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I. PROBLEMATIC

For more than forty years, the Energy Density Functional (EDF) method [1, 2] has proven to be a useul tool to
study low-energy nuclear structure and reactions. In particular, its Multi-Reference (MR) formulation allows the
study of complex phenomena that emerge in the strongly-correlated �nite quantal system that is the atomic nucleus.
Over the last few years, the full-�edged MR-EDF method and its derivatives (e.g. the quasiparticle random-pase
approximation [3] (QRPA), the microscopic collective Hamiltonian [4, 5], the Lipkin method [6], . . . ) have been
subject to important developments, both regarding their theoretical foundations and their applications. On the
formal side, e�orts are being made to design parametrizations of the (o�-diagonal) energy kernel that are consistent
with the MR methodology [2, 7�11]. As for applications, the horizon has immensely widen over the years and now
concern topics as diverse as the spectroscopy of even and odd-mass nuclei [12�19], the estimation of β decay rates [19�
21], the calculations of nuclear matrix elements for neutrinoless double-β decay [22�24], the study of giant resonances
[25�28], the investigation of �ssion dynamics [29, 30], or the analysis of clusterization in light nuclei [31�33], just to
give a few examples.
From a technical point of view, this large-scale availability of MR-EDF calculations is made possible by the advances

in scienti�c computing and the access to ever-growing computational resources. Indeed, the most advanced MR-EDF
methods that combine symmetry restorations and/or con�guration mixing are computationally demanding and require
large-scale computing facilities. This has to be contrasted with the picturesque idea of EDF approaches as low-cost
computing methods. The di�culty comes from the fact that MR calculations represent a multi-dimensional problem
that rapidly grows as one includes more (collective or non-collective) degrees of freedom into it. Consequently, even
with the future increase in computational resources and the advent of exascale computing, it may not be possible
to solve for the most general MR scheme, including variationally all possible degrees of freedom. To overcome those
hardware limitations, one has to cleverly select the degrees of freedom that must be taken into account. The problem
is thus to determine, for a given observable and a speci�ed accuracy, which correlations are mandatory to be treated
explicitly, and which MR schemes are the most e�cient to achieve this. This is not an easy task for several reasons.
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First, the EDF method relies on the use of an e�ective parameterization of the o�-diagonal energy kernel, which
itself accounts for correlations that, qualitatively speaking, vary smoothly with nucleon number. The analytical form
of this energy kernel is traditionally postulated with essentially no underlying rooting or systematic argument, except
for symmetry ones, while its parameters are �tted to reproduce a biased set of (experimental or theoretical) data
on the basis of the diagonal part of the kernel only. The fact that there is little control on what the energy kernel
itself accounts (should account) for makes di�cult to characterize the modes and the MR scheme that constitute the
optimal compromise in the calculation of a given set of nuclear observables.
Second, the manner one optimizes the reference states that are mixed in a full-�edged MR-EDF calculation impacts

the actual result and the numerical cost. A typical example relates to symmetry-breaking and restoration MR schemes
where two variants can be considered, i.e. (i) the Variation-After-Projection (VAP) approach where one variationally
searches for the reference state that gives the lowest energy after the symmetry restoration, and (ii) the Projection-
After-Variation (PAV) approach where one variationally searches for the reference state that gives the lowest energy
before symmetry restoration. While the VAP approach is computationally more demanding than the PAV approach
it is better from a variational viewpoint. Still, it is not clear to which extent this statement remains true when only a
subset of the symmetries are treated in a VAP scheme while the others rely on a PAV scheme, as di�erent symmetry
restorations may favor reference states with di�erent intrinsic con�gurations.
A third di�culty resides in the fact that, contrarily to what one may intuitively hope for, the various (collective and

non-collective) modes whose dynamics can be explicitly treated at the MR level are usually not independent from one
another. Consequently, disentangling the merit of various modes and concluding on the superiority of incorporating
a particular one in the description of a certain phenomenon requires a thorough and systematic multi-dimensional
analysis that could not been conducted until now.
Fourth, the computation of observables besides the energy is traditionally performed with bare, e.g. one-body,

operators. On the one hand, the use of bare nucleonic parameters (e.g. electric charge and g factor) is motivated
by the fact that the dynamics of all nucleons is explicitly treated in the EDF method. On the other hand, the
omitted internal structure of the nucleons and the inherent truncation of the many-body Hilbert space explicitly
spanned within the (SR- and MR-) EDF method, should allow for the use of many-body operators on the one hand
and of possibly e�ective nucleonic parameters (i.e. low energy coupling constant) on the other when considering the
calculations of, e.g. electromagnetic, observables besides the energy.
More generally, a critical analysis of mandatory correlations is inseparable from a critical analysis of the theoretical

framework itself. For example, one can di�erentiate between MR methods according to their treatment of symmetries.
On the one hand, one �nds methods that break and restore symmetries [1] as a way to grasp a large part of collective
correlations already at the SR level, but at the cost of the computationally demanding symmetry-restoration process
at the MR level. On the other hand, one �nds symmetry-conserving approaches that build a particle-hole expansion
on top a reference state that carries good symmetry quantum numbers [15]. From another perspective, approaches
such as QPRA [34, 35] or the Collective Hamiltonian [36, 37] are approximations to the full-�edged MR-EDF method
in its most general form. As such, there applicability is not as general, e.g. QRPA only describes well systems that
display a harmonic behavior with respect to collective degrees of freedom. Still, as the most general MR-EDF method
is never (and may never be) applied in practice, these approximations actually give better access to speci�c states
and observables and thus constitute optimal compromises in those cases. Even more restricted and approximate
methods such as the Lipkin method [38] may grab, within a modi�ed SR scheme, MR correlations at a severely
reduced computational cost that authorizes their use on a wide scale.
A corollary of all the above is that correlations are only de�ned relative to an arbitrarily chosen reference and are

not observable per se. As such, experimentally measurable quantities can be equally well described by expanding the
many-body solution in many di�erent ways. The non-orthogonality of the modes employed in a MR-EDF calculations
and the non-additive character of the associated correlation energies as well as the possibility to employ symmetry-
conserving or symmetry-broken and -restored schemes are particular manifestations of this fact. On a deeper level,
even when correlations have been formally de�ned unambiguously within a given setting, the relative weight of
"uncorrelated" and "correlated" contributions can be tuned such that absolute statements about their role must be
prohibited [39, 40]. Eventually, discussing the impact of correlations on observables requires their thorough de�nition
and the full speci�cation of the theoretical scheme one is working with.

II. GOALS OF THE WORKSHOP

In summary, the goals of the workshop are to:

1. gather the community of MR-EDF practitioners around a common objective.
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2. identify, for a set of typical observables of interest, the most pertinent degrees of freedom to be taken into
account in the calculations.

3. determine to what extent the di�erent sources of correlations are (in)dependent from one another.

4. discuss the merits and the e�cency of the di�erent methods used to include the desired correlations, both from
a conceptual and a numerical point of view.

III. PROGRAM

Monday Tuesday Wednesday Thursday

9h30 Egido Pillet Rodríguez

10h15 Welcome 10h30 Break Break Break

10h30 Somà 11h00 Bender Lacroix Satuªa

12h00 Lunch 12h00 Lunch Lunch Lunch

14h00 Duguet 14h00 Heenen Bally Péru

15h30 Break 15h00 Break Break Break

16h00 Dobaczewski 15h30 Nik²i¢ Colò Martini

17h00 Discussions 16h30 Discussions Discussions Final discussions

20h00 Social dinner

A. Introductory lectures

• V. Somà, CEA
Many-body correlations: the relative nature of their de�nition and the non-observable character of their value.

• T. Duguet, CEA
Vertical & horizontal expansions within MR EDF method

B. List of presentations

• J. Dobaczewski, University of York and Jyväskylä
Approximate symmetry restoration correction at the SR level with the Lipkin method

• J.L. Egido, Universidad Autónoma de Madrid, Madrid
Are two-quasiparticle states pertinent to MR-EDF descriptions of collective states?

• M. Bender, IPNL
Coupling of collective and single-particle degrees of freedom in symmetry-restored GCM

• P.-H. Heenen, Université Libre de Bruxelles
Interplay between angular-momentum and parity restoration after variation

• T. Nik²i¢, University of Zagreb
Comparison between collective Hamiltonian and full-�edged MR calculations using a relativistic EDF

• N. Pillet, CEA
Second variation in the multi-particle multi-hole con�guration mixing with a Gogny energy density functional

• D. Lacroix, IPNO
Combining symmetry breaking and restoration with con�guration interaction
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• B. Bally, CEA
Con�guration mixing of symmetry-restored odd-quasiparticle excitations for the description of odd-mass nuclei

• G. Colò, Università degli Studi di Milano
Multi-reference calculations in the particle-vibration coupling scheme

• T.R. Rodríguez, Universidad Autónoma de Madrid
MR-EDF calculations of nuclear matrix elements for neutrinoless double-β decay

• W. Satuªa, University of Warsaw
Isospin symmetry restoration for nuclear spectroscopy and the calculation of super-allowed β-decay

• S. Péru, CEA
Quasiparticle random-phase approximation for low-lying excitations

• M. Martini, CEA
Quasiparticle random-phase approximation calculations for charge-exchange excitations in deformed nuclei and
in in�nite nuclear matter
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