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I. Microscopic approaches of nuclear systems                                                       A) Richness of nuclear systems 

 Microscopic approaches of nuclear systems 
 

A) Richness of nuclear systems 



  Nuclear systems : huge variety of behaviors 

 Deformation  Clustering 

 Halo, neutron skin 

 Superfluidity 

 Excited states spectra 

 De-excitation modes 
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I. Microscopic approaches of nuclear systems                                                       A) Richness of nuclear systems 

  Cross-fertilization 

 Mesoscopic physics 

 Astrophysics 
 Particle physics 



Anderson P.W., Science 177:393-396 (1972) 
Batterman R.W., Fond. Phys. 41:1031-1050 (2011) 
 

 

  Emergent phenomena : hallmark of many-body systems  

 
  Behavior not reducible to some sort of sum of the  

behaviors its parts 

  
  Behavior not predictable given the full knowledge of the  

behaviors its parts 

 

  Behavior somehow novel by some salient standard 

 

   When many particles interact totally surprising results can emerge 
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I. Microscopic approaches of nuclear systems                                                       A) Richness of nuclear systems 

  Why such a diversity ? 



  Nuclear systems = mixture of 4 types of non-elementary fermions  feeling various interactions 
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p 

p p 

p 

Strong   

Binds nucleons in 

nuclei 

  saturation 

 

Electromagnetic  

Asymmetry 

proton/neutron 

Limits size nuclei 

 

Weak   

Exotic nuclei decay 

towards stability line 

 

Gravity   

Binds neutron 

in neutron stars 

 

I. Microscopic approaches of nuclear systems                                                       A) Richness of nuclear systems 

  Why such a diversity ? 



  Finite size effects non negligible 

 
  Adding even one nucleon to a nucleus can lead profound structural changes 
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A) Richness of nuclear systems 

  Openness of the nuclear quantum system 

 

I. Microscopic approaches of nuclear systems                                                       A) Richness of nuclear systems 

  Why such a diversity ? 
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  Theoretical description of nuclear systems = a hell of a challenge ! 

 
  Perturbative methods can hardly be used as is  

  
  Statistical treatment does not apply 

 

 

 

  Proliferation of nuclear models 

 

I. Microscopic approaches of nuclear systems                                                       A) Richness of nuclear systems 

  Consequences 
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 Fundamental 

 Simple 

I. Microscopic approaches of nuclear systems A) Richness of nuclear systems 

R.J. Furnstahl, Lecture Notes in Physics 
641:1-29 (2004) 

 

  Relevant degrees of freedom 
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I. Microscopic approaches of nuclear systems                                                       B) Strenuous task 

 Microscopic approaches of nuclear systems 
 

B) Strenuous task 
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  Nucleus = A point-like nucleons in interaction 

 

  Difficulties 

 
  Treatment of the inter nucleonic interactions 

  
  Many-body problem 

 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task 

  What is a microscopic approach of the nucleus ? 
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  In Real life, nucleons = composite particles involving quarkic and gluonic degrees of freedom 

 
  Strong interaction between nucleons reminiscent of strong interaction 

between their quarks and gluons 

  
 

 

 

  Complicated form for the corresponding NN potential (non-local, spin 

orientation dependent, …) 

 

Courtesy of T. Duguet 
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  Inter nucleonic interaction 
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  In Real life, nucleons = composite particles involving quarkic and gluonic degrees of freedom 

 
  Strong interaction between nucleons reminiscent of strong interaction 

between their quarks and gluons 

  
 

 

 

  Complicated form for the corresponding NN potential (non-local, spin 

orientation dependent, …) 

 
  Internal structure   existence of more than pairwise interactions in the point-like 

picture   

  
 

 

 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

Bogner et. al, Prog.Part.Nucl.Phys.65:94-147 (2010) 

  Inter nucleonic interaction 
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  In Real life, nucleons = composite particles involving quarkic and gluonic degrees of freedom 

 
  Strong interaction between nucleons reminiscent of strong interaction 

between their quarks and gluons 

  
 

 

 

  Complicated form for the corresponding NN potential (non-local, spin 

orientation dependent, …) 

 
  Internal structure    existence of more than pairwise interactions (in the point-

like picture)   

  
 

 

 

  In principle, inter-nucleonic interactions should be derived from QCD 

 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  Inter nucleonic interaction 



  QCD = non-abelian gauge theory of the strong interactions based on SU(3)c 
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  Quark field 

 
  flavor 

 

  Idealized lagrangian density of free quarks : 
  

  Quark field in the fundamental representation  
of SU(3)c : 

  Invariance under global rotation in gauge space : 

  Now ask the Lagrangian to be invariant under local gauge transformation 

 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  QCD in a nutshell – building of the gauge theory  
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Space-time base manifold 

 

Fiber bundle 

 

𝒙𝝁 

𝒚𝝁 

  Gauge field (connection) : gives 

a mean to compare internal frames 

at different space-time points 
(parallel transport) 

  Covariant derivative : measures 
deviation from parallel transport  

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  QCD in a nutshell – building of the gauge theory  
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  Local symmetry requirement  interaction : 

 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  QCD in a nutshell – building of the gauge theory  
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  Connection curvature : obstruction to the closure 

in the fiber bundle  chromo - electric and 
magnetic fields  

𝑼 

𝑽 

𝑮(𝑼, 𝑽) 

 

Cubic and quartic gluon self-interaction : 

makes life interesting 

 

  QCD in a nutshell – building of the gauge theory 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 
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  Theory exhibits host of symmetries variously hidden 

 

Subgroup that survives 

quantization 

 

Symmetry subgroup of the G.S. 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  QCD in a nutshell – symmetries  

Asymptotic freedom, chiral anomaly 

Chiral condensation 

Color confinement 
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  Renormalization of QCD spoils classical scale invariance 

 

  Nominally empty space full of virtual particle-antiparticle pairs of all types 

 
 

  Vacuum = dynamical medium exhibiting dielectric and paramagnetic behaviors 

 

Classical vacuum 

 
Quantum vacuum 

 


 

  Coupling constant depends of the scale of observation  

 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  QCD in a nutshell – asymptotic freedom 
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r 

QED 

 

r 

QCD 

 

r 

 QED vacuum = diamagnet 
                  (charge screening) 

 QCD vacuum = paramagnet 
          (charge antiscreening) 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  QCD in a nutshell – asymptotic freedom 
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QED 

 
QCD 

 

  QCD vacuum = dual superconductor (Cooper 
pairs of chromo-magnetic charges condense) 

  Dual Meissner effect  chromo electric 
flux tube  linear potential  

Quarks are born free, but everywhere they 

are in chains 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  QCD in a nutshell – color confinement 

http://upload.wikimedia.org/wikipedia/commons/4/42/Electric_dipole_field_lines.svg
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  Features of low energy QCD : 

  Asymptotic freedom 

  
  Color confinement 

  Implications for nuclear structure: 

  No simple relation between NN potential 

and quarks potential 

  
  Degrees of freedom different from QCD 

 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  Inter nucleonic interaction 
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  Lattice QCD  

  Wick rotation  QFT SFT  
    Discretized Euclidian space-time 
    QCD fields expanded on the lattice, correlation functions evaluated with 

Monte Carlo techniques  
  

  Holographic QCD 

  Duality between QCD and a string theory in a higher dimensional            

AdS space 
  

  Chiral effective field theory 

  Based on effective low-energy d.o.f. + constrained by symmetries and 

symmetry breaking pattern of underlying theory 
  
  High energy dynamics generically parameterized by contact terms 
  

  Hierarchy of contributions to inter-nucleonic interactions  
  

  Phenomenological interactions (in free space) 

  Ansatz compatible with symmetry of the 2 (3) nucleons system  
  

  Parameters fitted to accurately reproduce phase shifts 
  

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task - Interaction 

  Inter nucleonic interaction 
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  Solve the eigenvalue equation (or time dependent version) of the Hamiltonian : 

 

  Encodes how nucleons behavior is modified by the presence of other nucleons 

 
  EMC effect neglected 

  Modification of the nucleonic interactions (Pauli principle principally) 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task – Many-body problem 

  Many-body problem 
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  Nucleonic interactions are complicated 

I. Towards Energy Density Functional Approaches                                                       B) Microscopic approaches of nuclear systems 

  Complex structure (including tensor term) 

  Hard core 

  bound state (deuteron) and resonant state (di-neutron) 

 Nuclear many-body problem highly nonperturbative 

V. Rotival 

  NNN interaction treatment unavoidable  

 

  Many-body problem 
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  Low momentum NN interaction : make the many body problem more perturbative 

  Downfold high energy modes and work in a subspace in which only low energy 
modes and low-energy effects of the virtual modes are taken into account  

RG 

SRG 

Bogner et. al, Prog.Part.Nucl.Phys.65:94-147 (2010) 
Roth et al, Phys. Rev. C 72, 034002 (2005)  

UCOM 

I. Microscopic approaches of nuclear systems                                                       B) Strenuous task – Many-body problem 

  Many-body problem 



28 

I. Microscopic approaches of nuclear systems                                                       C) Strategies 

 Microscopic approaches of nuclear systems 
 

C) Strategies 
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  Ab-initio approaches 

   Treat as exactly as possible the many-body problem starting from NN (+NNN) 
interactions in free space 

  Form of the many-body wavefunction sought general enough to embed nucleonic 
correlations 

I. Microscopic approaches of nuclear systems                                                       C) Strategies 

  Outrageous size of the Hilbert space impose limitations 

  Three categories 



I. Microscopic approaches of nuclear systems                                                       C) Strategies 

Ab-initio 

  Three categories 
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  Ab-initio approaches 

   Treat as exactly as possible the many-body problem starting 
from NN (+NNN) interactions in free space 

  Form of the many-body wavefunction sought general enough 
to embed nucleonic correlations 

I. Microscopic approaches of nuclear systems                                                       C) Strategies 

  Outrageous size of the Hilbert space impose limitations 

  Configuration interaction 

   Drastic truncation of Hilbert space 

1s1/2 

1p3/2 
1p1/2 

1d5/2 

2s1/2 
1d3/2 

1f7/2 

2p3/2 
1f5/2 
2p1/2 

1g9/2 

Inert 
Core 

Valence 
Space 

Exterior 
Space 

  In practice, effective interaction in the valence space fitted 

to data => calculation impossible for valence space with no 
known data  

  Three categories 



  Ab-initio approaches 

   Treat as exactly as possible the many-body problem starting from NN (+NNN) 
interactions in free space 

  Form of the many-body wavefunction sought general enough to embed nucleonic 
correlations 

I. Microscopic approaches of nuclear systems                                                       C) Strategies 

  Outrageous size of the Hilbert space impose limitations 

  Configuration interaction 

   Drastic truncation of Hilbert space 

  In practice, effective interaction in the valence space fitted to data => calculation 
impossible for valence space with no known data  

1d5/2 

2s1/2 
1d3/2 

1p-1h 2p-2h 3p-3h 

998877665544332211  

Excitations 

  Nucleonic correlations accounted for by configuration mixing  
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I. Microscopic approaches of nuclear systems                                                       C) Strategies 

Ab-initio 

Configuration interaction 

  Three categories 



  Ab-initio approaches 

   Treat as exactly as possible the many-body problem starting from NN (+NNN) 
interactions in free space 

  Form of the many-body wavefunction sought general enough to embed nucleonic 
correlations 

I. Microscopic approaches of nuclear systems                                                       C) Strategies 

  Outrageous size of the Hilbert space impose limitations 

  Configuration interaction 

   Drastic truncation of Hilbert space 

  In practice, effective interaction in the valence space fitted to data => calculation 
impossible for valence space with no known data  

  Nucleonic correlations accounted for by configuration mixing  
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  Energy Density Functional 

   Independent particle picture  

  2-step approach with symmetry breaking and restoration at its very core   

  Lack of error estimation, not controlled extrapolation  

  Universal framework, reasonable computing time 

  Three categories 



I. Microscopic approaches of nuclear systems                                                       C) Strategies 

Ab-initio 

Configuration interaction 

Energy Density Functional (EDF) 

  Three categories 
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 Energy Density Functional approaches 
 

A) Independent particle picture 

II. E.D.F. approaches                                                       A) Independent particle picture 
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II. E.D.F. approaches                                                       A) Independent particle picture 

Discontinuities associated 

with magic numbers 

 
Courtesy of O. Sorlin 

 

D. Lacroix (EJC 2011) 

 

  Evidence for an independent particle picture 
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II. E.D.F. approaches                                                       A) Independent particle picture 

  Pauli exclusion principle restricts the phase space for NN collisions  

 

  But not a necessary condition : independent particle like behavior would be as prominent if 

nucleons were bosons interacting with the same forces 

 

  More nuanced understanding is needed 

 

  Rationale for an independent particle picture 



Quantum liquid   Crystalline phase  

Mottelson, Les Houches LXVI, 25 (1998) 
Ebran et al,  Nature 487, 341-344 (2012) 

II. E.D.F. approaches                                                       A) Independent particle picture 

  Nuclear forces too weak to localize nucleons in a crystalline structure  

   Ground state of quantum liquid type with delocalized structure and elementary 

excitations with long mean free path 

 

  Rationale for an independent particle picture 
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Horava, PRL 95, 016405 (2005) 

II. E.D.F. approaches                                                       A) Independent particle picture 

  G.S. and low-lying excitations of the interacting system in one-to-one correspondence with the 

quantum states of the non interacting   

 

  Landau quasiparticles : nucleon + cloud of excitations created by the propagation of the 

nucleon in the nuclear medium (Bogoliubov qp = superposition of Landau quasiparticle and 

quasihole) 

 

  Stability of the Fermi surface (topological concept) (except with respect to Cooper pairing) 

 

  Fermi liquid theory 

40 
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II. E.D.F. approaches                                                       B) Historical perspective 

 Energy Density Functional approaches 
 

B) Historical perspective 



  Goal : find that nuclei can be fairly well described in terms of an appropriate set of s.p. states 

+ effective interaction between particles in these states 

 

  Many-body perturbation theory 

𝐻 = 𝑡𝑖

𝐴

𝑖=1

+  𝑣𝑖𝑗

𝐴

𝑖<𝑗=1
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II. E.D.F. approaches                                                       B) Historical perspective 

=  𝑡𝑖 + 𝑈𝑖

𝐴

𝑖=1

+  𝑣𝑖𝑗 −

𝐴

𝑖<𝑗=1

 𝑈𝑖

𝐴

𝑖=1

 

𝐻0 𝐻1 

  Unperturbed Hamiltonian gives the single 

particle picture 

 

  Residual interaction generates correlations 

 



  Perturbative expansion of the exact energy 

 

𝐻1 =  𝑝𝑞 𝑣 𝑟𝑠 𝑎𝑝
†𝑎𝑞
†𝑎𝑠𝑎𝑟

𝑝𝑞𝑟𝑠

− 𝑝 𝑈 𝑞 𝑎𝑝
†𝑎𝑞

𝑝𝑞

 

𝐸 = 𝐸0+ ϕ0 𝐻1 ϕ0 + ϕ0 𝐻1
1

𝐸
0
−𝐻
0

𝑃𝐻1 ϕ0 +⋯ 

II. E.D.F. approaches                                                       B) Pre-history 

43 

𝑎𝑏 𝑣 𝑙𝑚 𝑎𝑎
†𝑎𝑏
†𝑎𝑙𝑎𝑚|ϕ0 > ϕ0 𝐻1

1

𝐸0− 𝐻0
𝑃𝐻1 ϕ0  𝑎 𝑈 𝑙 𝑎𝑎

†𝑎𝑙|ϕ0 > 

  Many-body perturbation theory 

Day, Rev Mod Phys 39, 719 (1967) 



𝐸 = 𝐸0 + 

II. E.D.F. approaches                                                       B) Pre-history 
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𝜌𝑖𝑗 = 𝑎𝑖
†𝑎𝑗  

  All is about an inspired choice for the mean field U 

 

  Many-body perturbation theory 

(a) 

Bare NN interaction 

 



  Hard core potentials  

 

  Hard core potentials 
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  Divergence of the Hartree-Fock matrix elements of the bare interaction 

  Rearrangement of the perturbation expansion 

II. E.D.F. approaches                                                       B) Historical perspective 



  Brueckner reaction matrix : rearrangement of the perturbative expansion with summation of 

ladder diagrams to all orders 
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II. E.D.F. approaches                                                       B) Historical perspective 

  Hard core potentials 



  Mean field U chosen to cancel the maximum of dominant diagrams arising in the expectation 

value of a 1-body operator  

 

47 Negele, Rev Mod Phys 54, 913 (1982) 

II. E.D.F. approaches                                                       B) Historical perspective 

  Hard core potentials 



  Diagrammatic definition of U is precisely obtained by formal variation of the approximate 

expression for the energy : 

 

48 Davies et al, PRC 10, 2607 (1974) 

II. E.D.F. approaches                                                       B) Historical perspective 

Reaction matrix 

 

  Hard core potentials 



  Without 3 body force, bad reproduction of nuclear matter saturation (Coester line) 

 

49 Fuchs, LNP 641:119(2004) 

II. E.D.F. approaches                                                       B) Historical perspective 

  Hard core potentials 



  Hard core potentials  

 

  Non singular potential 
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  Divergence of the Hartree-Fock matrix elements of the bare interaction 

  Rearrangement of the perturbation expansion 

  Potentials with non singular repulsion  

 
  “Ordinary” Hartree-Fock can be used (convergence of the perturbation expansion 
not assured)   

II. E.D.F. approaches                                                       B) Historical perspective 
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  Bad reproduction of nuclear matter saturation properties at the Hartree-Fock level  

 

II. E.D.F. approaches                                                       B) Historical perspective 

Courtesy of D. Lacroix 

 

  Non singular potential 



  Hard core potentials  

 

  Effective interactions 
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  Divergence of the Hartree-Fock matrix elements of the bare interaction 

  Rearrangement of the perturbation expansion 

  Potentials with non singular repulsion  

 
  “Ordinary” Hartree-Fock can be used (convergence of the perturbation expansion 
not assured)   

  Rearrangement of the perturbation expansion 

  Effective interactions 

   deduced from the bare interaction (LDA, DME) + phenomenological corrections for 
higher order contributions  

  purely phenomenological 

or 

II. E.D.F. approaches                                                       B) Historical perspective 
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  Start from Hamiltonian with an effective interaction (still independent of the density at this 

stage) consistent with a single particle picture 

 

II. E.D.F. approaches                                                       B) Historical perspective 

  Effective interactions 

Effective interaction 

 

eff 

E= 
𝛹 𝐻

𝑒𝑥𝑎𝑐𝑡
𝛹

𝛹 𝛹
≈
𝛷 𝐻

𝑒𝑓𝑓
𝛷

𝛷 𝛷
 

D. Lacroix (EJC 2011) 
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 

II. E.D.F. approaches                                                       B) Historical perspective 

  Hartree-Fock Theory 

𝑈 𝜌  

  Deduce the energy and Hartree-Fock equation with Rayleigh-Ritz variational principle 

 

J. Dechargé 

 

Effective 

interaction 

 



II. E.D.F. approaches                                                       B) Historical perspective 

  Hartree-Fock Theory 

  Relation between total energy and single particle energies 
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  Crisis : Strong support for independent particle picture of nuclear systems but natural approach 

to map the many-body problem into a 1-body one fails  
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II. E.D.F. approaches                                                       C) Miraculous density dependence 

 Energy Density Functional approaches 
 

C) Miraculous density dependence 



  Singular behavior of bare interaction leads to strong density dependence in the effective 

interaction  

 

  Origin of a density dependence 
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eff 

eff 

  Introduction of an explicit density dependence in the effective interaction 

 

II. E.D.F. approaches                                                       C) Miraculous density dependence 



  Diagrammatic definition of U is precisely obtained by formal variation of the approximate 

expression for the energy : 

 

58 Davies et al, PRC 10, 2607 (1974) 

Reaction matrix 

 

  Hard core potentials 

II. E.D.F. approaches                                                       C) Miraculous density dependence 



  Singular behavior of bare interaction leads to strong density dependence in the effective 

interaction  

 

  Origin of a density dependence 
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   Effect of other degrees of freedom integrated out 

 
  Partial restoration of chiral condensate with density ⇒ medium-dependent meson 

masses (Brown-Rho scaling)  

  Model without mesons : 3-body interaction ≈ short range  (linear) density 
dependent 2-body interaction at the mean-field level 

eff 

eff 

  Introduction of an explicit density dependence in the effective interaction 

 

II. E.D.F. approaches                                                       C) Miraculous density dependence 



  No rigorous physical argument justifying variational principle : convenient way for introducing 

rearrangement terms  

 

  Effect of the density-dependence 
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𝐸𝐻𝐹 = 𝜀𝛼𝑖
−
1

2
𝑈𝑑𝑖𝑟

𝛼𝑖𝛼𝑖
+ 𝑈𝑒𝑥𝑐

𝛼𝑖𝛼𝑖
− 𝑈𝑟𝑒𝑎

𝛼𝑖𝛼𝑖
𝑖

 

𝐵𝐻𝐹 𝐴 = 𝐵𝐻𝐹 𝐴 − 1 − 𝜀𝛼𝑘
+
1

2
𝑈𝑑𝑖𝑟

𝛼𝑖𝛼𝑖
+ 𝑈𝑒𝑥𝑐

𝛼𝑖𝛼𝑖
+ 𝑈𝑟𝑒𝑎

𝛼𝑖𝛼𝑖
 

J.F. Berger  

(EJC 1991)  

 

  Modification of the HF relation between binding and s.p. energies : makes it possible to adjust 

global properties  + obtain a sufficiently compressed s.p. spectrum  

 

II. E.D.F. approaches                                                       C) Miraculous density dependence 

  Thermodynamics consistency (Hugenholtz-van Hove theorem) 
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II. E.D.F. approaches                                                       D) Modern interpretation 

 Energy Density Functional approaches 
 

D) Modern interpretation 



  Density Functional Theory 
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  EDF : close in spirit to the DFT although conceptually completely different 

 

II. E.D.F. approaches                                                       D) Modern interpretation 

  What is DFT ? 



  Density Functional Theory – Existence theorem 
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   Hohenberg-Kohn theorem on existence 

 

  What is DFT ? 

 

II. E.D.F. approaches                                                       D) Modern interpretation 

  Rigorous alternative to working with the many-body wave function 

  Exact mapping of the interacting many-body problem to an easier to solve non 

interacting problem 

Static external potential 
 

Universal functional 
 

  Energy functional of the density minimized at the G.S. energy with the G.S. density 

  Offers no help in constructing F 

  Rather gives a license to guess approximate energy functionals  

Hohenberg & Kohn, Phys Rev 136 (1964) 



  Density Functional Theory – Physical insight 

64 

  DFT does not state that all information about a quantum mechanical GS is contained in the 

constituent density, but rather that knowing the most general response of the GS to the 

perturbation of a source gives a complete specification of the many-body problem    

 

II. E.D.F. approaches                                                       D) Modern interpretation 

“Wave function” treatment of the many-

body problem 
DFT 

  Based on a single, fixed Hamiltonian   Family of Hamiltonians           with GS energy 

  Variational calculation of GS : E stationary to 

variations in the relevant density matrices 
  Legendre transformations 

  Response of the energy to a local source coupled to 

the density ⇒ GS energy as observable probed 



  Density Functional Theory – Practical scheme 
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  Kohn-Sham procedure 

 

II. E.D.F. approaches                                                       D) Modern interpretation 

  Introduces an auxiliary product state whose orbitals 

satisfy  

 

 

and from which one computes the density 

  KS potentials determined by  

Drut et al, Prog.Part.Nucl.Phys. 64:120 (2010) 



  Nuclear Energy Density Functional 

66 

  Disquieting feature that there is no exterior potential for self-bound nuclei ⇒ existence of a 

functional has yet to be proven  

 

II. E.D.F. approaches                                                       D) Modern interpretation 

  EDF relies heavily on the concept of symmetry breaking, outside the frame of HK theorem 

requiring that the minimum of the functional is reached for a local 1-body density that possesses all 
symmetries of the exact GS    

  See T. Lesinski talk for connection between EDF and DFT 



  Spontaneous symmetry breaking : macroscopic case 

  SSB 

 

II. E.D.F. approaches                                                       D) Modern interpretation 

  Classical mechanics : occurrence of SSB due to initial conditions (perturbations) 

breaking the symmetry 

  Quantum mechanics of finite systems : tunneling between degenerate minima 

resulting a unique linear superposition GS ⇒ No SSB 

Anderson, Basic Notions of Condensed Matter Physics 

  Quantum field theory : Suppression of the transition probabilities between 

degenerate vacuua partitioning Hilbert space into mutually inaccessible sectors built 

up over each GS  

  In macroscopic systems broken-symmetry state can be safely taken as the effective GS 

   Concept of generalized rigidity : heavy rigid rotor with a low-energy excitation 

spectrum L2/I 
  spectrum above the GS (L=0) is essentially gapless ⇒ although GS possesses 

rotational symmetry, manifold of other degenerate states which can be recombined to 

give a very stable wave packet with the nature of the broken-symmetry state  

  Macroscopic “heavyness” relaxation of the wave packet to the exact symmetrical 

GS exceedingly long  

  Appropriately described by a set of non linear mean-field equation ⇒ bifurcations 

⇒ emergent phenomena 
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  Qualitative division of correlations  

 

II. E.D.F. approaches                                                       D) Modern interpretation 

  Spontaneous symmetry breaking and quantum correlations 

  Bulk of correlations (varying smoothly with A) re-summed into EDF kernel. Amount for ~ 8 A 

MeV 
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  Qualitative division of correlations  

 

II. E.D.F. approaches                                                       D) Modern interpretation 

1 particule – 1 hole 
excitations 

2 particules – 2 holes 
excitations 

3 particules – 3 holes 
excitations 

1d5/2 

2s1/2 

1d3/2 

1s1/2 

1p3/2 
1p1/2 

1+[000] 

3-[101] 

1-[101] 

1+[220] 

1+[211] 

1+[200] 

1-[110] 

3+[211] 
5+[202] 

3+[202] 

  Spontaneous symmetry breaking and quantum correlations 

  Bulk of correlations (varying smoothly with A) re-summed into EDF kernel. Amount for ~ 8 A 

MeV 

   Static collective correlations (quickly varying with the filling of nuclear shells) accounted for 

through symmetry breaking ⇒ allow to grasp correlations while retaining the simplicity inherent 

to a 1-body problem 
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  Qualitative division of correlations  

 

II. E.D.F. approaches                                                       D) Modern interpretation 

  Spontaneous symmetry breaking and quantum correlations 

  Bulk of correlations (varying smoothly with A) re-summed into EDF kernel. Amount for ~ 8 A 

MeV 

   Static collective correlations (quickly varying with the filling of nuclear shells) accounted for 

through symmetry breaking ⇒ allow to grasp correlations while retaining the simplicity inherent 

to a 1-body problem. Few tens of MeV 

 

 

𝑞  

𝐸 

  SR-EDF equations are nonlinear ⇒ SSB associated of appearance of bifurcations in total energies 
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  Qualitative division of correlations  

 

II. E.D.F. approaches                                                       D) Modern interpretation 

  Spontaneous symmetry breaking and quantum correlations 

  Bulk of correlations (varying smoothly with A) re-summed into EDF kernel. Amount for ~ 8 A 

MeV 

   Static collective correlations (quickly varying with the filling of nuclear shells) accounted for 

through symmetry breaking ⇒ allow to grasp correlations while retaining the simplicity inherent 

to a 1-body problem. Few tens of MeV 

 

𝑞  𝐴𝑟𝑔(𝑞) 

𝐸 

  Finiteness of the system ⇒ quantum fluctuations cannot be neglected ⇒ dynamic collective 

correlations (quickly varying with the filling of nuclear shells) accounted for through restoration 

of broken at the MR-EDF step. Few MeV 

 

 Linear properties of the equation recovered 



II. E.D.F. approaches                                                       D) Modern interpretation 

  Why bother with the SR-EDF step if symmetries are ultimately fulfilled ? 

  Allow a first description of nuclear systems at cheap cost 

  Spontaneous symmetry breaking and quantum correlations 
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II. E.D.F. approaches                                                       D) Modern interpretation 

  Spontaneous symmetry breaking and quantum correlations 

  no static long-range correlation     



II. E.D.F. approaches                                                       D) Modern interpretation 

  Spontaneous symmetry breaking and quantum correlations 

  Pairing correlation through U(1) symmetry breaking     



II. E.D.F. approaches                                                       D) Modern interpretation 

  Spontaneous symmetry breaking and quantum correlations 

  Quadrupole correlations through breaking of rotational symmetry     



II. E.D.F. approaches                                                       D) Modern interpretation 

  Why bother with the SR-EDF step if symmetries are ultimately fulfilled ? 

  Allow a first description of nuclear systems at cheap cost 

  Lower symmetry properties do not disappear, instead they are hidden. Can be 

revealed e.g. via inspection of conditional probability distribution 

  Spontaneous symmetry breaking and quantum correlations 

  Further signatures in excitation spectra pattern 
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II. E.D.F. approaches                                                       D) Modern interpretation 

  The most basic input of EDF in the off-diagonal energy kernel E[q’,q] involving two product 
states possibly carrying different values of the order parameters   

  SR-EDF 

  SR-EDF invokes the diagonal part of the Energy kernel.  

  See T. Duguet lecture for a discussion of EDF starting from E[q’,q]   

  Energy functional  
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II. E.D.F. approaches                                                       D) Modern interpretation 

  Minimization of  the functional yield HFB-like equation 

  SR-EDF 

78 𝑞  

𝐸 

  SR-EDF only depends on  

  Constrained SR-EDF calculations :    



II. E.D.F. approaches                                                       D) Modern interpretation 

  Skyrme functional constructed from bilinear combinations of local densities and their gradient 
upt to some order that respect the symmetries of the nuclear Hamiltonian 

  Skyrme functionals 
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II. E.D.F. approaches                                                       D) Modern interpretation 

  One can derive the Skyrme functional from an effective vertex 

  Skyrme functionals 
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II. E.D.F. approaches                                                       D) Modern interpretation 

  Particle-particle channel 

  Skyrme functionals 
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  Effective vertex 



II. E.D.F. approaches                                                       D) Modern interpretation 

  One can derive the Gogny functional from an effective vertex 

  Gogny functionals 
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II. E.D.F. approaches                                                       D) Modern interpretation 

  Covariant functional : elementary building blocks : 

  Covariant functionals 
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II. E.D.F. approaches                                                       D) Modern interpretation 

  Functional can be deduced from a pseudo Lagrangian 

  Covariant functionals 
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II. E.D.F. approaches                                                       D) Modern interpretation 

  Pseudo potentials 

  SR-EDF 
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  Spurious self-interaction : Pauli principle enforce vrrijkk=0 thus a relation between the 

parameters of the functional that is not fulfilled 

  Spurious self-pairing : Idem but because if interrelation vrrijkl = vkkijkl  

  Not noticeable repercussions at the SR level 



II. E.D.F. approaches                                                       D) Modern interpretation 

  Configuration mixing of SR states 

  MR-EDF 
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𝑞  𝐴𝑟𝑔(𝑞) 

𝐸 



II. E.D.F. approaches                                                       D) Modern interpretation 

  Restoration of broken symmetries : from the intrinsic to the lab frame  

  MR-EDF 
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II. E.D.F. approaches                                                       D) Modern interpretation 

  Configuration mixing of SR states 

  MR-EDF 
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𝑞  𝐴𝑟𝑔(𝑞) 

𝐸 
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Conclusion 

Conclusion                                          



 E.D.F.  

 Static correlations  SR-EDF 

Symmetry  

Conclusion                                          



 Results 

G.S. 

GS observables in intrinsic frame  

 E.D.F.  

 Static correlations  SR-EDF 

Conclusion                                          



 E.D.F.  

 Static correlations  SR-EDF 

En
er

gy
 

Collective coordinate 

Collective 
oscillation of the 
mean-field 

 Dynamical correlations  MR-EDF 

Conclusion                                          



 E.D.F.  

 Corrélations statiques  HFB 

 Corrélations oscillations collectives   QRPA-

(TD)GCM 

  

 Results  

Refinement of the results in step  
+ lab frame + Spectroscopy 

Conclusion                                          



Thank you !! 



Back up 


