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Introduction:  what we know from (e,e')
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Introduction:  what we know from (e,e')

QE:  RMF with FSI = RMF

1pion: RMF w/o FSI = RPWIA

MEC: RFG (Megias, De 
Pace, et al. PRD 2015)
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Quasielastic  One­pion production

Introduction: cross sections
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Quasielastic scattering
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Relativistic 
Impulse 

Approximation

Impulse approximation

where 
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Relativistic 
Impulse 

Approximation

Impulse approximation

Relativistic 
mean-field 

model
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RMF: quasielastic results

R. González-Jiménez Ghent University

RPWIA: Scattered nucleon 
wf is described as a Dirac 

plane wave.

RMF-FSI: Scattered 
nucleon wf is solution of 
Dirac eq. in presence of 
the same potentials used 

to describe the bound 
nucleon wf.

Intermediate 
energies 

(typical QE 
regime)

MEC: (Megias, …, De 
Pace, et al. PRD 2015)

q ~ 401 q ~ 332

q ~ 402
q ~ 585
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RPWIA: Scattered nucleon 
wf is described as a Dirac 

plane wave.

RMF-FSI: Scattered 
nucleon wf is solution of 
Dirac eq. in presence of 
the same potentials used 

to describe the bound 
nucleon wf.

Low 
energies

High 
energies

RMF: quasielastic results

q ~ 118 q ~ 297

q ~ 1317
q ~ 2235
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RMF:  transverse > longitudinal 

RMF model 
predicts  f

T
 > f

L

 The origin of that effect lies in the distortion of the lower components of the bound and 
scattered nucleon wave functions (mainly, the latter).

Therefore, this effect does not occur in other models based on non-relativistic or semi-
relativistic approaches.

The analysis of data seems to support that f
T
 > f

L
.

Rev. Mod. Phys. 80 189, 
Benhar, Day and Sick
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RMF for QE: Summary

Both the distortion of initial and final nucleon wave functions have a 
huge impact in the cross sections

Positive:

➢  Long tails corresponding to high momentum of the outgoing nucleon and an 
asymmetric shape: good agreement with data.

➢  Excellent behavior at intermediate transfer momentum
( 300 < q < 900 MeV ).

➢  Relatively good behavior at low q (much better than Fermi gas models!!).

➢  Prediction of a transverse enhancement (f
L
 < f

T
).

Negative: 

➢  One would expect that the behavior of RMF for increasing momentum 
transfer (q > 1000 MeV) tends to RPWIA one, but it does not happen...
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RMF for QE: Summary

We want this 
model in the 

pion-
production 
region!!!
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Electroweak one-pion 
production on nucleons
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One-pion production on nucleons

We use the same one-pion-production mechanisms as in 
Valencia model (PRD 76 (2007) 033005, PRD 87 (2013) 113009)

Resonant contributions:

Contributions from the effective
pion-nucleon Lagrangian of ChPT 
(non-resonant contributions):



 19

R. González-Jiménez Ghent University

Delta resonance

Delta decay:

1) Traditional 2) Pascalutsa (it only couples to the physical spin-
3/2 degrees of freedom of the Delta)

Nucleon-Delta transition vertex:

Delta propagator:

with the energy dependent Delta width:
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Non-resonant contributions

Chiral Perturbation Theory applied to the pion-nucleon system gives the following 

effective Lagrangian at lowest order in 1/f
π
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Non-resonant contributions

Chiral Perturbation Theory applied to the pion-nucleon system gives the following 
effective Lagrangian 

.... etc. (see, for instance, S. Scherer and M. R. Schindler, Springer 2012)
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Checking our implementation

CC-neutrino induced pion production

Electron induced pion production

C
5

A (0) = 1.2; M
A
 = 1.05 GeV
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Same results as in HNV 
(PRD 76, 033005 (2007) 

CC-neutrino induced pion production

Electron induced pion production

Same results as in 
J. Zmuda's PhD Thesis 

Checking our implementation

C
5

A (0) = 1.2; M
A
 = 1.05 GeV
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Checking our implementation

C
5

A (0) = 1.2 

M
A
 = 1.05 GeV

Fit to BNL data:
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Electroweak one-pion 
production on nuclei
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Relativistic 
Impulse 

Approximation

Impulse approximation
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Approximation: To simplify, in the propagator we use asymptotic values for the 
momentum of the particles

Hadronic Current (example, Nucleon pole)

After some algebra and considering the initial and final states as states with well 
defined energy obtain:



 30

R. González-Jiménez Ghent University

Medium modifications of the Delta
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Medium modifications of the Delta

Now the operator 
explicitly 

depends on r
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Results
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MiniBooNE Charged-Current 1π+

RPWIA RMF-FSI
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MiniBooNE Charged-Current 1π+

RPWIA RMF-FSI

not yet
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MiniBooNE Charged-Current 1π+

Double differential cross section
pion variables

Double differential cross section 
muon variables



 36

R. González-Jiménez Ghent University

MINERvA Charged-Current 1π+

W < 1400 MeV

W2 = M2 + 2Mω - Q2

See U. Mosel, PRC 91, 065501 (2015) for 
discussion about W-cuts 
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Maybe...

Hernandez, Nieves, Vicente Vacas., 
PRD 87, 113009 (2013)

Lalakulich and Mosel, 
PRC 87, 014602 (2013)
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Maybe...

Hernandez, Nieves, Vicente Vacas., 
PRD 87, 113009 (2013)

Lalakulich and Mosel, 
PRC 87, 014602 (2013)

González-Jiménez et al., 
PRC 88, 025502 (2013)

The distortion of the 
nucleon wf moves the 

strengh from low to high T
N
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Inclusive 12C(e,e')

QE:  RMF with FSI = RMF

1pion: RMF w/o FSI = RPWIA

MEC: RFG (Megias, De 
Pace, et al. PRD 2015)
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Summary

✔  We described the quasielastic and one-pion production 
processes within a relativistic mean-field model.

✗  Microscopic model, fully relativistic and we can make 
predictions for exclusive cross sections   

✔  The agreement with inclusive (e,e') data as well as with 
Charged-Current 1π+ is quite good.

✔  Near future: 
✗  Incorporate the FSI for the outgoing nucleon and pion.

✔Problems: 
✗  We sum amplitudes so we have interferences that, in 

some cases, we do not control. 
✗  We are still missing a lot of ingredients: coherent pion 

production, other resonances, ...
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Merci pour votre 
attention 

The end...
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Backup slides 
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Relativistic mean-field model (I)
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3) Spherical symmetry for finite nuclei:

RMF model provides a microscopic description of the ground state of finite nuclei 
which is consistent with Quantum Mechanic, Special Relativity and symmetries of 
strong interaction.

The starting point is a Lorentz covariant Lagrangian density 

where 

1) Mean-field approximation:

2) Static limit:

Main approximations:

Extension of the original 
σ−ω  Walecka model 

(Ann. Phys.83,491 (1974)). 
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Relativistic mean-field model (II)
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Dirac equation for nucleons (eq. of motion for the barionic fields):

where the scalar (S) and vector (V) potential are given by: 

Eqs. of motion for the mesons and the photon:

Current densities

Solution of the couple equations for the fields in a self-consistent way. 
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6 free 
parameters

Relativistic mean-field model (III)

R. González-Jiménez Ghent University

In general, the parameters are fit to reproduce some general properties of some 
closed shell spherical nuclei and nuclear matter. 

Parameters for the NLSH model (fitted to the mean charge radius, binding energy and 
neutron radius of the 16O, 40Ca, 90Zr, 116Sr, 124Sn and 208Pb.

 16O
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Relativistic mean-field model
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Q dependence of RMF scaling functions
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Delta propagator:

with the energy dependent Delta 
width:

Medium modifications of the Delta
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Medium modifications of the Delta

We modify the free Delta decay constant 
to take into account the E-dependent 
medium modification of the Delta-width
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Hadronic Current (Contact Term)
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No free particles !!!

Hadronic Current (Contact Term)
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QE: cuts on the nucleon momentum 

p
N
 is the momentum of 

the outgoing nucleon

p
m
 is the momentum of 

the bound nucleon

CCQE neutrino-12C scattering 
cross sections
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QE: cuts on the nucleon momentum 

(e,e')
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QE: RMF vs RPWIA (CCQE neutrino-12C)
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Pion production ( cuts on p
N   

)
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Pion production ( cuts on p
N   

)
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Interferences
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Other results
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