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Introduction Bogoliubov Coupled Cluster theory Applications Outlook

Motivation: computing near-degenerate finite Fermi systems

Ab initio methods have been developed
CC, IM-SRG, SCGF, CI

Establish techniques to provide reliable predictions for experimental measurements

Include assessment of uncertainty from many-body method
Expansion techniques are ideal, if contributions are smaller at higher orders
Access to other observable properties beyond energy of strong interest
Expansion on top of Slater determinant breaks down for open-shell systems

Three different philosophies to extend to near-degenerate systems
1 Multireference (MR-CC, MR-IM-SRG)
2 Effective interaction (from CC, NCSM, IM-SRG)
3 Symmetry breaking (BCC, Gorkov Green’s function methods)

Possibility to cross-check results beyond current experimentally known region

Comparison of multiple methods useful (especially single- vs. multi-reference)

In nuclear physics, require accurate treatment of forces to reproduce experiment
Known issues with current forces on the market
Ab initio calculations of nuclei provide feedback on accuracy of potentials
In fact, probe new aspects of the bare nuclear potentials
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Spontaneous symmetry breaking methods

Extensions beyond closed-shell systems exist via multi-reference methods (e.g.,
particle-attached equation-of-motion CC)

Computationally demanding as more particles are added
Formally complicated as well

Reference state explicitly breaking symmetry can account for superfluid nature

Build CC techniques around Bogoliubov vacuum

K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984)
W.A. Lahoz and R.F. Bishop, Z. Phys. B 73, 363 (1988)
L.Z. Stolarczyk and H.J. Monkhorst, Mol. Phys. 108, 3067 (2010)

Maintain single reference nature (formal and computational simplicity)

Difficulties
Quasiparticle basis- rewrite Hamiltonian normal-ordered wrt HFB vacuum

Diagrammatic techniques- rules (e.g. from Shavitt and Bartlett) need modification

Additional constraint equation- average particle number

Computational aspect- less expedient scaling

nipn
j
h in CC→ (np + nh)i+j in BCC
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Bogoliubov algebra

Bogoliubov transformation

β†α =
∑
p

Upα c†p + Vpα cp βα =
∑
p

U∗pα cp + V ∗pα c†p

Bogoliubov vacuum |Φ〉 ≡ C
∏
α

βα|0〉

Natural extension from particle-hole language

Simplifies some aspects of standard CC theory (all lines in one direction)

Rewrite Hamiltonian, i.e. normal order with respect to |Φ〉
Derived including three-body interactions (to include implicit two-body component)
In terms of components H ij with i(j) quasiparticle creation(annihilation) operators

H = H00 + H11 + H20 + H02 + . . .

= H̃00 +
∑
k1k2

H̃11
k1k2

β†k1
βk2 +

1

2!

∑
k1k2

{
H̃20

k1k2
β†k1
β†k2

+ H̃02
k1k2

βk2βk1

}
+ . . .

Each matrix element H̃ ij
k1...ki ki+1...ki+j

is:

1 antisymmetric for all k1 . . . ki and ki+1 . . . ki+j
2 can be written as a function of NN,NNN,U,V
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Bogoliubov coupled cluster theory

Hamiltonian replaced by grand canonical potential Ω = H − λA
Solution for nucleus with A0 particles given by

Ω|Ψ〉 = Ω0|Ψ〉

Constraint equation A0 = 〈Ψ|A|Ψ〉
〈Ψ|Ψ〉

Exponential ansatz |Ψ〉 = eT |Φ〉
Quasiparticle cluster operator T = T1 + T2 + T3 + . . .

T1 =
1

2!

∑
k1k2

t̃k1k2β
†
k1
β†k2

T2 =
1

4!

∑
k1k2k3k4

t̃k1k2k3k4β
†
k1
β†k2
β†k3
β†k4

Similarity transformed grand canonical potential Ω̄
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Extension of standard coupled cluster theory

Motivated by procedure in standard coupled cluster theory
Produce eigenvalue equation Ω̄|Φ〉 = Ω0|Φ〉
Utilize Baker-Campbell-Hausdorff expansion

Truncate to four T operators (six with explicit three-body contribution)

Limit to connected terms only

Only quasiparticle creation operators in T → Ω to the left

Ω̄ = Ω +
(

ΩT
)

C
+

1

2!

(
ΩT T

)
C

+
1

3!

(
ΩT T T

)
C

+
1

4!

(
ΩT T T T

)
C

= (ΩeT )C

Subtract reference energy for convenience ΩN = Ω− 〈Φ|Ω|Φ〉
Produce energy and amplitude equations

〈Φ|Ω̄N |Φ〉C = ∆Ω0

〈Φαβ...|Ω̄N |Φ〉C = 0

Solve under constraint of average particle number

A0 =
〈Φ|eT

†
AeT |Φ〉

〈Φ|eT †eT |Φ〉
= 〈Φ|eT

†
AeT |Φ〉C = 〈Φ|(1 + Λ)e−T ANe

T |Φ〉C
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Current status of ab initio BCC theory

Formalism
Derivation of BCCSDT complete, evaluated equivalently in multiple ways

Can recover standard CC in Slater determinant limit
Produce more general extended coupled cluster method in straightforward limit

Can evaluate one- and two- body operators

Implementation
Utilize NN interactions from chiral potential (+RG)

Bogoliubov vacuum from solution of HFB equations
m-scheme version of HFB code
Utilizes symmetry properties (subblock matrices in most reduced form)

BCCSD derived and coded in m-scheme with intermediates
BCCSD energy and amplitude equations contain 27 diagrams
Intermediates reduce computational time and formal complexity
Slight issues remaining in comparison to benchmark calculations

Illustration using BCCD
Truncation to T = T2

Should include most important effects at lowest order (two-body potential)
Singles contribution corresponds to Thouless theorem; HFB solution used
Does not provide convergence- triples required at least perturbatively
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Proof-of-principle calculations: Methodology

Comparison to CC results in closed-shell nuclei
HFB solution formally collapses to HF solution
BCCSD equations in Slater determinant limit contain correlations beyond CCSD
In practice, CC results for closed-shell nuclei are reproduced exactly

Comparison to CC results beyond closed-shell nuclei
HFB reference state is constrained to correct particle number on average
BCC equations are iterated with Lagrange constraint on particle number (Z and N)
Computation of particle number via Λ method is valid at 1st order
Extensions of CC, e.g. EOM-CC, provide comparison to BCC

Allocated time on supercomputing machines for calculations (e.g. TITAN)

Caveats
Intrinsic Hamiltonian treated approximately since HFB solution breaks symmetry
Very small model spaces used for preliminary calculations- results are not converged
Computational limit reached at Nmax = 8 oscillator shell (re-coding necessary)

Parameters of the calculation
Bare NNLOopt from A.Ekström et al., PRL 110, 192502 (2013)
Spherical harmonic oscillator single particle basis defined by ~ω
Ground states of 16,18,20O,18Ne,20Mg calculated in Nmax = 6 model space
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16O: Energies and extrapolations

CCSD energy as a function of ~ω
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16O: Energies and extrapolations

CCSD energy as a function of effective size of basis L2

Infrared extrapolation based on Dirichlet boundary condition
Reliable if ultraviolet contamination is small
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Open shell nuclei: Energies and extrapolations

E(L) = E∞ + A∞e−2k∞L L = L2 =
√

2(N + 3/2 + 2)
√

~/(Mω)
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Open shell nuclei: Energies and extrapolations
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Compiled results of sd-shell nuclei

Nucleus EBCC
Nmax=6 ECC

Nmax=6 E∞ ECC
Nmax=12 E exp

16O -119.110 -119.110 -124.821 -123.453 -127.619
18O -124.440 -126.476 -130.738 -132.990 -139.808
20O -131.428 n/a -139.144 n/a -151.371

18Ne -115.413 -117.927 -122.089 -124.850 -132.143
20Mg -112.237 n/a -119.996 n/a -134.480

BCCD extrapolated results given by E∞

CCD results
For 16O, standard CCD calculation
For 18O, 18Ne, two-particles-attached equation-of-motion CCSD with ~ω = 26 MeV
Future comparison of computational aspects of BCC and EOM-CC necessary
For this interaction, ≈ 7 MeV gained by going to Λ-CCSD(T)
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Assessing symmetry breaking

Evaluation of particle number via one-body density matrix
Constrained in BCC system of equations to correct number on average
Interested in evaluating conservation of symmetry upon solution

HFB reference state
Separately constrained to produce right particle number on average

Variance σA =
√
〈A2〉 − 〈A〉2 relates amount of symmetry breaking

For closed shell nuclei, HFB equations reduce exactly to HF result (σA = 0)

BCC results
In exact result (Ap − Ah excitations), physical symmetries restored
For BCCD in small model spaces, this is far from maintained
Amount of symmetry breaking on par with initial HFB state
Local fluctuations present (A = 20 mirror nuclei differ significantly)

Nucleus HFB BCCD
16O 0.000 0.000
18O 1.666 1.677
20O 1.699 1.843

18Ne 1.663 1.662
20Mg 1.691 1.596

Can we project good quantum numbers?
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Conclusions

Open-shell systems within reach with ab initio techniques
Extensions via symmetry-breaking (BCC, Gorkov-Green’s function methods)
Extensions to multi-reference states (MR-IM-SRG)
Via shell model with effective interactions derived from bare nuclear forces
Explore new aspects (pairing), assess deficiencies of forces from χEFT

General formalism
BCC energy and amplitude equations derived up to BCCSDT
Diagrammatic technique developed, reproduces algebraic result
Single-reference even for open-shell (superfluid) nuclei, requires constraint on A
Microscopic two-body and three-body interactions can be treated

Implementation in m-scheme
HFB, BCCD, linear BCCSD codes are fully operational
Results benchmarked for closed-shell nuclei to standard CC results
Fewer correlations than two-particle-attached equation-of-motion CC
Only microscopic two-body interactions incorporated thus far
One- and two-body operators can be computed
Variance of particle number in BCC solution on par with HFB reference state
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Outlook

Utilize deformed basis in BCC
Advantage of m-scheme implementation compared to J-coupled scheme
Currently, spherical single particle basis and spherical BCS solution employed
Permits treatment of doubly-open-shell nuclei
HFB m-scheme code reproduces deformed HF result, but is not internally consistent

Evaluation of potential energy surfaces (24Mg) ab initio
Implement constraint on deformation

Go beyond Nmax = 8 oscillator shell in BCC calculations
Distribution of T2 amplitudes required
Further optimization of code desirable
Alternatively, implement BCC equations in J-scheme

Significant improvement due to reduction of dimensions
Only requires projection of U(1) symmetry to restore physical quantum numbers
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Outlook (including long-term goals)

Extend to equation-of-motion BCC
Equation-of-motion BCC enables the computation of odd nuclei and excited states
One-particle attached/removed suffices since all even-even nuclei can be accessed
Treatment of one- and two-body operators already in place
Computation of observables, e.g. B(E2), for comparison to experiment

Projection of good quantum numbers
Relevant once symmetry is spontaneously broken
Physical state maintains symmetry
Restore symmetry in approximate treatment through projection
Future implementation to restore U(1) and SO(3) symmetry

Include three-body forces at least at normal-ordered two-body level
Inclusion of three-body forces relevant for accurate results and trends
Full treatment already derived in general indices
Normal-ordered two-body contribution nearly derived in m-scheme implementation

Longer-term extensions based on advances in standard CC methods

A. Signoracci Bogoliubov coupled cluster theory



Introduction Bogoliubov Coupled Cluster theory Applications Outlook

Backup slides

A. Signoracci Bogoliubov coupled cluster theory



Introduction Bogoliubov Coupled Cluster theory Applications Outlook

Comparison of binding energies of 16O

CCD and CCSD are nearly indistinguishable
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CCSD results for 16O

Table: Minimum CCSD energies and associated frequencies for 16O with different Nmax

Nmax ~ωmin Emin

6 26 -119.211
8 24 -122.776
10 24 -123.400
12 22 -123.502

CC code is optimized

Dimensions of J-coupled scheme are significantly reduced relative to m-scheme

Larger model spaces can be accessed (BCC code limited to Nmax = 8)

Convergence can also be studied as a function of ~ω
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