k with as-

sociated spectroscopic probability matrices, S±
k (λ). The

dependence of ESPEs on the latter make them intrin-
sically non-observable quantities that change with the
resolution scale λ employed in the theoretical descrip-
tion of the system. Thus, a unitary transformation of
the Hamiltonian H(λ) → H(λ′) changes the ESPE spec-
trum ecentp (λ) ̸= ecentp (λ′) while leaving true observables

invariant, e.g. E±
k (λ) = E±

k (λ′). Expanding on the brief

2 The shorthand notation σ±
k is used as a way to avoid specifying

which reaction mechanism, e.g. which companion nucleus, is
used to transfer a nucleon to/from the nucleus of interest.

⦿ In the following:

○ Reminder of Green’s function theory

○ Is there a proper/unique definition of single-particle energy?   →   Baranger ESPEs
○ Scale dependence of the above partitioning, i.e. of ESPEs

○ Illustration of the scale dependence form ab initio calculations



Self-consistent Green’s function approach

⦿ Solution of the A-body Schrödinger equation                                        achieved by

1) Rewriting it in terms of 1-, 2-, …. A-body objects G1=G, G2, … GA (Green’s functions)

2) Expanding these objects in perturbation (in practise only G ➟ one-body observables)

➟ Self-consistent schemes resum (infinite) subsets of perturbation-theory contributions

⦿ Extension to open-shell nuclei: (symmetry-breaking) Gorkov scheme

○ Developed at Saclay & Surrey  2010-today [Somà, Duguet & Barbieri 2011]

Ab INITIO SELF-CONSISTENT GORKOV-GREEN’s . . . PHYSICAL REVIEW C 84, 064317 (2011)

Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.
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Neglecting higher-order contributions to the self-energy,
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which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to
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Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity
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Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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FIG. 3. Second-order anomalous self-energies !21 (2′) (left) and
!21 (2′′) (right). See Fig. 1 for conventions.

expressions, let us introduce useful quantities

Mk1k2k3
a ≡

∑

ijk

V̄akij U k1
i U k2

j V̄k3
k , (69a)

Pk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ U k1
i Vk2

k Ū k3
j = Mk1k3k2

a , (69b)

Rk1k2k3
a ≡

∑

ijk

V̄ak̄īj Vk1
k U k2

j Ū k3
i = Mk3k2k1

a , (69c)

and

N k1k2k3
a ≡

∑

ijk

V̄akij Vk1
i Vk2

j Ū k3
k , (70a)

Qk1k2k3
a ≡

∑

ijk

V̄ak̄ij̄ Vk1
i U k2

k V̄k3
j = N k1k3k2

a , (70b)

Sk1k2k3
a ≡

∑

ijk

V̄ak̄īj U k1
k Vk2

j V̄k3
i = N k3k2k1

a , (70c)

in terms of which second-order self-energies are expressed
below. Using relations (41) one shows that

M̄k1k2k3
a = ηa Mk1k2k3

ã , (71a)

P̄k1k2k3
a = ηa Pk1k2k3

ã , (71b)

R̄k1k2k3
a = ηa Rk1k2k3

ã , (71c)

and

N̄ k1k2k3
a = −ηa N k1k2k3

ã , (72a)

Q̄k1k2k3
a = −ηa Qk1k2k3

ã , (72b)

S̄k1k2k3
a = −ηa Sk1k2k3

ã . (72c)

Given that P and R can be obtained from M through odd
permutations of indices {k1, k2, k3} and taking into account
the symmetries of interaction matrix elements, one can prove
that such quantities display the properties

∑

k1k2k3

Mk1k2k3
a Mk1k2k3

b

∗ = +
∑

k1k2k3

Pk1k2k3
a Pk1k2k3

b

∗

= +
∑

k1k2k3

Rk1k2k3
a Rk1k2k3

b

∗
, (73a)

and
∑

k1k2k3

Mk1k2k3
a Pk1k2k3

b

∗ = +
∑

k1k2k3

Mk1k2k3
a Rk1k2k3

b

∗

= +
∑

k1k2k3

Pk1k2k3
a Mk1k2k3

b

∗

= −
∑

k1k2k3

Pk1k2k3
a Rk1k2k3

b

∗

= +
∑

k1k2k3

Rk1k2k3
a Mk1k2k3

b

∗

= −
∑

k1k2k3

Rk1k2k3
a Pk1k2k3

b

∗
. (73b)

Similarly, for N , Q, and S one has
∑

k1k2k3

N k1k2k3
a

∗ N k1k2k3
b = +

∑

k1k2k3

Qk1k2k3
a

∗ Qk1k2k3
b

= +
∑

k1k2k3

Sk1k2k3
a

∗ Sk1k2k3
b , (74a)

and
∑

k1k2k3

N k1k2k3
a

∗ Qk1k2k3
b = +

∑

k1k2k3

N k1k2k3
a

∗ Sk1k2k3
b

= +
∑

k1k2k3

Qk1k2k3
a

∗ N k1k2k3
b

= −
∑

k1k2k3

Qk1k2k3
a

∗ Sk1k2k3
b

= +
∑

k1k2k3

Sk1k2k3
a

∗ N k1k2k3
b

= −
∑

k1k2k3

Sk1k2k3
a

∗ Qk1k2k3
b . (74b)

Analogous properties can be derived for terms mixing
{M,P,R} and {N ,Q,S}.

Let us now consider !11, whose second-order contribu-
tions, evaluated in Eqs. (B17) and (B19), can be written as

!
11 (2′)
ab (ω)

= 1
2

∑

k1k2k3

{
Mk1k2k3

a

(
Mk1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
N̄ k1k2k3

a

)∗ N̄ k1k2k3
b

ω + Ek1k2k3 − iη

}

,

(75)

!
11 (2′′)
ab (ω)

= −
∑

k1k2k3

{
Mk1k2k3

a

(
Pk1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
N̄ k1k2k3

a

)∗ Q̄k1k2k3
b

ω + Ek1k2k3 − iη

}

,

(76)

where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been intro-
duced. Summing the two terms and using properties (73) and
(74) one obtains

!
11 (2′+2′′)
ab (ω)

=
∑

k1k2k3

{
Ck1k2k3

a

(
Ck1k2k3

b

)∗

ω − Ek1k2k3 + iη
+

(
D̄k1k2k3

a

)∗ D̄k1k2k3
b

ω + Ek1k2k3 − iη

}

, (77)

where

Ck1k2k3
a ≡ 1√

6

[
Mk1k2k3

a − Pk1k2k3
a − Rk1k2k3

a

]
, (78a)

Dk1k2k3
a ≡ 1√

6

[
N k1k2k3

a − Qk1k2k3
a − Sk1k2k3

a

]
. (78b)

Notice that from Eqs. (71) and (72) follow C̄k1k2k3
a =

+ηa Ck1k2k3
ã and D̄k1k2k3

a = −ηa Dk1k2k3
ã . All other second-order
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We extend Gorkov-Green’s function formalism to the algebraic diagrammatic construction scheme
at third order [ADC(3)].

I. INTRODUCTION

There are 17 topologically distinct diagrams contribut-
ing to Gorkov ADC(3), all containing three interaction
lines. One interaction line is always connected to the in-
coming propagator, another one to the outgoing propaga-
tor. The diagrams can be then divided into three classes
depending on the nature of the intermediate interaction
line (not connected to any external line):

• Class A (intermediate “particle-particle1”)

• Class B (intermediate “hole-hole”)

• Class C (intermediate “particle-hole”)

We can further label a diagram according to the posi-
tion of the “hole” line (first from the left, second or third)
in the top and bottom interaction respectively, i.e. each
diagram will be denoted with Xij , where X ∈ {A,B,C}
and {i, j} ∈ {1, 2, 3}. In Figs. 1, 2 and 3 diagrams of
class A, B and C respectively are displayed.

1
4

A33

1
2

A32 = A31

1
2

A23 = A13 A11 = A22 = A12 = A21

FIG. 1. Gorkov ADC(3) diagrams of class A
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1 In Dyson language.

2

1
4

B33

1
2

B32 = B31

1
2

B23 = B13 B11 = B22 = B12 = B21

FIG. 2. Gorkov ADC(3) diagrams of class B

C33 C32 C31

C23 C22 C21

C13 C12 C11

FIG. 3. Gorkov ADC(3) diagrams of class C

…

⦿ Here we employ the Algebraic Diagrammatic Construction (ADC) method

○ Systematic, improvable scheme for the one-body Green’s functions, truncated at order n

○ ADC(1) = Hartree-Fock(-Bogolyubov);  ADC(∞) = exact solution

○ At present ADC(1), ADC(2) and ADC(3) are implemented and used

7

Π(0)(q,ω)

W = v + vΠW

ΣGW (k,ω) = i

∫
dω′

2π

∫
dk′

(2π)3
G(k− k′,ω − ω′)W (k′,ω′)

Σ11 [ADC(3)] −→

Σ(ω) = Σ(∞) +Σdyn(ω)

H |ΨA
k ⟩ = EA

k |Ψ
A
k ⟩

|ΨA
0 ⟩ = Ω0|φ⟩

EA
0 =

⟨φ|HΩ0|φ⟩

⟨φ|Ω0|φ⟩

H |Ψ⟩ = E|Ψ⟩

Heff|Ψeff⟩ = E|Ψeff⟩

Hbr|Ψbr⟩ = Ebr|Ψbr⟩

|Ψbrok⟩ ≃ |Ψ⟩

{|Ψeff⟩, E ≈ Ebrok}

{|Ψeff⟩, E = Erest}

{|Ψrest⟩, Erest} ≃ {|Ψ⟩, E}

H −→ Heff

R(q) =
∑

p

a†
p
ap−q

dσ ∼
∑

f

δ(ω + Ei − Ef ) |⟨Ψf |R(q)|Ψi⟩|
2

ADC(1)=HFB ADC(2) ADC(3)



spectroscopic amplitudes spectroscopic probabilities matrices

spectroscopic factors
spectral function

3

VH(r) ⌘
Z

dr
1

V (r � r
1

)G(x, x+

1

) (31)


i
@

@t
1

+
r2

r1

2m
+ VH(1)

�
G(1, 2) = �(1, 2) (32)

VH(1) ⌘
Z

d 2 v(1, 2)G(2, 2+) (33)

G(1, 10) =

X

n

· · ·
Z Z

· · ·G(0)

2n+1

(

4n+2variablesz }| {
1, 10; 2, 20; 3, 30; · · ·)

n termsz }| {
v · · · v · · ·

X

n

· · ·
Z Z

· · ·G(0)

2n (2, 2
0; 3, 30; · · ·| {z }

4n variables

) v · · · v · · ·| {z }
n terms

(34)

H
1

= v (35)

G
(0)

2n (1, 1
0; 2, 20; 3, 30; · · ·| {z }
4n variables

) =
X

permutations

(�1)P G(0)(1, 1̃0) · · ·G(0)(2n, 2̃n
0
)| {z }

2n one-body GFs

(36)

G =
X

n

X

connected

G(0) · · ·G(0) · · ·| {z }
2n+1propagators

v · · · v · · ·| {z }
n interactions

(37)

H = H
0

+H
1

(38)

G(1, 2) = G(0)(1, 2) +

Z
d3 d4G(0)(1, 3)⌃⇤(3, 4)G(4, 2) (39)

⌃(1, 2) =
��[G, v]

�G(1, 2)
(40)

h N
0

| O | N
0

i =
X

ab

Z
dz

2⇡i
Gba(z) oab (41)

oab = ha | O|bi (42)

E
0

= h N
0

|H | N
0

i = 1

2

X

ab

Z
dz

2⇡i
Gba(z) [tab + z �ab] (43)

S+ab
µ ⌘ h A

0

|aa| A+1

µ ih A+1

µ |a†b| A

0

i (44a)

S�ab
⌫ ⌘ h A

0

|a†a| A-1

⌫ ih A-1

⌫ |ab| A

0

i (44b)
4

Tracing the latter matrices over the one-body Hilbert space H
1

provides spectroscopic factors

SF+

µ ⌘ TrH1

⇥
S+

µ

⇤
=

X

a2H1

��Ua
µ

��2 (45a)

SF�
⌫ ⌘ TrH1

⇥
S�
⌫

⇤
=

X

a2H1

|V a
⌫ |

2 (45b)

which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H

1

through

S(z) ⌘
X

µ2HA+1

S+

µ �(z � E+

µ ) +
X

⌫2HA�1

S�
⌫ �(z � E�

⌫ )

where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)

S(z) ⌘ TrH1 [S(z)] (46)

=
X

µ2HA+1

SF+

µ �(z � E+

µ ) +
X

⌫2HA�1

SF�
⌫ �(z � E�

⌫ )

which is a basis-independent function of the energy.
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an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
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S(z) ⌘ TrH1 [S(z)] (46)
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SF+
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which is a basis-independent function of the energy.

spectral strength distribution
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H

1

through

S(z) ⌘
X
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µ ) +
X
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
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⦿ Numerator contains spectroscopic information
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Tracing the latter matrices over the one-body Hilbert space H
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provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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⦿ Combine numerator and denominator of Lehmann representation
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Spectral strength distribution
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⦿ Spectroscopy via knock-out reactions

Target (N-body)

(N-1)-body

eout

pout

By measuring ein, eout and pout 
get information on pin

pin

Results from (e,e’p) on 16O (ALS in Saclay)

ein

[Mougey et al. 1980]
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FIG. 9. (Color online) Diagonal part of the complete pro-
ton spectral function, Eq. (A1), for closed subshell isotopes
14,16,22,24,28O. The discretised energy peaks that appear as
energy delta functions in Eq. (3) have been smeared with
Lorentzians of suitable with. Energies below the Fermi sur-
face, E

F

, correspond to the hole part of the spectral distri-
bution while those above are for particle addition. The part
for ! > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9 but for neutrons.

bility of adding a nucleon with quantum numbers ↵ to the
A-body ground state, | A

0 i, and then to find the system
in a final state with energy EA+1 = EA

0 + !. Likewise,
Sh
↵↵(!) gives the probability of removing a particle from

state ↵ and later finding the nucleus in an eigenfunction
of energy EA�1 = EA

0 � !. Once transformed to coor-
dinate or momentum representations, these distributions

[Cipollone et al. 2015]
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Effective Single-Particle Energies (ESPEs)

Spectroscopic probability matrices Spectroscopic factors

[Baranger 1970]

Centroid one-body Hamiltonian

Effective single-particle energies

6

We also introduce the nth moment of the spectral func-
tion

M
(n) ≡

∫ +∞

−∞

ωn
S(ω) dω, (8)

which defines an energy-independent matrix on H1. Us-
ing the anti-commutation rule of creation and annihila-
tion operators {ap, a†q} = δpq, the zero moment is shown
to be nothing but the identity matrix

M
(0) =

∑

µ∈HA+1

S
+
µ +

∑

ν∈HA−1

S
−
ν = 1 . (9)

This sum rule provides each diagonal matrix element of
S(ω) with the meaning of a probability distribution func-
tion (PDF) in the statistical sense, i.e., the combined
probability of adding a nucleon to or removing a nucleon
from a specific single-particle basis state |p⟩ integrates
to 1 when summing over all the final states of the A±1
systems.
The first moment M(1) of the spectral function defines

the so-called centroid matrix

h
cent ≡

∑

µ∈HA+1

S
+
µE

+
µ +

∑

ν∈HA−1

S
−
ν E

−
ν . (10)

Effective single-particle energies are nothing but the
eigenvalues {ecentp } of the centroid field [10, 36], and they
are obtained by solving

h
cent ψcent

p = ecentp ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides
ESPEs but also the corresponding single-particle states
the nucleon is effectively added to or removed from. The
associated spherical basis of H1 is denoted as {c†p}. In
that basis, ESPEs are expressed in terms of diagonal
spectroscopic probabilities,

ecentp ≡
∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an
arithmetic average, of one-nucleon separation energies
weighted by the probability to reach the corresponding
A+1 (A-1) eigenstates by adding (removing) a nucleon
to (from) a single-particle state ψcent

p . Centroid energies
are by construction in one-to-one correspondence with
states spanning H1. The step from one-neutron separa-
tion energies to neutron ESPEs is illustrated in Fig. 4
for an ab initio self-consistent Gorkov Green’s function
(G-SCGF) calculation [37, 38] of 74Ni with a next-to-
next-to-next-to-leading order (N3LO) 2N chiral interac-
tion [39] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).
It is worth noting that Baranger ESPEs defined

through Eqs. (10)-(12) display three fundamental prop-
erties that are not fulfilled by any other definition of the
shell energies used in the literature: They (i) only invoke
outputs of the many-body Schrödinger equation, (ii) do
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FIG. 4. (Color online). Self-consistent Gorkov Green’s func-
tion calculation of 74Ni with a realistic 2N chiral interac-
tion [39]. Left: spectral strength distribution for one-neutron
addition (above the dashed line) and removal (below the
dashed line) processes. Right: Baranger effective single-
particle energies.

not depend on the single-particle basis used to expand
the many-body problem and (iii) reduce to HF single-
particle energies in the HF approximation, i.e., they sat-
isfy Koopmans’ theorem [40] in such a limit. The latter
property is best seen by applying the identity [41, 42]

M (n)
pq = ⟨ΨA

0 |{

n commutators
︷ ︸︸ ︷

[. . . [[ap, H ], H ], . . .], a†q}|Ψ
A
0 ⟩ , (13)

to n = 1 [10, 43, 44]

hcent
pq = tpq +

∑

rs

v2Nprqs ρ
[1]
sr +

1

4

∑

rstv

v3Nprtqsv ρ
[2]
svrt (14)

≡ h∞
pq ,

where

ρ[1]pq ≡ ⟨ΨA
0 |a

†
qap|Ψ

A
0 ⟩ =

∑

µ

V p
µ
∗ V q

µ , (15a)

ρ[2]pqrs ≡ ⟨ΨA
0 |a

†
ra

†
saqap|Ψ

A
0 ⟩ , (15b)

denote one- and two-body density matrices of the cor-
related A-body ground-state, respectively. As Eq. (14)
stipulates, the centroid field is equal to the one-body
Hamiltonian h∞ ≡ T + Σ(∞) whose potential part is
nothing but the energy-independent component [43] of
the irreducible one-nucleon self-energy Σ(ω) of the A-
body ground state that naturally arises in self-consistent
Green’s-function theory. In the HF limit,

ρ[2]pqrs = ρ[1]prρ
[1]
qs − ρ[1]qrρ

[1]
ps , (16)

○ Defined solely from Schrödinger eq.

○ Computable in any many-body scheme

○ Relate to the average dynamics of nucleons

○ Reduce to HF SPEs in HF approximation

Baranger ESPEs

Self-energy

4

S+ab
µ ⌘ h A

0

|aa| A+1

µ ih A+1

µ |a†b| A

0

i (45a)

S�ab
⌫ ⌘ h A

0

|a†a| A-1

⌫ ih A-1

⌫ |ab| A

0

i (45b)

Tracing the latter matrices over the one-body Hilbert space H
1

provides spectroscopic factors

SF+

µ ⌘ TrH1

⇥
S+

µ

⇤
=

X

a2H1

��Ua
µ

��2 (46a)

SF�
⌫ ⌘ TrH1

⇥
S�
⌫

⇤
=

X

a2H1

|V a
⌫ |

2 (46b)

which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H

1

through

S(z) ⌘
X

µ2HA+1

S+

µ �(z � E+

µ ) +
X

⌫2HA�1

S�
⌫ �(z � E�

⌫ )

where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)

S(z) ⌘ TrH1 [S(z)] (47)

=
X

µ2HA+1

SF+

µ �(z � E+

µ ) +
X

⌫2HA�1

SF�
⌫ �(z � E�

⌫ )

which is a basis-independent function of the energy.

⌧ ⇠ ��1

k

�k = 0 �! ⌧ = 1

zk = "k + i�k

G(k, z)⇤ = G(k, z⇤)

⇧(0)(q,!)

W = v + v⇧W

⌃GW (k,!) = i

Z
d!0

2⇡

Z
dk0

(2⇡)3
G(k� k0,! � !0)W (k0,!0)

⌃11 [ADC(3)] �!

⌃(!) = ⌃(1) +⌃dyn(!)

Energy-independent part of the self-energy
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We also introduce the nth moment of the spectral func-
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M
(n) ≡

∫ +∞

−∞

ωn
S(ω) dω, (8)

which defines an energy-independent matrix on H1. Us-
ing the anti-commutation rule of creation and annihila-
tion operators {ap, a†q} = δpq, the zero moment is shown
to be nothing but the identity matrix

M
(0) =

∑

µ∈HA+1

S
+
µ +

∑

ν∈HA−1

S
−
ν = 1 . (9)

This sum rule provides each diagonal matrix element of
S(ω) with the meaning of a probability distribution func-
tion (PDF) in the statistical sense, i.e., the combined
probability of adding a nucleon to or removing a nucleon
from a specific single-particle basis state |p⟩ integrates
to 1 when summing over all the final states of the A±1
systems.
The first moment M(1) of the spectral function defines

the so-called centroid matrix

h
cent ≡

∑

µ∈HA+1

S
+
µE

+
µ +

∑

ν∈HA−1

S
−
ν E

−
ν . (10)

Effective single-particle energies are nothing but the
eigenvalues {ecentp } of the centroid field [10, 36], and they
are obtained by solving

h
cent ψcent

p = ecentp ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides
ESPEs but also the corresponding single-particle states
the nucleon is effectively added to or removed from. The
associated spherical basis of H1 is denoted as {c†p}. In
that basis, ESPEs are expressed in terms of diagonal
spectroscopic probabilities,

ecentp ≡
∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an
arithmetic average, of one-nucleon separation energies
weighted by the probability to reach the corresponding
A+1 (A-1) eigenstates by adding (removing) a nucleon
to (from) a single-particle state ψcent

p . Centroid energies
are by construction in one-to-one correspondence with
states spanning H1. The step from one-neutron separa-
tion energies to neutron ESPEs is illustrated in Fig. 4
for an ab initio self-consistent Gorkov Green’s function
(G-SCGF) calculation [37, 38] of 74Ni with a next-to-
next-to-next-to-leading order (N3LO) 2N chiral interac-
tion [39] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).
It is worth noting that Baranger ESPEs defined

through Eqs. (10)-(12) display three fundamental prop-
erties that are not fulfilled by any other definition of the
shell energies used in the literature: They (i) only invoke
outputs of the many-body Schrödinger equation, (ii) do
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FIG. 4. (Color online). Self-consistent Gorkov Green’s func-
tion calculation of 74Ni with a realistic 2N chiral interac-
tion [39]. Left: spectral strength distribution for one-neutron
addition (above the dashed line) and removal (below the
dashed line) processes. Right: Baranger effective single-
particle energies.

not depend on the single-particle basis used to expand
the many-body problem and (iii) reduce to HF single-
particle energies in the HF approximation, i.e., they sat-
isfy Koopmans’ theorem [40] in such a limit. The latter
property is best seen by applying the identity [41, 42]

M (n)
pq = ⟨ΨA

0 |{

n commutators
︷ ︸︸ ︷

[. . . [[ap, H ], H ], . . .], a†q}|Ψ
A
0 ⟩ , (13)

to n = 1 [10, 43, 44]

hcent
pq = tpq +

∑

rs

v2Nprqs ρ
[1]
sr +

1

4

∑

rstv

v3Nprtqsv ρ
[2]
svrt (14)

≡ h∞
pq ,

where

ρ[1]pq ≡ ⟨ΨA
0 |a

†
qap|Ψ

A
0 ⟩ =

∑

µ

V p
µ
∗ V q

µ , (15a)

ρ[2]pqrs ≡ ⟨ΨA
0 |a

†
ra

†
saqap|Ψ

A
0 ⟩ , (15b)

denote one- and two-body density matrices of the cor-
related A-body ground-state, respectively. As Eq. (14)
stipulates, the centroid field is equal to the one-body
Hamiltonian h∞ ≡ T + Σ(∞) whose potential part is
nothing but the energy-independent component [43] of
the irreducible one-nucleon self-energy Σ(ω) of the A-
body ground state that naturally arises in self-consistent
Green’s-function theory. In the HF limit,

ρ[2]pqrs = ρ[1]prρ
[1]
qs − ρ[1]qrρ

[1]
ps , (16)
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M
(n) ≡

∫ +∞
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ωn
S(ω) dω, (8)

which defines an energy-independent matrix on H1. Us-
ing the anti-commutation rule of creation and annihila-
tion operators {ap, a†q} = δpq, the zero moment is shown
to be nothing but the identity matrix

M
(0) =

∑

µ∈HA+1

S
+
µ +

∑

ν∈HA−1

S
−
ν = 1 . (9)

This sum rule provides each diagonal matrix element of
S(ω) with the meaning of a probability distribution func-
tion (PDF) in the statistical sense, i.e., the combined
probability of adding a nucleon to or removing a nucleon
from a specific single-particle basis state |p⟩ integrates
to 1 when summing over all the final states of the A±1
systems.
The first moment M(1) of the spectral function defines

the so-called centroid matrix

h
cent ≡

∑

µ∈HA+1

S
+
µE

+
µ +

∑

ν∈HA−1

S
−
ν E

−
ν . (10)

Effective single-particle energies are nothing but the
eigenvalues {ecentp } of the centroid field [10, 36], and they
are obtained by solving

h
cent ψcent

p = ecentp ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides
ESPEs but also the corresponding single-particle states
the nucleon is effectively added to or removed from. The
associated spherical basis of H1 is denoted as {c†p}. In
that basis, ESPEs are expressed in terms of diagonal
spectroscopic probabilities,

ecentp ≡
∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an
arithmetic average, of one-nucleon separation energies
weighted by the probability to reach the corresponding
A+1 (A-1) eigenstates by adding (removing) a nucleon
to (from) a single-particle state ψcent

p . Centroid energies
are by construction in one-to-one correspondence with
states spanning H1. The step from one-neutron separa-
tion energies to neutron ESPEs is illustrated in Fig. 4
for an ab initio self-consistent Gorkov Green’s function
(G-SCGF) calculation [37, 38] of 74Ni with a next-to-
next-to-next-to-leading order (N3LO) 2N chiral interac-
tion [39] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).
It is worth noting that Baranger ESPEs defined
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erties that are not fulfilled by any other definition of the
shell energies used in the literature: They (i) only invoke
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tion calculation of 74Ni with a realistic 2N chiral interac-
tion [39]. Left: spectral strength distribution for one-neutron
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dashed line) processes. Right: Baranger effective single-
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not depend on the single-particle basis used to expand
the many-body problem and (iii) reduce to HF single-
particle energies in the HF approximation, i.e., they sat-
isfy Koopmans’ theorem [40] in such a limit. The latter
property is best seen by applying the identity [41, 42]

M (n)
pq = ⟨ΨA

0 |{

n commutators
︷ ︸︸ ︷

[. . . [[ap, H ], H ], . . .], a†q}|Ψ
A
0 ⟩ , (13)

to n = 1 [10, 43, 44]

hcent
pq = tpq +

∑

rs

v2Nprqs ρ
[1]
sr +

1

4

∑

rstv

v3Nprtqsv ρ
[2]
svrt (14)

≡ h∞
pq ,

where

ρ[1]pq ≡ ⟨ΨA
0 |a

†
qap|Ψ

A
0 ⟩ =

∑
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V p
µ
∗ V q

µ , (15a)

ρ[2]pqrs ≡ ⟨ΨA
0 |a

†
ra

†
saqap|Ψ

A
0 ⟩ , (15b)

denote one- and two-body density matrices of the cor-
related A-body ground-state, respectively. As Eq. (14)
stipulates, the centroid field is equal to the one-body
Hamiltonian h∞ ≡ T + Σ(∞) whose potential part is
nothing but the energy-independent component [43] of
the irreducible one-nucleon self-energy Σ(ω) of the A-
body ground state that naturally arises in self-consistent
Green’s-function theory. In the HF limit,

ρ[2]pqrs = ρ[1]prρ
[1]
qs − ρ[1]qrρ

[1]
ps , (16)

6

other definition of single-particle energies used in the lit-
erature: they (i) only invoke outputs of the many-body
Schrödinger equation, (ii) do not depend on the single-
particle basis used to expand the many-body problem
and (iii) reduce to HF single-particle energies in the HF
approximation, i.e., they satisfy Koopmans’ theorem [33]
in such a limit. Eventually, the model-independent char-
acter of Baranger ESPEs relates to the fact they can
be computed unambiguously within any (re)formulation
(i.e. scheme) of the nuclear many-body problem, e.g.
shell model formulations, ab-initio formulations, cluster
models etc.
The fact that model-independent Baranger ESPEs re-

duce to HF single-particle energies in the HF approxima-
tion or to standard monopole ESPEs when employing a
naive filling is best seen by applying the identity [34, 35]
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pq = ⟨ΨA

0 |{

n commutators
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[. . . [[ap, H ], H ], . . .], a†q}|Ψ
A
0 ⟩ , (13)

to n = 1 [10, 36, 37]
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†
qap|Ψ

A
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∑
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µ
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µ , (15a)

ρ[2]pqrs ≡ ⟨ΨA
0 |a

†
ra

†
saqap|Ψ

A
0 ⟩ , (15b)

denote one- and two-body density matrices of the cor-
related A-body ground-state, respectively. As Eq. (14)
stipulates, the centroid field is equal to the one-body
Hamiltonian h∞ ≡ T + Σ(∞) whose potential part is
nothing but the energy-independent component [36] of
the irreducible one-nucleon self-energy Σ(ω) of the A-
body ground state that naturally arises in self-consistent
Green’s-function theory. Equation (14) also makes clear
that any many-body scheme capable of calculating ρ[1]

and ρ[2] can extract the associated Baranger ESPEs, i.e.
the definition is universal in that sense. Physically speak-
ing, h∞ represents the average one-body field seen by a
nucleon in presence of correlations, i.e. not in a mean-
field approximation. Taking such a simplified mean-field
picture, e.g. the HF limit, one has

ρ[2]pqrs = ρ[1]prρ
[1]
qs − ρ[1]qrρ

[1]
ps , (16)

such that h∞ reduces to the usual definition of hHF for a
2N plus 3N Hamiltonian, which proves that ecentp = eHF

p
in this limit.

C. Partitioning of one-nucleon separation energies

Let us now make the schematic partitioning intro-
duced in Eq. (2) more precise. We need to express one-
nucleon separation energies in terms of ESPEs, i.e., invert

Eq. (12). In order to achieve this goal, let us confront the
eigenvalue equation providing ESPEs (Eq. (11)) with the
one satisfied by one-nucleon addition energies6 (which de-
rives from Dyson’s equation [28])

[

h
∞ + Σ

dyn(ω)
∣
∣
ω=E+

µ

]

Uµ = E+
µ Uµ , (17)

where Σdyn(ω) ≡ Σ(ω)−Σ(∞) embodies the dynamical,
i.e. energy-dependent, part of the irreducible self-energy.
Equation (17) leads to

E+
µ TrH1

[

S
+
µ

]

= TrH1

[

h
cent

S
+
µ

]

+TrH1

[

Σ
dyn(E+

µ )S+
µ

]

,

which, written in the centroid basis {c†p} diagonalizing
h∞, reads

E+
µ =

∑

p

s+pp
µ ecentp +

∑

pq

s+pq
µ Σdyn

qp (E+
µ ) . (18)

For each µ, s+µ ≡ S+
µ /SF

+
µ denotes the reduced addi-

tion spectroscopic probability matrix whose trace over
H1 is equal to one. For a given µ, the set of diago-
nal matrix elements {s+pp

µ } thus possesses the meaning
of a PDF. Equation (18) provides a rigorous partition-
ing of one-nucleon addition energies into an independent-
particle-like contribution and a correlation contribution.
Still, a given one-nucleon addition energy E+

µ does not
relate to a single ESPE such that the connection be-
tween both spectra is actually of matrix character. The
independent-particle-like contribution is the sum of all
ESPEs weighted by the probability for state |ΨA+1

µ ⟩ to
be obtained by adding a nucleon in the associated cen-
troid states on top of |ΨA

0 ⟩. The correlation contribution
involves all matrix elements of the dynamical part of the
self-energy evaluated at the one-nucleon addition energy
of interest.
It is essential to stress that the partitioning (18) of

the one-nucleon separation energy emerges as a direct
consequence of the exact Dyson equation [28]. We have
not made any assumption regarding the way the many-
body problem is solved to determine the ESPEs and the
dynamical self-energy. At the same time, it is impor-
tant to realize that the exact partitioning (18) does not
specify which effects are captured by the individual con-
tributions, and we will demonstrate in the following that
these details necessarily depend on the resolution scale
λ.

D. Non-observability

We now come to the central point of the present study,
i.e., the scale dependence and non-observable character

6 A similar equation holds for one-nucleon removal energies E−
ν .

Combining these equations of motion with Eq. (9) to re-
cover Eq. (10) provides the identity

∑
µ∈HA+1

Σdyn(E+
µ )S+

µ +
∑

ν∈HA−1
Σdyn(E−

ν )S−
ν = 0.

6

other definition of single-particle energies used in the lit-
erature: they (i) only invoke outputs of the many-body
Schrödinger equation, (ii) do not depend on the single-
particle basis used to expand the many-body problem
and (iii) reduce to HF single-particle energies in the HF
approximation, i.e., they satisfy Koopmans’ theorem [33]
in such a limit. Eventually, the model-independent char-
acter of Baranger ESPEs relates to the fact they can
be computed unambiguously within any (re)formulation
(i.e. scheme) of the nuclear many-body problem, e.g.
shell model formulations, ab-initio formulations, cluster
models etc.
The fact that model-independent Baranger ESPEs re-

duce to HF single-particle energies in the HF approxima-
tion or to standard monopole ESPEs when employing a
naive filling is best seen by applying the identity [34, 35]

M (n)
pq = ⟨ΨA

0 |{

n commutators
︷ ︸︸ ︷

[. . . [[ap, H ], H ], . . .], a†q}|Ψ
A
0 ⟩ , (13)

to n = 1 [10, 36, 37]
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denote one- and two-body density matrices of the cor-
related A-body ground-state, respectively. As Eq. (14)
stipulates, the centroid field is equal to the one-body
Hamiltonian h∞ ≡ T + Σ(∞) whose potential part is
nothing but the energy-independent component [36] of
the irreducible one-nucleon self-energy Σ(ω) of the A-
body ground state that naturally arises in self-consistent
Green’s-function theory. Equation (14) also makes clear
that any many-body scheme capable of calculating ρ[1]

and ρ[2] can extract the associated Baranger ESPEs, i.e.
the definition is universal in that sense. Physically speak-
ing, h∞ represents the average one-body field seen by a
nucleon in presence of correlations, i.e. not in a mean-
field approximation. Taking such a simplified mean-field
picture, e.g. the HF limit, one has

ρ[2]pqrs = ρ[1]prρ
[1]
qs − ρ[1]qrρ
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ps , (16)

such that h∞ reduces to the usual definition of hHF for a
2N plus 3N Hamiltonian, which proves that ecentp = eHF

p
in this limit.

C. Partitioning of one-nucleon separation energies

Let us now make the schematic partitioning intro-
duced in Eq. (2) more precise. We need to express one-
nucleon separation energies in terms of ESPEs, i.e., invert

Eq. (12). In order to achieve this goal, let us confront the
eigenvalue equation providing ESPEs (Eq. (11)) with the
one satisfied by one-nucleon addition energies6 (which de-
rives from Dyson’s equation [28])

[

h
∞ + Σ

dyn(ω)
∣
∣
ω=E+

µ

]

Uµ = E+
µ Uµ , (17)

where Σdyn(ω) ≡ Σ(ω)−Σ(∞) embodies the dynamical,
i.e. energy-dependent, part of the irreducible self-energy.
Equation (17) leads to
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which, written in the centroid basis {c†p} diagonalizing
h∞, reads

E+
µ =
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µ ecentp +

∑

pq

s+pq
µ Σdyn

qp (E+
µ ) . (18)

For each µ, s+µ ≡ S+
µ /SF

+
µ denotes the reduced addi-

tion spectroscopic probability matrix whose trace over
H1 is equal to one. For a given µ, the set of diago-
nal matrix elements {s+pp

µ } thus possesses the meaning
of a PDF. Equation (18) provides a rigorous partition-
ing of one-nucleon addition energies into an independent-
particle-like contribution and a correlation contribution.
Still, a given one-nucleon addition energy E+

µ does not
relate to a single ESPE such that the connection be-
tween both spectra is actually of matrix character. The
independent-particle-like contribution is the sum of all
ESPEs weighted by the probability for state |ΨA+1

µ ⟩ to
be obtained by adding a nucleon in the associated cen-
troid states on top of |ΨA

0 ⟩. The correlation contribution
involves all matrix elements of the dynamical part of the
self-energy evaluated at the one-nucleon addition energy
of interest.
It is essential to stress that the partitioning (18) of

the one-nucleon separation energy emerges as a direct
consequence of the exact Dyson equation [28]. We have
not made any assumption regarding the way the many-
body problem is solved to determine the ESPEs and the
dynamical self-energy. At the same time, it is impor-
tant to realize that the exact partitioning (18) does not
specify which effects are captured by the individual con-
tributions, and we will demonstrate in the following that
these details necessarily depend on the resolution scale
λ.

D. Non-observability

We now come to the central point of the present study,
i.e., the scale dependence and non-observable character

6 A similar equation holds for one-nucleon removal energies E−
ν .

Combining these equations of motion with Eq. (9) to re-
cover Eq. (10) provides the identity

∑
µ∈HA+1

Σdyn(E+
µ )S+

µ +
∑

ν∈HA−1
Σdyn(E−

ν )S−
ν = 0.

⦿ Baranger ESPEs in the basis associated to hcent

invert

with

(same for        )

5

Tracing the latter matrices over the one-body Hilbert
space H1 provides spectroscopic factors

SF+
µ ≡ TrH1

[

S
+
µ

]

=
∑

p∈H1

∣
∣Up

µ

∣
∣
2
, (6a)

SF−
ν ≡ TrH1

[

S
−
ν

]

=
∑

p∈H1

|V p
ν |

2 , (6b)

which are nothing but the norms of the spectroscopic
amplitudes. A spectroscopic factor sums the probabili-
ties that an eigenstate of the A+1 (A-1) system can be
described as a nucleon added to (removed from) a single-
particle state on top of the ground state of the A-nucleon
system.
One can then gather the complete spectroscopic infor-

mation associated with one-nucleon addition and removal
processes into the so-called spectral function S(ω). The
spectral function denotes an energy-dependent matrix de-
fined on H1 through

S(ω) ≡
∑

µ∈HA+1

S
+
µ δ(ω − E+

µ ) +
∑

ν∈HA−1

S
−
ν δ(ω − E−

ν ),

where the first (second) sum is restricted to eigenstates of
H in the Hilbert space HA+1 (HA−1) associated with the
A+1 (A-1) system. Note that S(ω) is directly related to
the imaginary part of Dyson’s one-body Green’s function
G(ω) [28]. Taking the trace of S(ω) provides the spectral
strength distribution (SDD)

S(ω) ≡ TrH1
[S(ω)] (7)

=
∑

µ∈HA+1

SF+
µ δ(ω − E+

µ ) +
∑

ν∈HA−1

SF−
ν δ(ω − E−

ν ) ,

which is a basis-independent function of the energy.
We also introduce the nth moment of the spectral func-

tion

M
(n) ≡

∫ +∞

−∞

ωn
S(ω) dω, (8)

which defines an energy-independent matrix on H1. Us-
ing the anti-commutation rule of creation and annihila-
tion operators {ap, a†q} = δpq, the zero moment is shown
to be nothing but the identity matrix

M
(0) =

∑

µ∈HA+1

S
+
µ +

∑

ν∈HA−1

S
−
ν = 1 . (9)

This sum rule provides each diagonal matrix element of
S(ω) with the meaning of a probability distribution func-
tion (PDF) in the statistical sense, i.e., the combined
probability of adding a nucleon to or removing a nucleon
from a specific single-particle basis state |p⟩ integrates
to 1 when summing over all the final states of the A±1
systems.
The first moment M(1) of the spectral function defines

the so-called centroid matrix

h
cent ≡

∑

µ∈HA+1

S
+
µE

+
µ +

∑

ν∈HA−1

S
−
ν E

−
ν . (10)
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FIG. 3. (Color online). Self-consistent Gorkov Green’s func-
tion calculation of 74Ni with a realistic 2N chiral interac-
tion [32]. Left: spectral strength distribution for one-neutron
addition (above the dashed line) and removal (below the
dashed line) processes. Right: Baranger effective single-
particle energies.

Effective single-particle energies are nothing but the
eigenvalues {ecentp } of the centroid field [10, 29], and they
are obtained by solving

h
centψcent

p = ecentp ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides
ESPEs but also the corresponding single-particle states
the nucleon is effectively added to or removed from. The
associated spherical basis of H1 is denoted as {c†p}. In
that basis, ESPEs are expressed in terms of diagonal
spectroscopic probabilities,

ecentp ≡
∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an
arithmetic average, of one-nucleon separation energies
weighted by the probability to reach the corresponding
A+1 (A-1) eigenstates by adding (removing) a nucleon
to (from) a single-particle state ψcent

p . Centroid energies
are by construction in one-to-one correspondence with
states spanning H1. The step from one-neutron separa-
tion energies to neutron ESPEs is illustrated in Fig. 3
for an ab initio self-consistent Gorkov Green’s function
(G-SCGF) calculation [30, 31] of 74Ni with a next-to-
next-to-next-to-leading order (N3LO) 2N chiral interac-
tion [32] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).
It is worth noting that Baranger ESPEs defined

through Eqs. (10)-(12) display three fundamental prop-
erties that make them fundamentally superior to any

6

other definition of single-particle energies used in the lit-
erature: they (i) only invoke outputs of the many-body
Schrödinger equation, (ii) do not depend on the single-
particle basis used to expand the many-body problem
and (iii) reduce to HF single-particle energies in the HF
approximation, i.e., they satisfy Koopmans’ theorem [33]
in such a limit. Eventually, the model-independent char-
acter of Baranger ESPEs relates to the fact they can
be computed unambiguously within any (re)formulation
(i.e. scheme) of the nuclear many-body problem, e.g.
shell model formulations, ab-initio formulations, cluster
models etc.
The fact that model-independent Baranger ESPEs re-

duce to HF single-particle energies in the HF approxima-
tion or to standard monopole ESPEs when employing a
naive filling is best seen by applying the identity [34, 35]

M (n)
pq = ⟨ΨA

0 |{

n commutators
︷ ︸︸ ︷

[. . . [[ap, H ], H ], . . .], a†q}|Ψ
A
0 ⟩ , (13)

to n = 1 [10, 36, 37]

hcent
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v2Nprqs ρ
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≡ h∞
pq ,

where
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†
qap|Ψ

A
0 ⟩ =
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µ

V p
µ
∗ V q

µ , (15a)

ρ[2]pqrs ≡ ⟨ΨA
0 |a

†
ra

†
saqap|Ψ

A
0 ⟩ , (15b)

denote one- and two-body density matrices of the cor-
related A-body ground-state, respectively. As Eq. (14)
stipulates, the centroid field is equal to the one-body
Hamiltonian h∞ ≡ T + Σ(∞) whose potential part is
nothing but the energy-independent component [36] of
the irreducible one-nucleon self-energy Σ(ω) of the A-
body ground state that naturally arises in self-consistent
Green’s-function theory. Equation (14) also makes clear
that any many-body scheme capable of calculating ρ[1]

and ρ[2] can extract the associated Baranger ESPEs, i.e.
the definition is universal in that sense. Physically speak-
ing, h∞ represents the average one-body field seen by a
nucleon in presence of correlations, i.e. not in a mean-
field approximation. Taking such a simplified mean-field
picture, e.g. the HF limit, one has

ρ[2]pqrs = ρ[1]prρ
[1]
qs − ρ[1]qrρ

[1]
ps , (16)

such that h∞ reduces to the usual definition of hHF for a
2N plus 3N Hamiltonian, which proves that ecentp = eHF

p
in this limit.

C. Partitioning of one-nucleon separation energies

Let us now make the schematic partitioning intro-
duced in Eq. (2) more precise. We need to express one-
nucleon separation energies in terms of ESPEs, i.e., invert

Eq. (12). In order to achieve this goal, let us confront the
eigenvalue equation providing ESPEs (Eq. (11)) with the
one satisfied by one-nucleon addition energies6 (which de-
rives from Dyson’s equation [28])

[

h
∞ + Σ

dyn(ω)
∣
∣
ω=E+

µ

]

Uµ = E+
µ Uµ , (17)

where Σdyn(ω) ≡ Σ(ω)−Σ(∞) embodies the dynamical,
i.e. energy-dependent, part of the irreducible self-energy.
Equation (17) leads to

E+
µ TrH1

[

S
+
µ

]

= TrH1

[

h
cent

S
+
µ

]

+TrH1

[

Σ
dyn(E+

µ )S+
µ

]

,

which, written in the centroid basis {c†p} diagonalizing
h∞, reads

E+
µ =

∑

p

s+pp
µ ecentp +

∑

pq

s+pq
µ Σdyn

qp (E+
µ ) . (18)

For each µ, s+µ ≡ S+
µ /SF

+
µ denotes the reduced addi-

tion spectroscopic probability matrix whose trace over
H1 is equal to one. For a given µ, the set of diago-
nal matrix elements {s+pp

µ } thus possesses the meaning
of a PDF. Equation (18) provides a rigorous partition-
ing of one-nucleon addition energies into an independent-
particle-like contribution and a correlation contribution.
Still, a given one-nucleon addition energy E+

µ does not
relate to a single ESPE such that the connection be-
tween both spectra is actually of matrix character. The
independent-particle-like contribution is the sum of all
ESPEs weighted by the probability for state |ΨA+1

µ ⟩ to
be obtained by adding a nucleon in the associated cen-
troid states on top of |ΨA

0 ⟩. The correlation contribution
involves all matrix elements of the dynamical part of the
self-energy evaluated at the one-nucleon addition energy
of interest.
It is essential to stress that the partitioning (18) of

the one-nucleon separation energy emerges as a direct
consequence of the exact Dyson equation [28]. We have
not made any assumption regarding the way the many-
body problem is solved to determine the ESPEs and the
dynamical self-energy. At the same time, it is impor-
tant to realize that the exact partitioning (18) does not
specify which effects are captured by the individual con-
tributions, and we will demonstrate in the following that
these details necessarily depend on the resolution scale
λ.

D. Non-observability

We now come to the central point of the present study,
i.e., the scale dependence and non-observable character

6 A similar equation holds for one-nucleon removal energies E−
ν .

Combining these equations of motion with Eq. (9) to re-
cover Eq. (10) provides the identity

∑
µ∈HA+1

Σdyn(E+
µ )S+

µ +
∑

ν∈HA−1
Σdyn(E−

ν )S−
ν = 0.
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⦿ Rigorous partitioning into independent-particle + correlation contributions

○ Exact result, no approximations so far

○ A given one-nucleon addition energy does not relate to a single ESPE

○ Connection between the two spectra is of matrix character

Inverting ESPEs



⦿ Nuclear Hamiltonian carries an intrinsic scale resolution Λinit

⦿ One can further apply a unitary transformation U(λ) over Fock space

Partitioning & scale dependence
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2. Unitary transformation

We consider a starting nuclear Hamiltonian H built within
χ -EFT at a given order in the employed power counting. The
Hamiltonian carries an intrinsic resolution scale characterized
by both "χ and the regularization cutoff(s) "AN that is
introduced by the particular scheme used to renormalize
many-body amplitudes at a given chiral order.

Given this effective Hamiltonian, one is free to proceed
to a unitary transformation U (λ) over Fock space. The real
variable λ parametrizing the transformation typically denotes
a momentum scale that characterizes the range of coupling
between low and high momenta (within the interval defined
by the intrinsic resolution scale of the starting H , which is itself
a matter of choice) in the resulting Hamiltonian that takes the
“running” form

H (λ) ≡ U (λ)HU †(λ) ≡ T + V 2N (λ) + V 3N (λ) + · · · ,

where V AN (λ) changes with the scale λ. Even if the starting
Hamiltonian H were to contain only, e.g., one- and two-body
operators, its unitarily equivalent partner H (λ) would, in gen-
eral, contain (hopefully small) higher-body operators, which
eventually truncate at the A-body level when applying the
Hamiltonian on the A-body Hilbert space HA. Applying this
unitary transformation to the Schrödinger equation, we obtain

H (λ)
∣∣$A

µ (λ)
〉
= EA

k

∣∣$A
µ (λ)

〉
, (21)

where
∣∣$A

µ (λ)
〉
≡ U (λ)

∣∣$A
µ

〉
, (22)

such that the eigenvalues EA
k remain unchanged, while the

many-body wave functions run with λ. Similarly, other
operators transform under U (λ) according to

O(λ) ≡U (λ)OU †(λ) ≡ O1N (λ) + O2N (λ) + O3N (λ) + · · · .

A key aspect of quantum mechanics concerns the assessment
that the physical results, i.e., observables, must remain
unchanged under this unitary transformation. The consistent
transformation of operators and many-body wave functions
ensures that eigenspectra of transformed operators, or, more
generally, amplitudes of transformed operators between
transformed states, including many-body cross sections, are
indeed invariant under U (λ) [43].

An issue arises whenever a quantity is defined under
the assumption that the associated operator should not be
transformed under U (λ). This is the case for one-nucleon
spectroscopic amplitudes that are defined at any λ as

Up
µ (λ) ≡

〈
$A

0 (λ)
∣∣ap

∣∣$A+1
µ (λ)

〉
, (23a)

V p
ν (λ) ≡

〈
$A

0 (λ)
∣∣a†

p

∣∣$A−1
ν (λ)

〉
, (23b)

i.e., only the many-body states involved run with λ, not the
operator. As a result, spectroscopic amplitudes undoubtedly
vary with λ. One may suggest to transform the operator as well
in the definition of spectroscopic amplitudes to make them
invariant by construction. The transformed operator would

have the general form

U (λ)a†
pU †(λ) =

∑

q

up
q (λ)a†

q +
∑

qrs

up
qrs(λ)a†

qa
†
r as + · · · ,

(24)

with the initial conditions u
p
q (λinit) = δqp for the first term and

u
p
qrs...(λinit) = 0 for the others. Inserting such a form in the

definition of the amplitudes would indeed lead to invariant
spectroscopic factors and one-body centroid matrix hcent (and
thus ESPEs). However, the transformed operator (24) clearly
no longer corresponds to the addition of a nucleon in a specific
single-particle state. Instead, it is a linear combination of
not only one-particle operators but also two-particle–one-
hole operators, three-particle–two-hole operators, etc. This
contradicts the initial motivation behind the introduction of
spectroscopic one-nucleon addition and removal amplitudes.
Indeed, spectroscopic factors and ESPEs inform on the
probability and the energy generated by adding and removing
a nucleon through a process that involves a single nucleon
state at a time, i.e., a pure direct process. If this is not the
case, ESPEs no longer reduce to HF single-particle energies
in the HF limit. To conclude, defining ESPEs in the context of
a change of scale necessarily leads to keeping their definition
formally the same for any λ at the price of making their actual
value scale dependent. The same goes for spectroscopic factors
built from Uµ(λ) and Vν(λ).

3. Scale dependence

Following the spirit of the SRG [17], a unitary transfor-
mation7 of the resolution scale can be defined through the
differential flow equations of operators and many-body wave
functions

d

dλ
O(λ) ≡ [η(λ),O(λ)], (25a)

d

dλ

∣∣$A
µ (λ)

〉
≡ η(λ)

∣∣$A
µ (λ)

〉
, (25b)

where the anti-Hermitian generator of the transformation reads

η(λ) ≡ dU (λ)
dλ

U †(λ) = −η†(λ), (26)

and the initial conditions are O(λinit) = O and |$A
µ (λinit)⟩ =

|$A
µ ⟩. By combining Eqs. (23) and (25), one obtains the flow

equations for all quantities of interest.

7It is common practice to test the predictions of different nuclear
Hamiltonians for nuclei of interest. Ideally, all of these Hamiltonians
are equivalent representations of low-energy QCD and describe
observables like scattering data with high accuracy. In practice,
however, traditional nuclear Hamiltonians have been derived using
very different philosophies and theoretical frameworks. While their
common link to QCD suggests implicit links between such Hamilto-
nians, there is no practical way to construct explicit transformations
to study these connections. In contrast, the SRG provides a practical
framework to build smoothly connected families of unitarily trans-
formed nuclear Hamiltonians and gives us a systematic handle on the
violation of unitarity through truncations that are required in practical
applications.
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2. Unitary transformation

We consider a starting nuclear Hamiltonian H built within
χ -EFT at a given order in the employed power counting. The
Hamiltonian carries an intrinsic resolution scale characterized
by both "χ and the regularization cutoff(s) "AN that is
introduced by the particular scheme used to renormalize
many-body amplitudes at a given chiral order.

Given this effective Hamiltonian, one is free to proceed
to a unitary transformation U (λ) over Fock space. The real
variable λ parametrizing the transformation typically denotes
a momentum scale that characterizes the range of coupling
between low and high momenta (within the interval defined
by the intrinsic resolution scale of the starting H , which is itself
a matter of choice) in the resulting Hamiltonian that takes the
“running” form

H (λ) ≡ U (λ)HU †(λ) ≡ T + V 2N (λ) + V 3N (λ) + · · · ,

where V AN (λ) changes with the scale λ. Even if the starting
Hamiltonian H were to contain only, e.g., one- and two-body
operators, its unitarily equivalent partner H (λ) would, in gen-
eral, contain (hopefully small) higher-body operators, which
eventually truncate at the A-body level when applying the
Hamiltonian on the A-body Hilbert space HA. Applying this
unitary transformation to the Schrödinger equation, we obtain

H (λ)
∣∣$A

µ (λ)
〉
= EA

k

∣∣$A
µ (λ)

〉
, (21)

where
∣∣$A

µ (λ)
〉
≡ U (λ)

∣∣$A
µ

〉
, (22)

such that the eigenvalues EA
k remain unchanged, while the

many-body wave functions run with λ. Similarly, other
operators transform under U (λ) according to

O(λ) ≡U (λ)OU †(λ) ≡ O1N (λ) + O2N (λ) + O3N (λ) + · · · .

A key aspect of quantum mechanics concerns the assessment
that the physical results, i.e., observables, must remain
unchanged under this unitary transformation. The consistent
transformation of operators and many-body wave functions
ensures that eigenspectra of transformed operators, or, more
generally, amplitudes of transformed operators between
transformed states, including many-body cross sections, are
indeed invariant under U (λ) [43].

An issue arises whenever a quantity is defined under
the assumption that the associated operator should not be
transformed under U (λ). This is the case for one-nucleon
spectroscopic amplitudes that are defined at any λ as

Up
µ (λ) ≡

〈
$A

0 (λ)
∣∣ap

∣∣$A+1
µ (λ)

〉
, (23a)

V p
ν (λ) ≡

〈
$A

0 (λ)
∣∣a†

p

∣∣$A−1
ν (λ)

〉
, (23b)

i.e., only the many-body states involved run with λ, not the
operator. As a result, spectroscopic amplitudes undoubtedly
vary with λ. One may suggest to transform the operator as well
in the definition of spectroscopic amplitudes to make them
invariant by construction. The transformed operator would

have the general form

U (λ)a†
pU †(λ) =

∑

q

up
q (λ)a†

q +
∑

qrs

up
qrs(λ)a†

qa
†
r as + · · · ,

(24)

with the initial conditions u
p
q (λinit) = δqp for the first term and

u
p
qrs...(λinit) = 0 for the others. Inserting such a form in the

definition of the amplitudes would indeed lead to invariant
spectroscopic factors and one-body centroid matrix hcent (and
thus ESPEs). However, the transformed operator (24) clearly
no longer corresponds to the addition of a nucleon in a specific
single-particle state. Instead, it is a linear combination of
not only one-particle operators but also two-particle–one-
hole operators, three-particle–two-hole operators, etc. This
contradicts the initial motivation behind the introduction of
spectroscopic one-nucleon addition and removal amplitudes.
Indeed, spectroscopic factors and ESPEs inform on the
probability and the energy generated by adding and removing
a nucleon through a process that involves a single nucleon
state at a time, i.e., a pure direct process. If this is not the
case, ESPEs no longer reduce to HF single-particle energies
in the HF limit. To conclude, defining ESPEs in the context of
a change of scale necessarily leads to keeping their definition
formally the same for any λ at the price of making their actual
value scale dependent. The same goes for spectroscopic factors
built from Uµ(λ) and Vν(λ).

3. Scale dependence

Following the spirit of the SRG [17], a unitary transfor-
mation7 of the resolution scale can be defined through the
differential flow equations of operators and many-body wave
functions

d

dλ
O(λ) ≡ [η(λ),O(λ)], (25a)

d

dλ

∣∣$A
µ (λ)

〉
≡ η(λ)

∣∣$A
µ (λ)

〉
, (25b)

where the anti-Hermitian generator of the transformation reads

η(λ) ≡ dU (λ)
dλ

U †(λ) = −η†(λ), (26)

and the initial conditions are O(λinit) = O and |$A
µ (λinit)⟩ =

|$A
µ ⟩. By combining Eqs. (23) and (25), one obtains the flow

equations for all quantities of interest.

7It is common practice to test the predictions of different nuclear
Hamiltonians for nuclei of interest. Ideally, all of these Hamiltonians
are equivalent representations of low-energy QCD and describe
observables like scattering data with high accuracy. In practice,
however, traditional nuclear Hamiltonians have been derived using
very different philosophies and theoretical frameworks. While their
common link to QCD suggests implicit links between such Hamilto-
nians, there is no practical way to construct explicit transformations
to study these connections. In contrast, the SRG provides a practical
framework to build smoothly connected families of unitarily trans-
formed nuclear Hamiltonians and gives us a systematic handle on the
violation of unitarity through truncations that are required in practical
applications.
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2. Unitary transformation

We consider a starting nuclear Hamiltonian H built within
χ -EFT at a given order in the employed power counting. The
Hamiltonian carries an intrinsic resolution scale characterized
by both "χ and the regularization cutoff(s) "AN that is
introduced by the particular scheme used to renormalize
many-body amplitudes at a given chiral order.

Given this effective Hamiltonian, one is free to proceed
to a unitary transformation U (λ) over Fock space. The real
variable λ parametrizing the transformation typically denotes
a momentum scale that characterizes the range of coupling
between low and high momenta (within the interval defined
by the intrinsic resolution scale of the starting H , which is itself
a matter of choice) in the resulting Hamiltonian that takes the
“running” form

H (λ) ≡ U (λ)HU †(λ) ≡ T + V 2N (λ) + V 3N (λ) + · · · ,

where V AN (λ) changes with the scale λ. Even if the starting
Hamiltonian H were to contain only, e.g., one- and two-body
operators, its unitarily equivalent partner H (λ) would, in gen-
eral, contain (hopefully small) higher-body operators, which
eventually truncate at the A-body level when applying the
Hamiltonian on the A-body Hilbert space HA. Applying this
unitary transformation to the Schrödinger equation, we obtain

H (λ)
∣∣$A

µ (λ)
〉
= EA

k

∣∣$A
µ (λ)

〉
, (21)

where
∣∣$A

µ (λ)
〉
≡ U (λ)

∣∣$A
µ

〉
, (22)

such that the eigenvalues EA
k remain unchanged, while the

many-body wave functions run with λ. Similarly, other
operators transform under U (λ) according to

O(λ) ≡U (λ)OU †(λ) ≡ O1N (λ) + O2N (λ) + O3N (λ) + · · · .

A key aspect of quantum mechanics concerns the assessment
that the physical results, i.e., observables, must remain
unchanged under this unitary transformation. The consistent
transformation of operators and many-body wave functions
ensures that eigenspectra of transformed operators, or, more
generally, amplitudes of transformed operators between
transformed states, including many-body cross sections, are
indeed invariant under U (λ) [43].

An issue arises whenever a quantity is defined under
the assumption that the associated operator should not be
transformed under U (λ). This is the case for one-nucleon
spectroscopic amplitudes that are defined at any λ as

Up
µ (λ) ≡

〈
$A

0 (λ)
∣∣ap

∣∣$A+1
µ (λ)

〉
, (23a)

V p
ν (λ) ≡

〈
$A

0 (λ)
∣∣a†

p

∣∣$A−1
ν (λ)

〉
, (23b)

i.e., only the many-body states involved run with λ, not the
operator. As a result, spectroscopic amplitudes undoubtedly
vary with λ. One may suggest to transform the operator as well
in the definition of spectroscopic amplitudes to make them
invariant by construction. The transformed operator would

have the general form

U (λ)a†
pU †(λ) =

∑

q

up
q (λ)a†

q +
∑

qrs

up
qrs(λ)a†

qa
†
r as + · · · ,

(24)

with the initial conditions u
p
q (λinit) = δqp for the first term and

u
p
qrs...(λinit) = 0 for the others. Inserting such a form in the

definition of the amplitudes would indeed lead to invariant
spectroscopic factors and one-body centroid matrix hcent (and
thus ESPEs). However, the transformed operator (24) clearly
no longer corresponds to the addition of a nucleon in a specific
single-particle state. Instead, it is a linear combination of
not only one-particle operators but also two-particle–one-
hole operators, three-particle–two-hole operators, etc. This
contradicts the initial motivation behind the introduction of
spectroscopic one-nucleon addition and removal amplitudes.
Indeed, spectroscopic factors and ESPEs inform on the
probability and the energy generated by adding and removing
a nucleon through a process that involves a single nucleon
state at a time, i.e., a pure direct process. If this is not the
case, ESPEs no longer reduce to HF single-particle energies
in the HF limit. To conclude, defining ESPEs in the context of
a change of scale necessarily leads to keeping their definition
formally the same for any λ at the price of making their actual
value scale dependent. The same goes for spectroscopic factors
built from Uµ(λ) and Vν(λ).

3. Scale dependence

Following the spirit of the SRG [17], a unitary transfor-
mation7 of the resolution scale can be defined through the
differential flow equations of operators and many-body wave
functions

d

dλ
O(λ) ≡ [η(λ),O(λ)], (25a)

d

dλ

∣∣$A
µ (λ)

〉
≡ η(λ)

∣∣$A
µ (λ)

〉
, (25b)

where the anti-Hermitian generator of the transformation reads

η(λ) ≡ dU (λ)
dλ

U †(λ) = −η†(λ), (26)

and the initial conditions are O(λinit) = O and |$A
µ (λinit)⟩ =

|$A
µ ⟩. By combining Eqs. (23) and (25), one obtains the flow

equations for all quantities of interest.

7It is common practice to test the predictions of different nuclear
Hamiltonians for nuclei of interest. Ideally, all of these Hamiltonians
are equivalent representations of low-energy QCD and describe
observables like scattering data with high accuracy. In practice,
however, traditional nuclear Hamiltonians have been derived using
very different philosophies and theoretical frameworks. While their
common link to QCD suggests implicit links between such Hamilto-
nians, there is no practical way to construct explicit transformations
to study these connections. In contrast, the SRG provides a practical
framework to build smoothly connected families of unitarily trans-
formed nuclear Hamiltonians and gives us a systematic handle on the
violation of unitarity through truncations that are required in practical
applications.
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2. Unitary transformation

We consider a starting nuclear Hamiltonian H built within
χ -EFT at a given order in the employed power counting. The
Hamiltonian carries an intrinsic resolution scale characterized
by both "χ and the regularization cutoff(s) "AN that is
introduced by the particular scheme used to renormalize
many-body amplitudes at a given chiral order.

Given this effective Hamiltonian, one is free to proceed
to a unitary transformation U (λ) over Fock space. The real
variable λ parametrizing the transformation typically denotes
a momentum scale that characterizes the range of coupling
between low and high momenta (within the interval defined
by the intrinsic resolution scale of the starting H , which is itself
a matter of choice) in the resulting Hamiltonian that takes the
“running” form

H (λ) ≡ U (λ)HU †(λ) ≡ T + V 2N (λ) + V 3N (λ) + · · · ,

where V AN (λ) changes with the scale λ. Even if the starting
Hamiltonian H were to contain only, e.g., one- and two-body
operators, its unitarily equivalent partner H (λ) would, in gen-
eral, contain (hopefully small) higher-body operators, which
eventually truncate at the A-body level when applying the
Hamiltonian on the A-body Hilbert space HA. Applying this
unitary transformation to the Schrödinger equation, we obtain

H (λ)
∣∣$A

µ (λ)
〉
= EA

k

∣∣$A
µ (λ)

〉
, (21)

where
∣∣$A

µ (λ)
〉
≡ U (λ)

∣∣$A
µ

〉
, (22)

such that the eigenvalues EA
k remain unchanged, while the

many-body wave functions run with λ. Similarly, other
operators transform under U (λ) according to

O(λ) ≡U (λ)OU †(λ) ≡ O1N (λ) + O2N (λ) + O3N (λ) + · · · .

A key aspect of quantum mechanics concerns the assessment
that the physical results, i.e., observables, must remain
unchanged under this unitary transformation. The consistent
transformation of operators and many-body wave functions
ensures that eigenspectra of transformed operators, or, more
generally, amplitudes of transformed operators between
transformed states, including many-body cross sections, are
indeed invariant under U (λ) [43].

An issue arises whenever a quantity is defined under
the assumption that the associated operator should not be
transformed under U (λ). This is the case for one-nucleon
spectroscopic amplitudes that are defined at any λ as

Up
µ (λ) ≡

〈
$A

0 (λ)
∣∣ap

∣∣$A+1
µ (λ)

〉
, (23a)

V p
ν (λ) ≡

〈
$A

0 (λ)
∣∣a†

p

∣∣$A−1
ν (λ)

〉
, (23b)

i.e., only the many-body states involved run with λ, not the
operator. As a result, spectroscopic amplitudes undoubtedly
vary with λ. One may suggest to transform the operator as well
in the definition of spectroscopic amplitudes to make them
invariant by construction. The transformed operator would

have the general form

U (λ)a†
pU †(λ) =

∑

q

up
q (λ)a†

q +
∑

qrs

up
qrs(λ)a†

qa
†
r as + · · · ,

(24)

with the initial conditions u
p
q (λinit) = δqp for the first term and

u
p
qrs...(λinit) = 0 for the others. Inserting such a form in the

definition of the amplitudes would indeed lead to invariant
spectroscopic factors and one-body centroid matrix hcent (and
thus ESPEs). However, the transformed operator (24) clearly
no longer corresponds to the addition of a nucleon in a specific
single-particle state. Instead, it is a linear combination of
not only one-particle operators but also two-particle–one-
hole operators, three-particle–two-hole operators, etc. This
contradicts the initial motivation behind the introduction of
spectroscopic one-nucleon addition and removal amplitudes.
Indeed, spectroscopic factors and ESPEs inform on the
probability and the energy generated by adding and removing
a nucleon through a process that involves a single nucleon
state at a time, i.e., a pure direct process. If this is not the
case, ESPEs no longer reduce to HF single-particle energies
in the HF limit. To conclude, defining ESPEs in the context of
a change of scale necessarily leads to keeping their definition
formally the same for any λ at the price of making their actual
value scale dependent. The same goes for spectroscopic factors
built from Uµ(λ) and Vν(λ).

3. Scale dependence

Following the spirit of the SRG [17], a unitary transfor-
mation7 of the resolution scale can be defined through the
differential flow equations of operators and many-body wave
functions

d

dλ
O(λ) ≡ [η(λ),O(λ)], (25a)

d

dλ

∣∣$A
µ (λ)

〉
≡ η(λ)

∣∣$A
µ (λ)

〉
, (25b)

where the anti-Hermitian generator of the transformation reads

η(λ) ≡ dU (λ)
dλ

U †(λ) = −η†(λ), (26)

and the initial conditions are O(λinit) = O and |$A
µ (λinit)⟩ =

|$A
µ ⟩. By combining Eqs. (23) and (25), one obtains the flow

equations for all quantities of interest.

7It is common practice to test the predictions of different nuclear
Hamiltonians for nuclei of interest. Ideally, all of these Hamiltonians
are equivalent representations of low-energy QCD and describe
observables like scattering data with high accuracy. In practice,
however, traditional nuclear Hamiltonians have been derived using
very different philosophies and theoretical frameworks. While their
common link to QCD suggests implicit links between such Hamilto-
nians, there is no practical way to construct explicit transformations
to study these connections. In contrast, the SRG provides a practical
framework to build smoothly connected families of unitarily trans-
formed nuclear Hamiltonians and gives us a systematic handle on the
violation of unitarity through truncations that are required in practical
applications.
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2. Unitary transformation

We consider a starting nuclear Hamiltonian H built within
χ -EFT at a given order in the employed power counting. The
Hamiltonian carries an intrinsic resolution scale characterized
by both "χ and the regularization cutoff(s) "AN that is
introduced by the particular scheme used to renormalize
many-body amplitudes at a given chiral order.

Given this effective Hamiltonian, one is free to proceed
to a unitary transformation U (λ) over Fock space. The real
variable λ parametrizing the transformation typically denotes
a momentum scale that characterizes the range of coupling
between low and high momenta (within the interval defined
by the intrinsic resolution scale of the starting H , which is itself
a matter of choice) in the resulting Hamiltonian that takes the
“running” form

H (λ) ≡ U (λ)HU †(λ) ≡ T + V 2N (λ) + V 3N (λ) + · · · ,

where V AN (λ) changes with the scale λ. Even if the starting
Hamiltonian H were to contain only, e.g., one- and two-body
operators, its unitarily equivalent partner H (λ) would, in gen-
eral, contain (hopefully small) higher-body operators, which
eventually truncate at the A-body level when applying the
Hamiltonian on the A-body Hilbert space HA. Applying this
unitary transformation to the Schrödinger equation, we obtain

H (λ)
∣∣$A

µ (λ)
〉
= EA

k

∣∣$A
µ (λ)

〉
, (21)

where
∣∣$A

µ (λ)
〉
≡ U (λ)

∣∣$A
µ

〉
, (22)

such that the eigenvalues EA
k remain unchanged, while the

many-body wave functions run with λ. Similarly, other
operators transform under U (λ) according to

O(λ) ≡U (λ)OU †(λ) ≡ O1N (λ) + O2N (λ) + O3N (λ) + · · · .

A key aspect of quantum mechanics concerns the assessment
that the physical results, i.e., observables, must remain
unchanged under this unitary transformation. The consistent
transformation of operators and many-body wave functions
ensures that eigenspectra of transformed operators, or, more
generally, amplitudes of transformed operators between
transformed states, including many-body cross sections, are
indeed invariant under U (λ) [43].

An issue arises whenever a quantity is defined under
the assumption that the associated operator should not be
transformed under U (λ). This is the case for one-nucleon
spectroscopic amplitudes that are defined at any λ as

Up
µ (λ) ≡

〈
$A

0 (λ)
∣∣ap

∣∣$A+1
µ (λ)

〉
, (23a)

V p
ν (λ) ≡

〈
$A

0 (λ)
∣∣a†

p

∣∣$A−1
ν (λ)

〉
, (23b)

i.e., only the many-body states involved run with λ, not the
operator. As a result, spectroscopic amplitudes undoubtedly
vary with λ. One may suggest to transform the operator as well
in the definition of spectroscopic amplitudes to make them
invariant by construction. The transformed operator would

have the general form

U (λ)a†
pU †(λ) =

∑

q

up
q (λ)a†

q +
∑

qrs

up
qrs(λ)a†

qa
†
r as + · · · ,

(24)

with the initial conditions u
p
q (λinit) = δqp for the first term and

u
p
qrs...(λinit) = 0 for the others. Inserting such a form in the

definition of the amplitudes would indeed lead to invariant
spectroscopic factors and one-body centroid matrix hcent (and
thus ESPEs). However, the transformed operator (24) clearly
no longer corresponds to the addition of a nucleon in a specific
single-particle state. Instead, it is a linear combination of
not only one-particle operators but also two-particle–one-
hole operators, three-particle–two-hole operators, etc. This
contradicts the initial motivation behind the introduction of
spectroscopic one-nucleon addition and removal amplitudes.
Indeed, spectroscopic factors and ESPEs inform on the
probability and the energy generated by adding and removing
a nucleon through a process that involves a single nucleon
state at a time, i.e., a pure direct process. If this is not the
case, ESPEs no longer reduce to HF single-particle energies
in the HF limit. To conclude, defining ESPEs in the context of
a change of scale necessarily leads to keeping their definition
formally the same for any λ at the price of making their actual
value scale dependent. The same goes for spectroscopic factors
built from Uµ(λ) and Vν(λ).

3. Scale dependence

Following the spirit of the SRG [17], a unitary transfor-
mation7 of the resolution scale can be defined through the
differential flow equations of operators and many-body wave
functions

d

dλ
O(λ) ≡ [η(λ),O(λ)], (25a)

d

dλ

∣∣$A
µ (λ)

〉
≡ η(λ)

∣∣$A
µ (λ)

〉
, (25b)

where the anti-Hermitian generator of the transformation reads

η(λ) ≡ dU (λ)
dλ

U †(λ) = −η†(λ), (26)

and the initial conditions are O(λinit) = O and |$A
µ (λinit)⟩ =

|$A
µ ⟩. By combining Eqs. (23) and (25), one obtains the flow

equations for all quantities of interest.

7It is common practice to test the predictions of different nuclear
Hamiltonians for nuclei of interest. Ideally, all of these Hamiltonians
are equivalent representations of low-energy QCD and describe
observables like scattering data with high accuracy. In practice,
however, traditional nuclear Hamiltonians have been derived using
very different philosophies and theoretical frameworks. While their
common link to QCD suggests implicit links between such Hamilto-
nians, there is no practical way to construct explicit transformations
to study these connections. In contrast, the SRG provides a practical
framework to build smoothly connected families of unitarily trans-
formed nuclear Hamiltonians and gives us a systematic handle on the
violation of unitarity through truncations that are required in practical
applications.
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2. Unitary transformation

We consider a starting nuclear Hamiltonian H built within
χ -EFT at a given order in the employed power counting. The
Hamiltonian carries an intrinsic resolution scale characterized
by both "χ and the regularization cutoff(s) "AN that is
introduced by the particular scheme used to renormalize
many-body amplitudes at a given chiral order.

Given this effective Hamiltonian, one is free to proceed
to a unitary transformation U (λ) over Fock space. The real
variable λ parametrizing the transformation typically denotes
a momentum scale that characterizes the range of coupling
between low and high momenta (within the interval defined
by the intrinsic resolution scale of the starting H , which is itself
a matter of choice) in the resulting Hamiltonian that takes the
“running” form

H (λ) ≡ U (λ)HU †(λ) ≡ T + V 2N (λ) + V 3N (λ) + · · · ,

where V AN (λ) changes with the scale λ. Even if the starting
Hamiltonian H were to contain only, e.g., one- and two-body
operators, its unitarily equivalent partner H (λ) would, in gen-
eral, contain (hopefully small) higher-body operators, which
eventually truncate at the A-body level when applying the
Hamiltonian on the A-body Hilbert space HA. Applying this
unitary transformation to the Schrödinger equation, we obtain

H (λ)
∣∣$A

µ (λ)
〉
= EA

k

∣∣$A
µ (λ)

〉
, (21)

where
∣∣$A

µ (λ)
〉
≡ U (λ)

∣∣$A
µ

〉
, (22)

such that the eigenvalues EA
k remain unchanged, while the

many-body wave functions run with λ. Similarly, other
operators transform under U (λ) according to

O(λ) ≡U (λ)OU †(λ) ≡ O1N (λ) + O2N (λ) + O3N (λ) + · · · .

A key aspect of quantum mechanics concerns the assessment
that the physical results, i.e., observables, must remain
unchanged under this unitary transformation. The consistent
transformation of operators and many-body wave functions
ensures that eigenspectra of transformed operators, or, more
generally, amplitudes of transformed operators between
transformed states, including many-body cross sections, are
indeed invariant under U (λ) [43].

An issue arises whenever a quantity is defined under
the assumption that the associated operator should not be
transformed under U (λ). This is the case for one-nucleon
spectroscopic amplitudes that are defined at any λ as

Up
µ (λ) ≡

〈
$A

0 (λ)
∣∣ap

∣∣$A+1
µ (λ)

〉
, (23a)

V p
ν (λ) ≡

〈
$A

0 (λ)
∣∣a†

p

∣∣$A−1
ν (λ)

〉
, (23b)

i.e., only the many-body states involved run with λ, not the
operator. As a result, spectroscopic amplitudes undoubtedly
vary with λ. One may suggest to transform the operator as well
in the definition of spectroscopic amplitudes to make them
invariant by construction. The transformed operator would

have the general form

U (λ)a†
pU †(λ) =

∑

q

up
q (λ)a†

q +
∑

qrs

up
qrs(λ)a†

qa
†
r as + · · · ,

(24)

with the initial conditions u
p
q (λinit) = δqp for the first term and

u
p
qrs...(λinit) = 0 for the others. Inserting such a form in the

definition of the amplitudes would indeed lead to invariant
spectroscopic factors and one-body centroid matrix hcent (and
thus ESPEs). However, the transformed operator (24) clearly
no longer corresponds to the addition of a nucleon in a specific
single-particle state. Instead, it is a linear combination of
not only one-particle operators but also two-particle–one-
hole operators, three-particle–two-hole operators, etc. This
contradicts the initial motivation behind the introduction of
spectroscopic one-nucleon addition and removal amplitudes.
Indeed, spectroscopic factors and ESPEs inform on the
probability and the energy generated by adding and removing
a nucleon through a process that involves a single nucleon
state at a time, i.e., a pure direct process. If this is not the
case, ESPEs no longer reduce to HF single-particle energies
in the HF limit. To conclude, defining ESPEs in the context of
a change of scale necessarily leads to keeping their definition
formally the same for any λ at the price of making their actual
value scale dependent. The same goes for spectroscopic factors
built from Uµ(λ) and Vν(λ).

3. Scale dependence

Following the spirit of the SRG [17], a unitary transfor-
mation7 of the resolution scale can be defined through the
differential flow equations of operators and many-body wave
functions

d

dλ
O(λ) ≡ [η(λ),O(λ)], (25a)

d

dλ

∣∣$A
µ (λ)

〉
≡ η(λ)

∣∣$A
µ (λ)

〉
, (25b)

where the anti-Hermitian generator of the transformation reads

η(λ) ≡ dU (λ)
dλ

U †(λ) = −η†(λ), (26)

and the initial conditions are O(λinit) = O and |$A
µ (λinit)⟩ =

|$A
µ ⟩. By combining Eqs. (23) and (25), one obtains the flow

equations for all quantities of interest.

7It is common practice to test the predictions of different nuclear
Hamiltonians for nuclei of interest. Ideally, all of these Hamiltonians
are equivalent representations of low-energy QCD and describe
observables like scattering data with high accuracy. In practice,
however, traditional nuclear Hamiltonians have been derived using
very different philosophies and theoretical frameworks. While their
common link to QCD suggests implicit links between such Hamilto-
nians, there is no practical way to construct explicit transformations
to study these connections. In contrast, the SRG provides a practical
framework to build smoothly connected families of unitarily trans-
formed nuclear Hamiltonians and gives us a systematic handle on the
violation of unitarity through truncations that are required in practical
applications.
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the latter property underlines the scale dependence of
ESPEs, i.e., they “run” with the unitary transformation
U(λ), as opposed to true observables.

4. Symmetry transformations

It is worth noting that symmetry transformations of
the Hamiltonian associated with a (locally) compact Lie
groups whose generators Ci are one-body operators do
not induce any running of spectroscopic factors and ES-
PEs. Using a one-parameter group for simplicity and
employing an exponential map to represent the transfor-
mation, i.e., U(β) = eiβC , one can show that the trans-
formation of creation and annihilation operators in Fock
space reduces to

U(β) a†p U
†(β) =

∑

q

uqp(β)a
†
q , (30a)

U(β) ap U
†(β) =

∑

q

u∗
qp(β)aq , (30b)

where uqp(β) ≡ ⟨q|U(β)|p⟩ is the unitary matrix rep-
resenting U(β) in the one-body Hilbert space H1. In
contrast to Eq. (24), a transformed creation (annihila-
tion) operator remains a linear combination of pure one-
particle creation (annihilation) operators. In this case, it
is straightforward to show that spectroscopic probability
matrices and the centroid matrix transform as standard

matrices on H1 by using Eq. (30)

S±pq
k (β) =

∑

rs

upr(β)S
±rs
k u†

sq(β) , (31a)

hcent
pq (β) =

∑

rs

upr(β)h
cent
rs u†

sq(β) . (31b)

By virtue of the unitarity of uqp(β), the spectroscopic
factors, i.e., the trace of the spectroscopic probability
matrices, do not depend on β. Because U(β) is a sym-
metry of H , it is also straightforward to show that hcent

is a scalar and thus does not depend on β either9.
Ultimately, this underlines the fact that we are

presently not concerned with symmetry transformations.
The transformations we are interested in are, e.g., free-
space SRG transformations defined through their gener-
ator η(λ) in such a way that the virtual coupling between
low and high momenta is continuously reduced in H(λ)
(see Ref. [17] for details). Creation and annihilation op-
erators are transformed on Fock space according to the
general law (24) and not the simpler transformation (30),
which in turn causes spectroscopic factors and ESPEs to
run with λ.

5. Discussion

The scale dependence of ESPEs generated by the flow
equation (29b) has significant consequences. Despite the
model-independent and physically intuitive character of
Baranger’s ESPEs, these quantities are not observable.
Like spectroscopic factors, wave-functions or “correla-
tions”, nuclear shells do not qualify as an observable
within the frame of quantum mechanics as they can be
modified at will under a unitary transformation (while
keeping true observables invariant). In that respect, the
partitioning provided by Eq. (18) can now be further
specified as

many-body observable

E+
µ

︸︷︷︸

invariant under U(λ)

≡
single-particle components
∑

p

s+pp
µ (λ) ecentp (λ)

︸ ︷︷ ︸

varies under U(λ)

+
correlations

∑

pq

s+pq
µ (λ)Σdyn

qp (E+
µ ;λ)

︸ ︷︷ ︸

varies under U(λ)

, (32)

which underlines that such a partitioning is necessarily
scale dependent10.
An immediate consequence of the above analysis is the

realization that extracting the single-particle shell struc-

9 Simply insert a complete basis of H1 whose states span the irre-
ducible representations of the group in Eq. (31b).

10 The flow equation for the independent-particle-like contribution
to one-nucleon separation energies can be easily worked out start-
ing from Eqs. (27) and (29b). As the result is rather lengthy, we
do not report it here.

ture and its evolution, e.g., with isospin, from experimen-
tal data is an illusory objective. The single-nucleon shell
structure only exists within the theoretical framework,
given that experimental data determine the Hamiltonian
only up to a unitary transformation U †(λ)U(λ) = 1. Any
quantity that intrinsically depends on λ is undefined in
the empirical world and can only acquire the status of a
quasi-observable by fixing arbitrarily (but conveniently)
the scale defining the Hamiltonian H(λ) employed in the
theoretical description. Still, any correlation established
between an observable and a quasi-observable in an anal-
ysis performed at a particular scale may possibly disap-

⦿ Spectroscopic probabilities/factors are scale-dependent

⦿ ESPEs acquire scale dependence via spectroscopic probabilities

○ A convenient choice of λ maximises the ESPE component

○ However, correlations with observables are not absolute

○ Scale must be fixed/specified prior to theoretical/experimental comparisons

Partitioning & scale dependence
T. DUGUET, H. HERGERT, J. D. HOLT, AND V. SOMÀ PHYSICAL REVIEW C 92, 034313 (2015)

Starting from one-nucleon spectroscopic amplitudes

d

dλ
V p

ν (λ) = −
〈
#A−1

ν (λ)
∣∣[η(λ),ap]

∣∣#A
0 (λ)

〉∗
, (27a)

d

dλ
Up

µ (λ) = −
〈
#A+1

µ (λ)
∣∣[η(λ),a†

p]
∣∣#A

0 (λ)
〉∗

, (27b)

one obtains flow equations for spectroscopic probability
matrices S+

µ and S−
ν as well as their traces SF+

µ and SF−
ν .

Combining Eq. (27) with the fact that observable one-nucleon
addition and removal energies are invariant because they are
differences of eigenvalues of H (λ) [see Eq. (21)],

d

dλ
E−

ν (λ) = d

dλ
E+

µ (λ) = 0, (28)

one can eventually derive flow equations for the zeroth and
first moments of the spectral function matrix8

d

dλ
M (0)

pq (λ) = 0, (29a)

d

dλ
M (1)

pq (λ) = −
〈
#A

0 (λ)
∣∣{[[η(λ),ap],H (λ)],a†

q} + {[ap,H (λ)],[η(λ),a†
q]}

∣∣#A
0 (λ)

〉
. (29b)

Equation (29) demonstrates that sum rule (9) is scale invariant
while the centroid matrix hcent(λ) and its eigenvalues ecent

p (λ)
are not. Just as for spectroscopic factors, the latter property
underlines the scale dependence of ESPEs; i.e., they “run”
with the unitary transformation U (λ), as opposed to true
observables.

4. Symmetry transformations

It is worth noting that symmetry transformations of the
Hamiltonian associated with a (locally) compact Lie groups
whose generators Ci are one-body operators do not induce
any running of spectroscopic factors and ESPEs. Using a one-
parameter group for simplicity and employing an exponential
map to represent the transformation, i.e., U (β) = eiβC , one
can show that the transformation of creation and annihilation
operators in Fock space reduces to

U (β)a†
pU †(β) =

∑

q

uqp(β)a†
q, (30a)

U (β)apU †(β) =
∑

q

u∗
qp(β)aq, (30b)

where uqp(β) ≡ ⟨q|U (β)|p⟩ is the unitary matrix representing
U (β) in the one-body Hilbert space H1. In contrast to Eq. (24),
a transformed creation (annihilation) operator remains a
linear combination of pure one-particle creation (annihilation)
operators. In this case, it is straightforward to show that
spectroscopic probability matrices and the centroid matrix
transform as standard matrices on H1 by using Eq. (30):

S
±pq
k (β) =

∑

rs

upr (β)S±rs
k u†

sq(β), (31a)

hcent
pq (β) =

∑

rs

upr (β)hcent
rs u†

sq(β). (31b)

By virtue of the unitarity of uqp(β), the spectroscopic factors,
i.e., the trace of the spectroscopic probability matrices, do not
depend on β. Because U (β) is a symmetry of H , it is also

8Starting from Eq. (13), it is straightforward to derive the flow
equation for an arbitrary moment M(n)(λ).

straightforward to show that hcent is a scalar and thus does not
depend on β either.9

Ultimately, this underlines the fact that we are presently
not concerned with symmetry transformations. The trans-
formations we are interested in are, e.g., free-space SRG
transformations defined through their generator η(λ) in such a
way that the virtual coupling between low and high momenta
is continuously reduced in H (λ) (see Ref. [17] for details).
Creation and annihilation operators are transformed on Fock
space according to the general law (24) and not the simpler
transformation (30), which, in turn, causes spectroscopic
factors and ESPEs to run with λ.

5. Discussion

The scale dependence of ESPEs generated by the flow equa-
tion (29b) has significant consequences. Despite the model-
independent and physically intuitive character of Baranger’s
ESPEs, these quantities are not observable. Like spectroscopic
factors, wave functions, or “correlations,” nuclear shells do
not qualify as an observable within the frame of quantum
mechanics because they can be modified at will under a unitary
transformation (while keeping true observables invariant). In
that respect, the partitioning provided by Eq. (18) can now be
further specified as

many-body observable

E+
µ︸︷︷︸

invariant under U (λ)

≡
single-particle components∑

p

s+pp
µ (λ)ecent

p (λ)

︸ ︷︷ ︸
varies under U (λ)

+
correlations∑

pq

s+pq
µ (λ)&dyn

qp (E+
µ ; λ)

︸ ︷︷ ︸
varies under U (λ)

, (32)

which underlines that such a partitioning is necessarily scale
dependent.10

9Simply insert a complete basis of H1 whose states span the
irreducible representations of the group in Eq. (31b).

10The flow equation for the independent-particle-like contribution
to one-nucleon separation energies can be easily worked out starting

034313-8
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We also introduce the nth moment of the spectral func-
tion

M
(n) ≡

∫ +∞

−∞

ωn
S(ω) dω, (8)

which defines an energy-independent matrix on H1. Us-
ing the anti-commutation rule of creation and annihila-
tion operators {ap, a†q} = δpq, the zero moment is shown
to be nothing but the identity matrix

M
(0) =

∑

µ∈HA+1

S
+
µ +

∑

ν∈HA−1

S
−
ν = 1 . (9)

This sum rule provides each diagonal matrix element of
S(ω) with the meaning of a probability distribution func-
tion (PDF) in the statistical sense, i.e., the combined
probability of adding a nucleon to or removing a nucleon
from a specific single-particle basis state |p⟩ integrates
to 1 when summing over all the final states of the A±1
systems.
The first moment M(1) of the spectral function defines

the so-called centroid matrix

h
cent ≡

∑

µ∈HA+1

S
+
µE

+
µ +

∑

ν∈HA−1

S
−
ν E

−
ν . (10)

Effective single-particle energies are nothing but the
eigenvalues {ecentp } of the centroid field [10, 36], and they
are obtained by solving

h
cent ψcent

p = ecentp ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides
ESPEs but also the corresponding single-particle states
the nucleon is effectively added to or removed from. The
associated spherical basis of H1 is denoted as {c†p}. In
that basis, ESPEs are expressed in terms of diagonal
spectroscopic probabilities,

ecentp ≡
∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an
arithmetic average, of one-nucleon separation energies
weighted by the probability to reach the corresponding
A+1 (A-1) eigenstates by adding (removing) a nucleon
to (from) a single-particle state ψcent

p . Centroid energies
are by construction in one-to-one correspondence with
states spanning H1. The step from one-neutron separa-
tion energies to neutron ESPEs is illustrated in Fig. 4
for an ab initio self-consistent Gorkov Green’s function
(G-SCGF) calculation [37, 38] of 74Ni with a next-to-
next-to-next-to-leading order (N3LO) 2N chiral interac-
tion [39] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).
It is worth noting that Baranger ESPEs defined

through Eqs. (10)-(12) display three fundamental prop-
erties that are not fulfilled by any other definition of the
shell energies used in the literature: They (i) only invoke
outputs of the many-body Schrödinger equation, (ii) do
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FIG. 4. (Color online). Self-consistent Gorkov Green’s func-
tion calculation of 74Ni with a realistic 2N chiral interac-
tion [39]. Left: spectral strength distribution for one-neutron
addition (above the dashed line) and removal (below the
dashed line) processes. Right: Baranger effective single-
particle energies.

not depend on the single-particle basis used to expand
the many-body problem and (iii) reduce to HF single-
particle energies in the HF approximation, i.e., they sat-
isfy Koopmans’ theorem [40] in such a limit. The latter
property is best seen by applying the identity [41, 42]

M (n)
pq = ⟨ΨA

0 |{

n commutators
︷ ︸︸ ︷

[. . . [[ap, H ], H ], . . .], a†q}|Ψ
A
0 ⟩ , (13)

to n = 1 [10, 43, 44]

hcent
pq = tpq +

∑

rs

v2Nprqs ρ
[1]
sr +

1

4

∑

rstv

v3Nprtqsv ρ
[2]
svrt (14)

≡ h∞
pq ,

where

ρ[1]pq ≡ ⟨ΨA
0 |a

†
qap|Ψ

A
0 ⟩ =

∑

µ

V p
µ
∗ V q

µ , (15a)

ρ[2]pqrs ≡ ⟨ΨA
0 |a

†
ra

†
saqap|Ψ

A
0 ⟩ , (15b)

denote one- and two-body density matrices of the cor-
related A-body ground-state, respectively. As Eq. (14)
stipulates, the centroid field is equal to the one-body
Hamiltonian h∞ ≡ T + Σ(∞) whose potential part is
nothing but the energy-independent component [43] of
the irreducible one-nucleon self-energy Σ(ω) of the A-
body ground state that naturally arises in self-consistent
Green’s-function theory. In the HF limit,

ρ[2]pqrs = ρ[1]prρ
[1]
qs − ρ[1]qrρ

[1]
ps , (16)



○ Limited range of variation:  λ ∈ {1.88, 2.0, 2.24} fm-1

⦿ SRG transformations U(λ)  applied to the starting Hamiltonian H(Λinit)

Λ0

Λ1

Λ2

k’

k

(a)

λ0 λ1 λ2

k’

k

(b)

Figure 9: Schematic illustration of two types of RG evolution for NN potentials in momentum space:
(a) Vlow k running in Λ, and (b) SRG running in λ. At each Λi or λi, the matrix elements outside of the
corresponding lines are zero, so that high- and low-momentum states are decoupled.

60, 61], as shown, for example, in Fig. 8. For variable-cutoff potentials, three-body (and higher-body)
interactions evolve naturally with the resolution scale.

1.3 Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for
calculating low-energy observables can be captured in the scale-dependent coefficients of operators
in a low-energy Hamiltonian [29]. This principle does not mean that high-energy and low-energy
physics is automatically decoupled in every effective theory. In fact, it implies that we can include as
much irrelevant coupling to incorrect high-energy physics as we want by using a large cutoff, with no
consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting
the necessary degrees of freedom. This decoupling can be efficiently achieved by evolving nuclear
interactions using RG transformations designed to handle similar problems in relativistic field theories
and critical phenomena in condensed matter systems.6

The general purpose of the RG when dealing with the large range of scales in physical systems was
eloquently explained by David Gross [63]:

“At each scale, we have different degrees of freedom and different dynamics. Physics at a
larger scale (largely) decouples from the physics at a smaller scale. . . . Thus, a theory at a
larger scale remembers only finitely many parameters from the theories at smaller scales,
and throws the rest of the details away. More precisely, when we pass from a smaller scale
to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the
RG method is to explain how this decoupling takes place and why exactly information is
transmitted from scale to scale through finitely many parameters.”

The common features of RG for critical phenomena and high-energy scattering are discussed by Steven
Weinberg in an essay in Ref. [64]. He summarizes:

“The method in its most general form can I think be understood as a way to arrange in
various theories that the degrees of freedom that you’re talking about are the relevant degrees
of freedom for the problem at hand.”

6For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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⦿ Two different ab initio methods

○ Gorkov-Green’s functions    [Somà, Barbieri, Duguet 2011, …]

○ In-medium SRG     [Tsukiyama, Bogner, Schwenk 2010, Hergert et al. 2013, …]

Oxygen dripline in ab-initio calculations

Oxygen dripline including chiral NN+3N forces correctly reproduced
confirmed in ab-initio calculations by different approaches,
treating explicitly all nucleons as degrees of freedom

No-core shell model
(Importance-truncated)

In-medium SRG
Hergert et al. PRL110 242501 (2013)

Self-consistent Green’s function
Cipollone et al. PRL111 062501 (2013)

Coupled-cluster
Jansen et al. PRL113 142502 (2014) 16 18 20 22 24 26 28
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AME 2012

Benchmark with the same initial Hamiltonian
Sensitivity to the chiral interaction not systematically explored

Javier Menéndez (JSPS / U. Tokyo) Nuclear structure with chiral forces in MBPT Vancouver, 20 February 2015 9 / 24

[Hergert et al. 2013]

[Cipollone et al. 2013]

[Jansen et al. 2014]

[Lähde et al. 2014]

SRG transformation & ab initio calculations



○ Omission of A-body operators with A>3

⦿ Unitarity artificially broken
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○ Many-body truncations

Breaking of unitarity

○ Omitting 3-body operators

⦿ Breaking can be estimated

○ Degrading the many-body truncation

○ Around 1 MeV for GGF

⦿ Breaking for total energy

○ Around 100 keV for IM-SRG



Scale (in)dependence of separation energies & ESPEs

NONOBSERVABLE NATURE OF THE NUCLEAR SHELL . . . PHYSICAL REVIEW C 92, 034313 (2015)

FIG. 5. (Color online) One-neutron separation energies with dominant spectroscopic factors versus neutron ESPEs in 16,20,22,24O. Each level
is displayed for λ = 1.88 (open symbols), 2.00 (crosses), and 2.24 fm−1 (solid symbols). Results are displayed for both HFB and second-order
G-SCGF calculations. (a) One- and two-body operators are retained in the initial and transformed Hamiltonians. (b) One-, two-, and three-body
operators are retained in the initial and transformed Hamiltonians.

Hamiltonians and compile results from all four variants in
Fig. 5, covering energies from −48 MeV to +10 MeV. Let us
now list the main lessons one can learn from these results.

(i) Combining panels (a) and (b), one can appreciate the
significant reduction of the artificial scale dependence
of all one-nucleon separation energies obtained by
keeping 3N operators in the Hamiltonian and/or by
going from HFB to second-order G-SCGF.

(ii) The running of ESPEs is qualitatively different and
quantitatively larger than for observable one-nucleon
separation energies. This is particularly clear for the
2N + 3N Hamiltonian: While the average spread of
all displayed separation energies is equal to 0.2 MeV
for λ ∈ [1.88,2.24] fm−1, the average spread of ESPEs
is equal to 1.1 MeV. The distribution of those spreads
is shown in detail in Fig. 6.

(iii) While the spread of ESPEs is qualitatively different
and quantitatively larger than that of observable one-
nucleon separation energies, it is worth mentioning
that the latter are much more sensitive to correlations
than the former. Indeed, while the values of a given
separation energy computed for λ ∈ [1.88,2.24] fm−1

converge towards one another when going from HFB

equal strength appear near the Fermi energy is characteristic of the
superfluid and open-shell nature of 20O.

to self-consistent second order, each of them does so
by changing significantly on an absolute scale. This
systematic convergence of the one-nucleon separation
energies computed for three different scales to a
common value as one improves the many-body treat-
ment is not fortuitous but rather reflects the intrinsic
scale independence of these observables. This trend
is qualitatively different for ESPEs whose genuine
spread ultimately remains similar (and significant)
when going from HFB to self-consistent second order.

Second, we compare in Fig. 7 HFB and MR-IM-SRG(2)
results for the so-called two-neutron shell gap and the ESPE
gap across the Fermi energy, focusing on the nuclei 14,16,22,24O
that display good closed subshell character for the 2N + 3N
Hamiltonian (e.g., there is no pairing at the HFB level). The
observable two-neutron shell gap and the ESPE gap are defined
through [63,64]

δ2n(N,Z) ≡ 1
2 [E(N + 2,Z) − 2E(N,Z) + E(N − 2,Z)],

(33)

and

#ecent(N,Z) ≡ ecent
p (N,Z) − ecent

h (N,Z), (34)

respectively. By definition, ecent
h (N,Z) [ecent

p (N,Z)] denotes
the ESPE energy of the last occupied (first empty) shell
obtained via a naive, i.e., noninteracting, filling of those shells

034313-11
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FIG. 6. (Color online) One-neutron separation energies with dominant spectroscopic factors versus neutron ESPEs in
16,20,22,24O. Each level is displayed for λ = 1.88 (open symbols), 2.00 (crosses), and 2.24 fm−1 (filled symbols). Results
are displayed for both HFB and second-order G-SCGF calculations. Panel (a): one- and two-body operators are retained in
the (initial and) transformed Hamiltonians. Panel (b): one-, two-, and three-body operators are retained in the initial and
transformed Hamiltonians.

∆ecent(N,Z) are equal in the HF limit. This is the rea-
son why the former observable is often compared to the
latter non observable ESPE gap.
The main lessons to retain from Fig. 8 are similar to

before.

• As expected from good doubly-closed shell systems,
the ESPE Fermi gap captures the two-neutron shell
gap quantitatively at the mean-field, i.e. HFB, level
independently of the scale used. Contrarily, this
is not at all the case at the MR-IM-SRG(2), i.e.
correlated, level. This is typical of ab-initio theo-
retical schemes where the dynamic of all nucleons
is treated on the same footing, as was already ex-
emplified above for one-nucleon separation energies
from second-order G-SCGF calculations as well as
from CC calculations at the singles and doubles
level in Ref. [13].

• The scale dependence of the ESPE Fermi gap
is qualitatively different and systematically larger
than the artificial running of the two-neutron shell
gap, thus illustrating the non-observable (observ-
able) nature of the former (latter).

• In particular, while the scale dependence of
δ2n(N,Z) is systematically and significantly re-

duced by going from HFB to MR-IM-SRG(2), this
is not the case for the ESPE Fermi gap, whose scale
dependence actually tends to increase.

The above results constitute the best illustration cur-
rently allowed by state-of-the-art many-body calculations
of the scale dependence of nuclear shell energies. While
we consider this illustration to be already striking, its
quality will keep improving over the coming years, as
mentioned above.

D. Spectroscopic factors

Let us also briefly illustrate the non-observable charac-
ter of spectroscopic factors. To do so, spectroscopic fac-
tors associated with one-neutron addition and removal
processes on the ground states of 14,16,18,20,22,24O are
compiled in Fig. 9 as a function of the separation energy
of the corresponding final state. For each state, the re-
sults obtained for λ = 1.88, 2.00, 2.24fm−1 are connected
by lines. At the HFB level (Fig. 9(a)), the variation of the
spectroscopic factors with λ, is sufficiently small to be ob-
scured by the symbols. This variation essentially occurs
horizontally because the one-neutron separation energies
do depend on λ (see inset in Fig. 9(a)) at that level as
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and parity, we consider the separation energy of the state
with the dominant strength14. As in the previous sec-
tion, we perform HFB and G-SCGF calculations using
the SRG-evolved 2N and 2N+3NHamiltonians, and com-
pile results from all four variants in Fig. 5, covering en-
ergies from −48MeV to +10MeV. Let us now list the
main lessons one can learn from these results.

• Combining panels (a) and (b), one can appreci-
ate the significant reduction of the artificial scale
dependence of all one-nucleon separation energies
obtained by keeping 3N operators in the Hamilto-
nian and/or by going from HFB to second-order
G-SCGF.

• The running of ESPEs is qualitatively different
and quantitatively larger than for observable one-
nucleon separation energies. This is particularly
clear for the 2N+3N Hamiltonian: While the av-
erage spread of all displayed separation energies is

14 The two visible 5/2+ levels in 20O actually correspond to two dif-
ferent states with similar strength. The fact that two states with
equal strength appear near the Fermi energy is characteristic of
the superfluid and open-shell nature of 20O.

equal to 0.2MeV for λ ∈ [1.88, 2.24] fm−1, the av-
erage spread of ESPEs is equal to 1.1MeV. The
distribution of those spreads is shown in detail in
Fig. 6.

• While the spread of ESPEs is qualitatively differ-
ent and quantitatively larger than that of observ-
able one-nucleon separation energies, it is worth
mentioning that the latter are much more sensitive
to correlations than the former. Indeed, while the
values of a given separation energy computed for
λ ∈ [1.88, 2.24] fm−1 converge towards one another
when going from HFB to self-consistent second-
order, each of them does so by changing signifi-
cantly on an absolute scale. This systematic con-
vergence of the one-nucleon separation energies
computed for three different scales to a common
value as one improves the many-body treatment
is not fortuitous but rather reflects the intrinsic
scale independence of these observables. This trend
is qualitatively different for ESPEs whose genuine
spread ultimately remains similar (and significant)
when going from HFB to self-consistent second or-
der.

Second, we compare in Fig. 7 HFB and MR-IM-
SRG(2) results for the so-called two-neutron shell gap

2N+3N

Scale (in)dependence of separation energies & ESPEs
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∆ecent(N,Z) are equal in the HF limit. This is the rea-
son why the former observable is often compared to the
latter non observable ESPE gap.
The main lessons to retain from Fig. 8 are similar to

before.

• As expected from good doubly-closed shell systems,
the ESPE Fermi gap captures the two-neutron shell
gap quantitatively at the mean-field, i.e. HFB, level
independently of the scale used. Contrarily, this
is not at all the case at the MR-IM-SRG(2), i.e.
correlated, level. This is typical of ab-initio theo-
retical schemes where the dynamic of all nucleons
is treated on the same footing, as was already ex-
emplified above for one-nucleon separation energies
from second-order G-SCGF calculations as well as
from CC calculations at the singles and doubles
level in Ref. [13].

• The scale dependence of the ESPE Fermi gap
is qualitatively different and systematically larger
than the artificial running of the two-neutron shell
gap, thus illustrating the non-observable (observ-
able) nature of the former (latter).

• In particular, while the scale dependence of
δ2n(N,Z) is systematically and significantly re-

duced by going from HFB to MR-IM-SRG(2), this
is not the case for the ESPE Fermi gap, whose scale
dependence actually tends to increase.

The above results constitute the best illustration cur-
rently allowed by state-of-the-art many-body calculations
of the scale dependence of nuclear shell energies. While
we consider this illustration to be already striking, its
quality will keep improving over the coming years, as
mentioned above.

D. Spectroscopic factors

Let us also briefly illustrate the non-observable charac-
ter of spectroscopic factors. To do so, spectroscopic fac-
tors associated with one-neutron addition and removal
processes on the ground states of 14,16,18,20,22,24O are
compiled in Fig. 9 as a function of the separation energy
of the corresponding final state. For each state, the re-
sults obtained for λ = 1.88, 2.00, 2.24fm−1 are connected
by lines. At the HFB level (Fig. 9(a)), the variation of the
spectroscopic factors with λ, is sufficiently small to be ob-
scured by the symbols. This variation essentially occurs
horizontally because the one-neutron separation energies
do depend on λ (see inset in Fig. 9(a)) at that level as
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and parity, we consider the separation energy of the state
with the dominant strength14. As in the previous sec-
tion, we perform HFB and G-SCGF calculations using
the SRG-evolved 2N and 2N+3NHamiltonians, and com-
pile results from all four variants in Fig. 5, covering en-
ergies from −48MeV to +10MeV. Let us now list the
main lessons one can learn from these results.

• Combining panels (a) and (b), one can appreci-
ate the significant reduction of the artificial scale
dependence of all one-nucleon separation energies
obtained by keeping 3N operators in the Hamilto-
nian and/or by going from HFB to second-order
G-SCGF.

• The running of ESPEs is qualitatively different
and quantitatively larger than for observable one-
nucleon separation energies. This is particularly
clear for the 2N+3N Hamiltonian: While the av-
erage spread of all displayed separation energies is

14 The two visible 5/2+ levels in 20O actually correspond to two dif-
ferent states with similar strength. The fact that two states with
equal strength appear near the Fermi energy is characteristic of
the superfluid and open-shell nature of 20O.

equal to 0.2MeV for λ ∈ [1.88, 2.24] fm−1, the av-
erage spread of ESPEs is equal to 1.1MeV. The
distribution of those spreads is shown in detail in
Fig. 6.

• While the spread of ESPEs is qualitatively differ-
ent and quantitatively larger than that of observ-
able one-nucleon separation energies, it is worth
mentioning that the latter are much more sensitive
to correlations than the former. Indeed, while the
values of a given separation energy computed for
λ ∈ [1.88, 2.24] fm−1 converge towards one another
when going from HFB to self-consistent second-
order, each of them does so by changing signifi-
cantly on an absolute scale. This systematic con-
vergence of the one-nucleon separation energies
computed for three different scales to a common
value as one improves the many-body treatment
is not fortuitous but rather reflects the intrinsic
scale independence of these observables. This trend
is qualitatively different for ESPEs whose genuine
spread ultimately remains similar (and significant)
when going from HFB to self-consistent second or-
der.

Second, we compare in Fig. 7 HFB and MR-IM-
SRG(2) results for the so-called two-neutron shell gap

○ ESPEs less sensitive to correlations

2N+3N

Scale (in)dependence of separation energies & ESPEs
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D. Second moment

We show m(2)
k as a function of momentum in Fig. 3.

Note the di↵erence in vertical scale between panels (a)-
(d) and (e)-(f). In accordance to the results of the lower

order moments, the sum rule for m(2)
k is respected very

well for all interactions and momenta considered here.
Both the moment and the right-hand side of Eq. (15) are
displayed in the figure, but they are indistinguishable.

As the integral of the product of two positive definite

factors, m(2)
k is always positive. As shown in Eqs. (15)

and (16), the second moment can be split into two phys-
ically motivated terms. The first term is the square of

the first moment, [m(1)
k ]2, which equals the generalized

Hartree–Fock contribution to the self-energy. We show
this term in dash-dotted lines in Fig. 3. The second
contribution is the variance of the spectral function, �2

k,
which is displayed in dashed lines.

We discuss first the overall magnitude and momentum
dependence of the second moment. This is markedly dif-
ferent for traditional phase-shift equivalent potentials like
Av18 or CD-Bonn [panels (e)-(f)] than for chiral N3LO
interactions, independently of whether they have been
renormalized or not [panels (a)-(d)]. For chiral forces,

m(2)
k is a decreasing function of momentum at low mo-

mentum. Close to k ⇡ 0, m(2)
k ⇡ (1� 2)⇥ 104 MeV2, for

all chiral forces. The repulsive e↵ect of 3NFs [panels (b)

and (d)] is reflected in a smaller value of m(2)
k at low mo-

menta in comparison with 2NF-only results [panels (a)
and (c)].

Around k ⇡ 300 MeV, a clear minimum develops for

all chiral interactions. The value of m(2)
min is very sensi-

tive to the renormalization procedure. Unrenormalized

interactions yieldm(2)
min ⇡ 104 MeV2, whereas SRG renor-

malized interactions have much smaller minima ⇡ 103

MeV2. For momenta above the Fermi surface, the sec-
ond moment increases steeply, following the dominant

momentum dependence of [m(1)
k ]2.

The second moment for traditional forces has a very
di↵erent structure. No sharp minimum develops as a
function of momentum. In contrast to the values ob-
served for chiral forces, below the Fermi surface we find

large values, m(2)
k ⇡ (0.8�1.5)⇥105 MeV2 for CD-Bonn

and Av18. Further, the second moment is a steeply in-
creasing function of momentum. This is due largely to
the monotonically increasing momentum dependence of
�2
k.
The di↵erence between chirally motivated forces and

hard core interactions can be explained in terms of the
relative contributions of the first moment and the vari-
ance of the spectral function. On the one hand, we have

a contribution to m(2)
k that is precisely the square of

m(1)
k . As long as �2

k is small, the location of the zero

of the m(1)
k (if there is one) coincides with the minimum

of m(2)
k . We note that the position of this zero is sensi-
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FIG. 4. Momentum dependence of the variance, �2
k, of the

spectral function Ak(!) at ⇢ = 0.2 fm�3 and T = 5 MeV.
Results are displayed for 2NF-only calculations with the bare
N3LO force (solid lines) and SRG-evolved N3LO forces in the
range � = 3 fm�1 to � = 1.5 fm�1.

tive to the Fermi momentum, but also to the structure
of the potential. Fig. 2 clearly illustrates that traditional
forces with strong short-range potentials can have a zero

in m(1)
k which are shifted from kF (or even have no zeros

at all, like Av18).

On the other hand, the variance of the spectral func-
tions for soft chiral interactions is very di↵erent than that
of traditional potentials. First, the variance is smaller for
softer forces than it is for harder ones. In fact, there
is a clear hierarchy between the di↵erent types of in-
teractions considered in this paper. We have already
noted that, close to k = 0, traditional forces have val-
ues �2

k ⇡ 105 MeV2. N3LO and N3LO+3NF, in con-
trast, have values which are about an order of magni-
tude smaller, �2

k ⇡ 104 MeV2. Further, SRG-evolved
interactions have even lower variances, �2

k ⇡ 103 MeV2.
In terms of momentum dependence, hard forces have in-
creasing variances as a function of momentum, whereas
chiral forces have much more constant values.

We can gain further insight on how this hierarchy de-
velops by considering the variance of Ak(!) obtained
with a variety of SRG-evolved interactions. In Fig. 4,
we plot �2

k as a function of momentum for N3LO 2NFs
(corresponding to the solid line, � = 1), and for SRG-
evolved interactions in scales ranging from � = 3 fm�1

to � = 1.5 fm�1. We find that there is a clear one-to-
one correspondence between �, the renormalization scale
cut-o↵, and the value of the variance. Smaller scales yield
smaller values of �2

k, in an almost linear correspondence.
Further, we also note that all the variances go to zero
for a momentum of k ⇡ 1.5 GeV. This is in contrast to
the behavior observed for hard forces, where the variance
increases steadily as a function of momentum.

This result is relevant beyond the present context of

4

5 MeV. Our formalism is based on a SCGF ladder re-
summation scheme that is formulated at finite temper-
ature to avoid pairing instabilities [48, 49]. The single-
particle spectral functions in this approach are fully self-
consistent, in the sense that they have been used in the
dressing of the two-particle propagator describing the in-
termediate states in the ladder e↵ective interaction equa-
tion. The iterative procedure ensures self-consistency
between the e↵ective nucleon-nucleon interaction in the
medium and the single-particle propagator. In all calcu-
lations of the in-medium T�matrix interaction, we have
used partial wave decompositions up to J = 4 (J = 8) in
the dispersive (Hartree-Fock) contribution.

Our results have been computed at a single density of
⇢ = 0.2 fm�3. This lies slightly above saturation and
has been chosen to increase the e↵ect of 3NFs on single-
particle observables, which is otherwise relatively small
[19, 38, 39]. This density is however low enough so that
chiral forces are still applicable. All calculations with
chiral forces are performed using the Entem-Machleidt
(EM) N3LO 2NF as a starting point [11, 50]. In our ap-
proach, chiral 3NFs are taken into account as a density-
dependent two-body force obtained by means of an aver-
age over the third particle. The average procedure, which
takes care of the exchange e↵ects, has been presented
and discussed in detail in Refs. [19, 38, 39]. The 3NFs
are calculated at N2LO in the chiral expansion. We have
used non-local regulators in 3�body Jacobi coordinates
set by a scale ⇤3NF and an exponent n. Correlated mo-
mentum distributions have been used in the average pro-
cedure to obtain density-dependent one- and two-body
e↵ective forces. We have employed consistent 3NF low-
energy constants cD and cE . For results based on the
bare EM N3LO 2NF and 3NFs, hereafter referred to as
“N3LO+3NF”, the low energy constants cD = �0.201
and cE = �0.614 are extracted from the recent analysis
of Ref. [51]. The 3NF cuto↵ is set at ⇤3NF = 500 MeV
and the regulator exponent is n = 3.

We will also present results obtained with SRG-evolved
2NFs complemented with 3NFs at the N2LO level. For
these results, we choose the low-energy constants cD and
cE ; the 3NF cut-o↵ ⇤3NF and the exponent n from fits to
the 3H binding energy and 4He matter radius of Ref. [18].
In a way, this re-fit partially takes into account the e↵ect
of induced many-body forces by the SRG evolution. In
particular, we will use as an example the calculations
obtained with the EM N3LO 2NF evolved down to � =
2 fm�1, and a N2LO 3NF with ⇤3NF = 2 fm�1 and
n = 4 [18]. Hereafter, we refer to this combination as
“N3LO+SRG+3NF”.

In the present discussion, we want to analyse the e↵ect
that di↵erent nuclear hamiltonians have on the moments
of the spectral function. In this spirit, it is particularly
useful to compare “soft” and “hard” interactions. On the
one hand, we will use “hard” phenomenological interac-
tions, like CD-Bonn and Av18, which have already been
used in previous studies of sum rules [40–42]. On the
other, we will use relatively soft chiral forces and use the
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FIG. 1. Single-particle spectral functions at ⇢ = 0.2 fm�3

and T = 5 MeV for three di↵erent momenta. Left panels
(a)-(c) correspond to the Av18 nucleon-nucleon interaction.
Right panels (d)-(f) show results for an SRG-evolved N3LO
2NF interaction down to � = 2 fm�1 plus an N2LO 3NF. See
text for further details.

SRG method to evolve them further to lower momentum
scales. In a sense, we want to use the SRG as a han-
dle for softness and identify any e↵ects associated to the
evolution towards lower scales in the sum rules. We will
use in all cases the EM N3LO 2NF as a starting point
for the SRG evolution.

B. Spectral functions

We start our discussion by comparing, for three char-
acteristic momenta, the single-particle spectral functions
associated to two very di↵erent interactions. Fig. 1 shows
the single-particle spectral functions for k = 0 (top pan-
els), k = kF (central panels) and k = 2kF (bottom pan-
els) as a function of the energy variable ! � µ. We have
selected two forces that would normally be chosen as ex-
amples of hard and soft interactions. Panels (a)-(c) cor-
respond to the hard Av18 interaction, whereas panels
(d)-(e) are obtained from the SRG-evolved N3LO 2NF,
complemented with a 3NF.
For all momenta, we find significant di↵erences in the

○ Momentum tails in spectral function depend on the interaction

⦿ Larger range of scales can be explored in infinite nuclear matter

3

On the other hand, the asymptotic expansion in terms of
the self-energy in the Dyson equation yields

Regk(!) =
1

!

⇢
1 +

1

!


~2k2
2m

+ lim
!!1

Re⌃k(!)

�
+ ...

�
.

(8)
Considering the coe�cients of the asymptotic expansion
order by order, one finds the corresponding sum rules
associated to the moments of the spectral function,

m(n)
k =

Z 1

�1

d!

2⇡
!nAk(!) , (9)

at order n. Alternatively, mathematical expressions for
higher-order moments can be obtained from the expec-
tation value of nested commutators involving the Hamil-
tonian and creation and destruction operators [43, 45].

The lowest order sum rule endows the spectral function
with a probabilistic interpretation,

m(0)
k =

Z 1

�1

d!

2⇡
Ak(!) = 1 . (10)

Physically, this sum rule indicates that all the single-
particle strength is contained within the spectral func-
tion. Mathematically, it reflects the fact that Ak(!) is
a positive-definite probability distribution for every mo-
mentum k. The first moment of the spectral function,

m(1)
k =

~2k2
2m

+ lim
!!1

Re⌃k(!) , (11)

is directly related to the self-energy. In the Green’s func-
tion formalism, the self-energy is usually decomposed in
two pieces [47],

Re⌃k(!) = ⌃1
k � P

Z +1

�1

d�

⇡

Im⌃k(�+ i⌘)

! � �
. (12)

The first term is an energy-independent contribution [40].
The second term is a dispersive, energy-dependent con-
tribution that can be computed from the imaginary part
of ⌃ alone. Here, and in the following, we consider only
retarded self-energies. The corresponding time-ordered
components can be obtained if needed by a well-known
procedure [34]. Clearly, in the limit of very large ener-

gies, ! ! ±1, the second term decays like 1/! and m(1)
k

is given in terms of the energy-independent contribution
alone,

m(1)
k =

~2k2
2m

+ ⌃1
k . (13)

The instantaneous part of the self-energy is analogous in
structure to a Hartree-Fock term,

⌃1
k =

Z
d3k1
(2⇡)3

h~k~k1|V |~k~k1ia nk1 (14)

+
1

2

Z
d3k1
(2⇡)3

d3k2
(2⇡)3

h~k~k1~k2|W |~k~k1~k2iank1nk2 ,

but is computed with a correlated momentum distribu-
tion, nk, which is a↵ected by both correlations and tem-
perature [40]. We note that Eq. (14) explicitly contains
the e↵ects of two- and three-body nuclear forces denoted
by V and W , respectively [43]. The subindex a in the
corresponding matrix elements indicates that they have
been antisymmetrized.

In nuclear physics, m(0)
k and m(1)

k have been explored
extensively in a variety of contexts [40–44]. In particular,

m(1)
k is often called a “centroid energy”, and is closely

related to e↵ective single-particle energies in finite nu-
clei [43]. In a sense, it provides single-particle energies
which have been renormalized by single-particle fragmen-
tation. In fact, if one takes the probabilistic character of

the spectral function into account, m(1)
k is nothing but

the mean of the distribution Ak(!). m
(1)
k is also expected

to be dependent on cut-o↵ variation in the Hamiltonian
[44], as it is not an observable.
Higher-order sum rules are obtained if more terms are

retained in the expansion of Eq. (8). m(2)
k relates the

spectral function to the imaginary part of the retarded
self-energy:

m(2)
k =


~2k2
2m

+ ⌃1
k

�2
�
Z +1

�1

d!

⇡
Im ⌃k(!) , (15)

where the dispersion relation for Re⌃k(E) has been used

[40, 45]. The first term in the m(2)
k sum rule is simply

(m(1)
k )2. In a probabilistic interpretation, the variance of

the spectral function is related to the second moment

�2
k =

Z +1

�1

d!

2⇡
[! �m(1)

k ]2Ak(!) = m(2)
k � (m(1)

k )2

= �
Z +1

�1

d!

⇡
Im ⌃k(!) . (16)

This result shows that the variance of Ak is nothing but
the bulk integral of the imaginary part of the retarded
self-energy [45]. In practical terms, the moments of the
spectral function become increasingly di�cult to com-
pute numerically as the order increases, because they re-
quire accuracy in the high-energy tails. We shall see in
the following that the n = 2 moment and the variance
are particularly sensitive to the short-range structure of
nuclear forces. Along these lines, it is important to note
that in the Hartree-Fock approximation Im ⌃ = 0 and
the variance is therefore null, �2

k = 0. Consequently,
a non-zero variance is already a clear signal of beyond
mean-field correlations.

III. RESULTS AND DISCUSSIONS

A. Details of the calculation

All results reported in this paper have been obtained
for symmetric nuclear matter at a temperature of T =

○ Variance depicts amount of correlations

[Rios, Carbone, Polls 2017]



Summary

⦿ Part II

○ Correlations between observables & shell structure depend on the resolution scale

○ Scale/scheme dependence should be explicit & consistent

○ Quantification of scale dependence interesting from a pragmatic point of view

○ Non-observability of shell structure formally revisited

⦿ Perspectives

○ Ab initio calculations corroborate formal analysis

○ Focus should be on consistency to combine structure & reactions

⦿ Part I

○ Similarity renormalisation group as a knob for (short-range) correlations

○ Correlations are scheme and scale dependent 

○ What balance between different ways of accounting for correlations?


