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Introduction



Low-energy nuclear physics: state of the art

1) Modelling inter-nucleon interactions!
Link to quantum chromodynamics (QCD)!
Importance of 3-nucleon interaction

Extreme mass

Stable nuclei
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Large-scale experimental facilities

Unstable nuclei 2) Modelling atomic nuclei!
Properties at the extremes!
Reliable and consistent systematics



Ab initio vs effective many-body theories

Ab initio many-body theories
➟ Inter-nucleon interactions as input
➟ Solve A-body Schrödinger eq.
➟ Thorough assessment of errors

Limited applicability
Controlled extrapolations

Test fundamental interactions

Effective many-body theories
➟ Based on effective interactions
➟ Solve simpler many-body problem
➟ Partial assessment of errors

Extended reach
Uncontrolled extrapolations
Aim at reproduction of data



Different ab initio philosophies

Light nuclei Medium-mass nuclei Medium-mass nuclei

NCSM, GFMC, .... Miscroscopic SM GF, CC, IM-SRG, ....

Advances in ab initio techniques
Advances in ab initio techniques

Advances in ab initio techniques

“Exact” Valence space Based on expansion

Closed-shell Open-shellAll methods (should be able to) take!
 the same input NN+3N interactions



Current limits/reach of ab initio calculations

2009 2010 2011 2012 2013

“Exact” Ab initio closed shell Ab initio open shell
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➟ Heavier system computed in the different types of ab initio

Gorkov GF
Coupled cluster

IT-No Core SM



Nuclear Hamiltonian



Traditional nuclear interactions

✪ Based on one-boson exchange models
➟ Based on one-boson exchange models
➟ Feature a hard core
➟ Three-body forces mainly phenomenological

Importance of 3N forces for light nuclei 
Quantum Monte-Carlo calculations Pieper et al. (2010). 

based on phenomenological potentials: NN: Argonne v18 + 3N: Illinois-7 
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with Illinois-7

GFMC Calculations

• IL7: 4 parameters fit to 23 states
• 600 keV rms error, 51 states
• ~60 isobaric analogs also computed

figure from R. Wiringa 

CD-Bonn!
Av18!
Reid!
Nijmegen!
…

Severe constraint!
for the many-body!

approach

Not systematically !
improvable

[Pieper & Wiringa 2001]

Not consistent !
with NN



Modern approach: interactions from chiral EFT

✪ Very promising, but yet not completely satisfactory

➟ Different orders in EFT
➟ Different cutoffs
➟ Nuclear matter indicates that N3LO might not be enough
➟ More fundamental problem: EFT power counting

Chiral EFT and nuclear interactions

✪ Separation of scales

✪ Expansion in powers of momenta

✪ Long-range physics explicit
                        + 
    Short-range couplings

✪ Systematic, provides error estimates

✪ Consistent many-body forces

Low momenta  Q  <<  breakdown scale  "

In principle, reach desired accuracy

3N, 4N, ... forces naturally arise

Power counting for the different diagrams

Fit to experiments once for all

LO

NLO

N2LO

N3LO

✪ Separation of scales

✪ Expansion in powers of momenta

✪ Consistent many-body forces

✪ Systematic, provides error estimates

✪ Long-range physics explicit!
                        + !
    Short-range couplings
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Routinely included in nuclear structure calculations



Modern approach: interactions from chiral EFT
Chiral EFT and nuclear interactions

✪ Separation of scales

✪ Expansion in powers of momenta

✪ Long-range physics explicit
                        + 
    Short-range couplings

✪ Systematic, provides error estimates
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and this?



Modern approach: interactions from chiral EFT

✪ Estimated (HF level) in (infinite) neutron matter

calculations. The larger ! ¼ 550–600 MeV NN poten-
tials of EGM and EM have been found to be nonpertur-
bative [13] and are therefore not included. Moreover,
the leading-order NN contact couplings in the 600=600
and 600=700 EGM potentials break Wigner symmetry
perturbatively (at the interaction level), with a repulsive
spin-independent CS and an unnaturally large spin-
dependent CT " CS, leading to unexpectedly large
CT-dependent 3N forces.

In this Letter, we include for the first time all N3LO 3N
and 4N forces, which have been derived only recently
[14–17], in addition to theN2LO 3N forces. Figure 1 shows
our complete N3LO calculation of the neutron matter
energy as our main result, where the bands include esti-
mates of the theoretical uncertainties due to the many-body
calculation and in the many-body forces.

For neutrons, only the two-pion-exchange 3N forces
contribute at N2LO [2]. For the corresponding low-energy
constants c1 and c3, we take the range of values
from a high-order analysis [18], at N2LO: c1 ¼
#ð0:37–0:81Þ GeV#1 and c3 ¼ #ð2:71–3:40Þ GeV#1

(which includes the ci values in the EGM and EM NN
potentials), and when the N2LO 3N forces are included
in a N3LO calculation: c1 ¼ #ð0:75–1:13Þ GeV#1 and

c3 ¼ #ð4:77–5:51Þ GeV#1. It has been shown [2] that
the N2LO 3N force contributions in neutron matter can
be to a good approximation calculated at the Hartree-Fock
level. In this first calculation, we therefore evaluate the
N3LO 3N and 4N force contributions to the energy per
particle E=N at the Hartree-Fock level. The A-body con-
tributions are then given by

E

N
¼ 1

n

1

A!

X

!1;...;!A

Z dk1

ð2"Þ3 & & &
Z dkA

ð2"Þ3 f
2
Rnk1

& & &nkA

' h1 . . .AjAA

XA

i1!...!iA¼1

VAði1; . . . ; iAÞj1 . . .Ai; (1)

with shorthand notation i ( ki!i.AA denotes the A-body
antisymmetrizer and nki

¼ #ðkF # kiÞ the Fermi-Dirac dis-
tributions at zero temperature. We use a Jacobi-momenta
regulator, in terms of ki given by fR ¼ expf#½ðk21 þ & & & þ
k2A # k1 & k2 # & & & # kA#1 & kAÞ=ðA!2Þ+nexpg, with nexp ¼
4 and 3N=4N cutoff ! ¼ 2–2:5fm#1. For the nucleon
and pion mass, we use m ¼ 938:92 MeV and m" ¼
138:04 MeV, and for the axial coupling gA ¼ 1:29 and
the pion decay constant f" ¼ 92:4 MeV.
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FIG. 2 (color online). Energy per particle versus density for all individual N3LO 3N and 4N force contributions to neutron matter at
the Hartree-Fock level. The bands are obtained by varying the 3N=4N cutoff! ¼ 2–2:5 fm#1. For the two-pion-exchange–contact and
the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT and CS, determined consistently
for the N3LO EM or EGM potentials. The inset diagram illustrates the 3N=4N force topology.

PRL 110, 032504 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 JANUARY 2013

032504-2

➟ N3LO 3N contributions significant
➟ N3LO 4N contributions small

[Tews et al. 2013]



RG techniques



RG techniques for NN & 3N forces

✪ Renormalization group techniques for NN and 3N forces
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Figure 9: Schematic illustration of two types of RG evolution for NN potentials in momentum space:
(a) Vlow k running in Λ, and (b) SRG running in λ. At each Λi or λi, the matrix elements outside of the
corresponding lines are zero, so that high- and low-momentum states are decoupled.

60, 61], as shown, for example, in Fig. 8. For variable-cutoff potentials, three-body (and higher-body)
interactions evolve naturally with the resolution scale.

1.3 Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for
calculating low-energy observables can be captured in the scale-dependent coefficients of operators
in a low-energy Hamiltonian [29]. This principle does not mean that high-energy and low-energy
physics is automatically decoupled in every effective theory. In fact, it implies that we can include as
much irrelevant coupling to incorrect high-energy physics as we want by using a large cutoff, with no
consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting
the necessary degrees of freedom. This decoupling can be efficiently achieved by evolving nuclear
interactions using RG transformations designed to handle similar problems in relativistic field theories
and critical phenomena in condensed matter systems.6

The general purpose of the RG when dealing with the large range of scales in physical systems was
eloquently explained by David Gross [63]:

“At each scale, we have different degrees of freedom and different dynamics. Physics at a
larger scale (largely) decouples from the physics at a smaller scale. . . . Thus, a theory at a
larger scale remembers only finitely many parameters from the theories at smaller scales,
and throws the rest of the details away. More precisely, when we pass from a smaller scale
to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the
RG method is to explain how this decoupling takes place and why exactly information is
transmitted from scale to scale through finitely many parameters.”

The common features of RG for critical phenomena and high-energy scattering are discussed by Steven
Weinberg in an essay in Ref. [64]. He summarizes:

“The method in its most general form can I think be understood as a way to arrange in
various theories that the degrees of freedom that you’re talking about are the relevant degrees
of freedom for the problem at hand.”

6For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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➟ Lower the resolution scale of the original Hamiltonian

Vlow-k VSRG
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✪ Renormalization group techniques for NN and 3N forces
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✪ Improved convergence of many-body calculations
RAPID COMMUNICATIONS

HEBELER, BOGNER, FURNSTAHL, NOGGA, AND SCHWENK PHYSICAL REVIEW C 83, 031301(R) (2011)
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FIG. 1. (Color online) Nuclear matter energy per particle versus Fermi momentum kF at the Hartree-Fock level (left) and including
second-order (middle) and third-order particle-particle/hole-hole contributions (right), based on evolved N3LO NN potentials and 3NF fit to
E3H and r4He. Theoretical uncertainties are estimated by the NN (lines)/3N (band) cutoff variations.

as in Ref. [22]. Our 3NF central fit values are given in Table I;
we estimate that cD has an uncertainty of approximately 0.4
due to the uncertainties of the charge radius in 4He. We use
a 3NF regulator of the form exp{−[(p2 + 3/4q2)/!2

3NF]nexp}
with nexp = 4, where the 3N cutoff !3NF is allowed to vary
independently of the NN cutoff, which probes the sensitivity to
short-range three-body physics. The shaded regions in Fig. 1
show the range of results for 2.0 fm−1 < !3NF < 2.5 fm−1

at fixed ! = 2.0 fm−1.
Nuclear matter is calculated in three approximations:

Hartree-Fock (left), Hartree-Fock plus second-order contribu-
tions (middle), and additionally summing third-order particle-
particle and hole-hole contributions (right). The technical
details regarding the treatment of the 3NF and the many-body
calculation are as for neutron matter in Ref. [16]. We first
construct a density-dependent two-body interaction from the
3NF by summing one particle over occupied states in the Fermi
sea (see also Ref. [23]). This conversion simplifies the many-
body calculation significantly and allows the inclusion of
all 3NF double-exchange terms beyond Hartree-Fock, which
were only approximated in Refs. [10,15]. Furthermore, we
have corrected the combinatorial factors at the normal-ordered

TABLE I. Results for the cD and cE couplings fit to E3H =
−8.482 MeV and to the point charge radius r4He = 1.464 fm (based
on Ref. [26]) for the NN/3N cutoffs and different EM/EGM/PWA
ci values used. For Vlow k (SRG) interactions, the 3NF fits lead to
E4He = −28.22 . . . − 28.45 MeV (−28.53 . . . − 28.71 MeV).

Vlow k SRG

! or λ/!3NF (fm) cD cE cD cE

1.8/2.0 (EM ci’s) +1.621 −0.143 +1.264 −0.120
2.0/2.0 (EM ci’s) +1.705 −0.109 +1.271 −0.131
2.0/2.5 (EM ci’s) +0.230 −0.538 −0.292 −0.592
2.2/2.0 (EM ci’s) +1.575 −0.102 +1.214 −0.137
2.8/2.0 (EM ci’s) +1.463 −0.029 +1.278 −0.078
2.0/2.0 (EGM ci’s) −4.381 −1.126 −4.828 −1.152
2.0/2.0 (PWA ci’s) −2.632 −0.677 −3.007 −0.686

two-body level of the 3NF from 1/6 to 1/2 in diagrams
beyond Hartree-Fock used in these references (see Refs. [9,16]
for detailed discussions of these factors, which are correctly
included in Refs. [3,5,16,17]). To our knowledge, previous
calculations in the literature of nuclear matter using normal-
ordered 3NF contributions need the same correction.

The dashed lines in the left panel of Fig. 1 (for ! =
1.8 and 2.8 MeV) show the exact Hartree-Fock energy in
comparison with the results obtained using the effective
two-body interaction (solid lines). The excellent agreement
supports the use of this density-dependent two-body ap-
proximation for symmetric nuclear matter. For the results
beyond the Hartree-Fock level we use full momentum-
dependent single-particle Hartree-Fock propagators. We have
checked that the energies obtained using a self-consistent
second-order spectrum overlap with the band of curves
in Fig. 1.

The Hartree-Fock results show that nuclear matter is
bound even at this simplest level. A calculation without
approximations should be independent of the cutoffs, so
the spread in Fig. 1 sets the scale for omitted many-body
contributions. The second-order results show a significant
narrowing of this spread over a large density region. It is
encouraging that our results agree with the empirical saturation
point within the uncertainty in the many-body calculation and
omitted higher-order many-body forces implied by the cutoff
variation (the greater spread compared to Ref. [15] is mostly
attributable to the corrected combinatorial factor). We stress
that the cutoff dependence of order 3 MeV around saturation
density is small compared to the total size of the kinetic energy
(≈23 MeV) and potential energy (≈−38 MeV) at this density.
Moreover, the cutoff dependence is smaller at kF ≈ 1.1 fm−1,
which more resembles the typical densities in medium-mass
to heavy nuclei (ρ = 0.11 fm−3). For all cases in the right
panel of Fig. 1, the compressibility K = 175–210 MeV is in
the empirical range.

The inclusion of third-order contributions gives only small
changes from second order except at the lowest densi-
ties shown. This is consistent with nuclear matter being

031301-2

[Hebeler et al. 2011]

➟ Lower the resolution scale of the original Hamiltonian

➟ Many-body problem more perturbative

Vlow-k VSRG
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1.3 Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for
calculating low-energy observables can be captured in the scale-dependent coefficients of operators
in a low-energy Hamiltonian [29]. This principle does not mean that high-energy and low-energy
physics is automatically decoupled in every effective theory. In fact, it implies that we can include as
much irrelevant coupling to incorrect high-energy physics as we want by using a large cutoff, with no
consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting
the necessary degrees of freedom. This decoupling can be efficiently achieved by evolving nuclear
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various theories that the degrees of freedom that you’re talking about are the relevant degrees
of freedom for the problem at hand.”

6For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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(a) Vlow k running in Λ, and (b) SRG running in λ. At each Λi or λi, the matrix elements outside of the
corresponding lines are zero, so that high- and low-momentum states are decoupled.
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✪ Improved convergence of many-body calculations

➟ Lower the resolution scale of the original Hamiltonian

➟ Smaller model spaces needed

B.R. Barrett et al. / Progress in Particle and Nuclear Physics 69 (2013) 131–181 143

Fig. 3. 3H (left) and 4He (right) g.s. energy dependence on the size of the basis. The HO frequencies of h̄⌦ = 28 MeV (3H) and 28 or 36 MeV (4He) were
employed. Results with (thick lines) and without (thin lines) the NNN interaction are shown for the EFT interactions [27,28]. The solid lines correspond to
calculations with two-body (3H) or three-body (4He) effective interactions, and the dashed lines to calculations with the bare interactions.

Fig. 4. Convergence of the 4He g.s. energy with the size of the HO basis. Calculations with the bare (dashed line) and the SRG evolved (solid line)
�EFTNN + NNN interactions are compared. The SRG evolution parameter � = 2 fm�1 was used (see Fig. 2). The dotted line denotes the extrapolated
g.s. energy (�28.5 MeV), which is close to the experiment (�28.3 MeV). Further details are given in Ref. [128].

We note that in the case of no NNN interaction, we may use just the two-body effective interaction (two-body cluster
approximation), which is much simpler. The convergence is slower, however, see discussion in Ref. [132]. We also note
that 4He properties with the chiral EFT NN interaction that we employ here were calculated using the two-body cluster
approximation in Ref. [133], and the present results are in agreement with results found there. Our 4He ground-state
energy results are �25.39(1) MeV in the NN case and �28.34(2) MeV in the NN + NNN case. The experimental value is
�28.296 MeV. We note that the present ab initio NCSM 3H and 4He results, obtained with the chiral EFT NN interaction,
are in a perfect agreement with results obtained using the variational calculations in the hyperspherical harmonics
basis as well as with the Faddeev–Yakubovsky calculations published in Ref. [134]. A satisfying feature of the present
NCSM calculation is the fact that the rate of convergence is not affected in any significant way by inclusion of the NNN
interaction.

Fig. 4 shows such results for 4He, now with SRG-evolved interactions, as a function of the P-space size given in terms of
Nmaxh̄⌦ , the maximum HO energy of configurations included above the unperturbed g.s. configuration. The figure clearly
shows the accelerated rate of convergence for the softer SRG interactions over the bare NN (or NN +NNN) interaction. More
details are given in Ref. [128].

As an example of convergence of ab initio NCSM calculations for p-shell nuclei, we present 6Li results obtained using
the INOY and the chiral EFT NN potential. The dependence of the NCSM absolute and excitation energies on the basis size

[Jurgenson, Navratil & Furnstahl 2013]

Vlow-k VSRG
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➟ But… (additional) many-body forces are generated
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➟ One has to be careful about which 3NF is talking about
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RG techniques for NN & 3N forces

✪ Evolution of operators

➟ Different operators should in principle be evolved consistently 

[Schuster et al. 2014]

3

exactly unitary. This is confirmed by the agreement with
the expectation value calculated using the bare Hamilto-
nian and bare operator, shown in Fig. 1 as a dotted line.
We next extend these calculations to 4He, and compute

the RMS radius and total strength of the dipole transi-
tion. Fig. 2 shows these three calculations in a range of
λ from 1.5 to 3.0 fm−1 with !Ω = 28 MeV. We truncate
the A = 2 model space at NA2max = 300, the A = 3
model space at NA3max = 40, and the the A = 4 space at
Nmax = 18 which leads to converged results within less
than 0.1% for both observables. Results for the ground
state energy, in this range of λ, have been studied in
detail previously [19]. We show them here, panel (a),
to emphasize that when one does not include SRG in-
duced three-body terms into the Hamiltonian, (NN -only
curve), the ground state energy is dependent on λ over
the entire range we investigate. However, when the three-
body terms are included, the ground state energy is in-
dependent of λ above 1.8 fm−1. Below λ = 1.8 fm−1 the
binding energy drops due to the missing four-body SRG
induced terms.
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FIG. 2. (color online). Calculations of 4He ground state en-
ergy (a), RMS radius (b), and total strength of the dipole
transition (c) for Nmax = 18, with a range of λ from 1.5
fm−1 to 3.0 fm−1. The purple dot-dashed line indicates re-
sults obtained with the NN-only Hamiltonian. The dotted
line indicates the expectation value computed using the bare
Hamiltonian and bare operator. See also caption of Fig. 1

Panels (b) and (c) show the results for the RMS radius
and total strength of the dipole transition, respectively.

The trends of these results are similar because the oper-
ators are closely related [31]. When using the bare op-
erator, the observable has a significant λ dependence at
small values. However, when evolved in the two- and then
in the three-body space, independence is all but restored.
The transformation is not completely unitary due to the
SRG induced four-body terms that we do not include.
This causes a slight increase in the calculated observables
at smaller λ values, as emphasized for the RMS radius,
for which we show also the expectation value obtained
with the bare NN+3N Hamiltonian and bare operator
(dotted line). This bare result can be also recovered at
large lambda values, where the induced terms affecting
the operator become increasingly smaller. The trade off,
however, is a much slower convergence rate, which would
require prohibitively large model space sizes for heavier-
mass systems. There, λ is typically chosen between 1.8
and 2.0 fm−1, where one can speed up the convergence
while keeping to a minimum the effect of beyond-three-
body induced forces.
Our investigation so far has considered two long range

operators, r̂2 and D̂2, and has shown a relatively small,
but non-trivial, renormalization. To highlight the im-
portance of operator range when using the SRG method,
in combination with operators evolved in the three-body
space, we use a Gaussian two-body operator of range a0,

Ô(r⃗1, r⃗2) = A exp

(

−
(r⃗1 − r⃗2) 2

a20

)

, (6)

where A is the normalization chosen to be

A

∫

exp

(

−
r2

a20

)

dr⃗ = 1. (7)

This follows a similar prescription to that of Ref. [29],
where the authors focus on operator range and Okubo-
Lee-Suzuki renormalization. Although this operator does
not represent any physical phenomena, one can eas-
ily adjust its range, giving us a systematic way to ex-
plore the amount of renormalization for operators evolved
via SRG. We define the amount of renormalization as
(⟨Ôeff⟩− ⟨Ôbare⟩)/⟨Ôbare⟩× 100. Fig. 3 shows the results
using the same 4He ground state wavefunction as above.
At short ranges the expectation values computed with

the SRG evolved operator, whether evolved in the two- or
three-body space, are significantly renormalized from the
bare operator, while as the range increases, the renormal-
ization tends towards zero. More interesting is the three-
body contribution to the overall renormalization, i.e. the
difference between the expectation values of the operator
evolved in the two-body space and that of the operator
evolved in the three-body space for the same value of λ.
The relative three-body contribution tends to increase as
the range increases, approximately 25% at a0 = 0.2 fm
to 50% at a0 = 1.6 fm, even though the absolute mag-
nitude of the three-body contribution decreases. Beyond

4He
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Treatment of three-body forces

✪ Full treatment of 3NF matrix elements is challenging

➟ Normal order with respect to an A-body Slater determinant

✪ Convenient solution: normal-ordered form of 3-body Hamiltonian

➟ Discard (residual/genuine) 3-body interaction 

•⇒ NO2B is efficient and accurate way to 

include 3N interaction

•Residual 3N interaction relevant for CCSD, 
negligible for additional triples 
correction (ΛCCSD(T))
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Treatment of three-body forces
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✪ One- and two-body forces derived from the 3N part of the Hamiltonian

➟ Contractions with fully correlated density matrix

➟ Generalization of normal ordering
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✪ Galitskii-Koltun sum rule modified to account for 3N piece

➟ Use of dressed propagators provides significant extra correlations

[Carbone, Cipollone et al. 2013]



Treatment of three-body forces

✪ More phenomenological inclusions of 3N forces

➟ Derive effective NN by averaging in infinite matter

➟ Adjust Fermi momentum and cE to reproduce some of the isotopes

considered in this work we apply the Fermi momentum

kF ¼ 1:05 fm"1 in our potential V̂3Neff . Consistent
with the NN force, the effective cutoff for the 3NF is
! ¼ 500 MeV.

Let us comment on our phenomenological two-body

potential V̂3Neff that contains effects of 3NFs. The normal-
ordered approximation of 3NFs [9,21,22] still requires
one to compute an enormous number of three-body matrix
elements. This poses a great challenge for the large model
spaces we need to consider. The approach of this Letter is
thus simpler: The summation over the third particle is
performed in momentum space before the transformation
to the oscillator basis takes place [24]. This procedure
avoids the costly computation of three-body matrix
elements in large oscillator spaces, but it introduces an
uncontrolled approximation by replacing the mean-field
of a finite nucleus by that of symmetric nuclear matter.
To correct for this approximation, we adjusted the LEC
cE away from the optimal value established in light
nuclei [26].

The coupled-cluster method is essentially a similarity
transformation of the Hamiltonian with respect to a refer-
ence state. This method is accurate and efficient for nuclei
with closed (sub-)shells [27–29]. We compute the ground
states of 16;22;24;28O within the singles and doubles approxi-
mation, while three-particle-three-hole (3p-3h) excitations
are included in the !-CCSD(T) approach of Ref. [30]. For
excited states in these closed-shell isotopes we employ the
equation-of-motion (EOM) coupled-cluster method with
singles and doubles. The open-shell nuclei 15;17;21;23;25O
are computed within the particle attached or removed
EOM formalism, and we employ the two-particle attached
EOM formalism [31] for the nuclei 18;26O. For details about
our implementation see Ref. [32]. These EOM methods
work very well for states with dominant 1p-1h, 1p, 1h, and
2p structure, respectively. We use a Hartree-Fock basis
built in 17 major oscillator shells and varied the oscillator
spacing @! between 24 and 32 MeV. Well converged
energy minima are found at @! # 28 MeV for all oxygen
isotopes. Open decay channels and the particle continuum
near the dripline nucleus 24O are included within the
Gamow shell model [33,34]. The single-particle bound
and scattering states result from diagonalizing a spherical
Woods-Saxon Hamiltonian in a discrete momentum basis
in the complex plane [34,35]. In the case of computing
resonances in 24O we used 35 mesh points for the d3=2
partial wave on a rotated or translated contour in the
complex momentum plane as described in Ref. [36]. The
excited states we compute in 22;24O are dominated by
1p-1h excitations and continuummixing from other partial
waves is small. They result as solutions of a complex-
symmetric eigenvalue problem, and the imaginary part of
the energy yields the width of the state. In computing radii
we discretized the real momentum axis with 40 points
for the neutron and proton partial waves closest to the

threshold. This guarantees the correct exponential decay
of matter and charge densities at large distances.
Results.—Figure 1 shows the ground-state energies of

the computed oxygen isotopes (red squares) compared
with experimental data (black circles) and results limited
to chiral NN interactions only (blue diamonds). For the
isotopes around 16O, NN interactions alone already de-
scribe separation energies rather well, and the inclusion of
effects of 3NFs mainly changes underbinding into over-
binding. For the more neutron-rich oxygen isotopes, the
3NFs significantly change the systematics of the binding
energies, and energy differences are particularly well re-
produced. The nuclei 25;26O are unbound with respect to
24O by about 0.4 MeV and about 0.1 MeV, respectively, in
good agreement with experiments [4,5]. We predict 28O to
be unbound with respect to 24O by about 4 MeVand with a
resonant width of about 1 MeV. The extremely short life
time of 28O poses a challenge for experimental observa-
tion. The energy difference between light and heavy oxy-
gen isotopes is not correctly reproduced when compared to
data. We believe that this is due to the fact that our

interaction V̂3Neff is based on symmetric nuclear matter.
For smaller values of kF, the ground-state energy of the
lighter oxygen isotopes is increased (and can be brought to
good agreement with data), while the heavier isotopes are
significantly underbound. The value we chose for kF is thus
a compromise.
Let us comment on our computation of oxygen isotopes

with open shells. First, we solve the CCSD equations for
the Hamiltonian (1) of the closed-shell reference state, but
employ the mass number A$ 1 in the intrinsic kinetic
energy. In a second step, we add (remove) a neutron within
the particle attached (removed) EOM. This procedure
ensures that the final result is obtained for the intrinsic
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FIG. 1 (color online). Ground-state energy of the oxygen iso-
tope AO as a function of the mass number A. Black circles:
experimental data; blue diamonds: results from nucleon-nucleon
interactions; red squares: results including the effects of three-
nucleon forces.
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schematic approximation of 3NFs guided by chiral EFT
and utilize the coupled-cluster method to solve the quan-
tum many-body problem. Chiral EFT is a systematic and
model-independent approach to nuclear interactions. We
employ the NN interactions at next-to-next-to-next-to
leading order by Entem and Machleidt [21,22] and an
approximation for the chiral 3NFs that was previously
adopted in neutron-rich oxygen isotopes [7]. The coupled-
cluster method [23,24] is a very efficient tool for the com-
putation of nuclei with a closed (sub)shell structure and
their neighbors and thus ideally suited for the task at hand.

Hamiltonian, model space, and method.—We employ
the intrinsic Hamiltonian

Ĥ ¼
X

1"i<j"A

!ð ~pi $ ~pjÞ2
2mA

þ V̂ði;jÞ
NN þ V̂ði;jÞ

3Neff

"
: (1)

Here, the intrinsic kinetic energy depends on the mass
number A. The potential V̂NN denotes the chiral NN inter-
action at next-to-next-to-next-to leading order [21,22],
while V̂3Neff is a schematic potential based on the in-
medium chiral NN interaction by Holt et al. [25] (see
also Ref. [26]). The potential V̂3Neff results from integrat-
ing one nucleon in the leading-order chiral 3NF over the
Fermi sphere with Fermi momentum kF in symmetric
nuclear matter and is thus reminiscent of the normal-
ordered approximation [27]. It depends formally on the
Fermi momentum kF, the low-energy constants cD and cE
of the short-ranged contributions to the leading-order
chiral 3NF, and the chiral cutoff. The latter is equal to
the value employed in the chiral NN interaction [21]. In
the computation of neutron-rich oxygen isotopes [7], the
parameters kF ¼ 1:05 fm$1 and cE ¼ 0:71 resulted from
adjusting the binding energies of 16;22O, while cD ¼ $0:2
was kept at its value determined in light nuclei [28]. In this
work, we use kF ¼ 0:95 fm$1 and cE ¼ 0:735 from ad-
justing the binding energies of 48;52Ca. It is very satisfying
that the parametrization of V̂3Neff changes little as one goes
from neutron-rich isotopes of oxygen to the significantly
heavier calcium isotopes.

The coupled-cluster method generates a similarity-
transformed Hamiltonian !H ¼ e$TĤeT by the action of
the cluster operator T that creates up to n-particle-n-hole
(np-nh) excitations with respect to a reference state. Details
of our implementation are presented in Refs. [29,30]. We
compute the ground states of the closed-(sub)shell nuclei
40;48;52;54;60;62Ca in the singles doubles (CCSD) approxima-
tion and include n ¼ 3 triples perturbatively within the
"-CCSD(T) approach of Ref. [31]. Our model space con-
sists of up to Nmax ¼ 19 major spherical oscillator
shells (i.e., the maximal single-particle excitation energy is
18 units of @! above the oscillator ground state), and the
reference state results from a Hartree–Fock calculation. Our
basis employs oscillator spacings between 24 MeV "@! " 32 MeV, and in the largest model spaces the results

we present are practically independent of @!. For excited
states in 53;55;61Ca above threshold, we use a Gamow–
Hartree–Fock basis [7,32] with 40 discretization points
[33]. Excited states of the closed-shell nuclei 48;52;54Ca are
computed within the equation-of-motion (EOM) method
with singles and doubles. The open-shell nuclei
39;41;47;49;51;53;55;59;61Ca are computed with the particle
attached or removed EOM methods, and we use the
two-particle attached EOM method [34] for the nuclei
42;50;56Ca. Note that the employed EOM methods are
expected to reliably compute the separation energies and
low-lying excited states as long as they are dominated by
1p, 1h, 1p-1h or 2p excitations.
Results.—Figure 1 shows the computed ground-state

energies of the calcium isotopes and compares the results
obtained with the Hamiltonian of Eq. (1) to available data
and to the results based on chiral NN interactions alone.
The inclusion of chiral 3NFs via the in-medium effective
potential V̂3Neff clearly yields a much improved agreement
with data. The light isotopes 39;40;41;42Ca are slightly over-
bound, whereas the agreement is very good for the neutron-
rich isotopes at the center of this study. The comparison
with chiral NN forces shows that the in-medium effective
potential V̂3Neff is repulsive [35]. For the heavier isotopes
of calcium, the in-medium effective potential V̂3Neff

becomes increasingly repulsive, and a saturation of the
total binding energy sets in around 60Ca. It is interesting
that essentially the same interaction yields attraction in
neutron-rich oxygen isotopes [7]. Note that the results for
the isotopes 52–60Ca are based on an exponential extrapola-
tion of our results for Nmax ¼ 14, 16, 18 oscillator shells at
the oscillator frequency @! ¼ 26 MeV. This extrapolation
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FIG. 1 (color online). Ground-state energy of the calcium
isotopes as a function of the mass number A. Black circles:
experimental data; red squares: theoretical results including the
effects of three-nucleon forces; blue diamonds: predictions from
chiral NN forces alone. The experimental results for 51;52Ca are
from Ref. [36].
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Error estimates in ab initio calculations

✪ Long-term goal: predictive calculations with quantified theoretical errors

1) Numerical algorithms            

2) Model space truncation         

3) Many-body expansion           

4) Hamiltonian                             

✪ Possible sources of error:

➟ Usually the smallest source of error
➟ Comparison within one method

➟ Enters at different stages of the calculation
➟ Comparison within one method + results from other methods

➟ Roughly under control, but difficult to assess precisely
➟ Comparison within one method & different methods

➟ Currently the hardest to assess in a thorough way
➟ Comparison within one method, different methods & data
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✪ Krylov projection in GGF



Error estimates 2: model space truncation

➟ Building of NN+3N matrix elements

✪ Enters at various stages
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FIG. 1. (Color online) Convergence of the binging energy of 51K with
respect to the basis size and HO frequency, for the full Hamiltonian.

model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are
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FIG. 1: (Color online) Comparison of CCSD ground-state energies
at flow parameters α = 0.04 fm4 (blue circles) and 0.08 fm4 (red di-
amonds), without (open symbols) and with (full symbols) frequency
conversion, using E3max = 14 and emax = 12. The frequency conver-
sion was performed using the parent frequency !ΩSRG = 36MeV.

tor quantum number 2n + l ≤ emax. We do Hartree-Fock (HF)
calculations to optimize the single-particle basis, and perform
the normal ordering with respect to the HF ground state.
Role of the three-body SRG model space. The SRG evo-

lution is performed in a finite model space and particu-
larly for the evolution of the 3N interaction, the model
spaces required to accurately represent the Hamiltonian be-
come very large. We parametrize our SRG model spaces
by an angular-momentum dependent truncation ESRG(J) for
the energy quantum numbers in the three-body Jacobi-HO
basis in which the flow equation is solved [9, 16]. These
parametrizations, referred to as ramps, are defined by two
plateaus of constant ESRG(J) with a linear slope in between.
Earlier works employed ramp A with E(A)SRG(J≤

5
2 ) = 40 and

E(A)SRG(J≥
13
2 ) = 24 [6, 9, 11, 13, 16, 17, 22]. Already in

medium-mass calculations, this ramp shows first deficien-
cies [13, 31]. If the SRG evolution is performed at small fre-
quencies !Ω, the momentum range covered in the truncated
SRG model space is not sufficient to capture the relevant con-
tributions of the initial Hamiltonian, resulting in an artificial
increase of the ground-state energies. We overcome this prob-
lem using the frequency conversion discussed in [9], where
we evolve the Hamiltonian at a sufficiently large frequency
!ΩSRG and convert to the target frequency subsequently. In
Fig. 1 we show the !Ω-dependence of CCSD ground-state en-
ergies obtained for ramp A with and without frequency con-
version. This frequency conversion, used in all following cal-
culations, eliminates the artificial increase of the energies at
low frequencies and shifts the energy minima towards lower
frequencies.
Next we investigate the convergence with respect to the

SRG model-space size. To this end, we also employ a con-
siderably larger model space defined by rampB, with plateaus

E(B)SRG(J≤
7
2 ) = 40 and E

(B)
SRG(J≥

11
2 ) = 36. In Fig. 2(a) we com-

pare CCSD ground-state energies obtained for ramps A and
B. For the lighter nuclei both ramps give very similar results,
but with increasing mass number we observe an increasing de-
viation. For 56Ni, this deviation is about 0.4 MeV per nucleon,
and grows to around 7 MeV per nucleon for the Sn isotopes.
These results dramatically illustrate the importance of large
SRG model spaces for heavier systems. To assess the trunca-
tion errors related to ramp B we introduce the two auxiliary
ramps C with E(C)SRG(J≤

7
2 ) = 40 and E

(C)
SRG(J≥

13
2 ) = 34, andD

with E(D)SRG(J≤
5
2 ) = 40 and E

(D)
SRG(J≥

9
2 ) = 36, which probe the

large-J part of the 3N SRG model space that is vital for heav-
ier systems. In Fig. 2(b) we show the deviation of the CCSD
ground-state energies for ramps C and D from the largest
ramp B. These deviations are below 50 keV per nucleon even
for the heaviest nuclei, which confirms convergence with re-
spect to the SRG model-space size, and establishes ramp B as
the standard used in the following. We have also confirmed
that the truncation in the low-J part of the model space intro-
duced only negligible errors.
CC convergence and triples correction. Soft interactions

allow for reasonably well converged CC calculations at
emax = 12, as is apparent from Fig. 3, where we present
ground-state energies from CCSD, ΛCCSD(T) [3, 29, 30],
and CR-CC(2,3) [26–28, 33]. Both triples-correction meth-
ods are highly sophisticated and we note that the former can
be obtained as an approximation to the latter [22]. We ob-
serve noticeable differences for the α = 0.04 fm4 interaction,
where the magnitude of the triples correction itself is larger
than for α = 0.08 fm4, with the ΛCCSD(T) results lying be-
low their CR-CC(2,3) counterparts. This is consistent with
findings from quantum chemistry, where ΛCCSD(T) tends to
overestimate the exact triples correction [34]. In the follow-
ing, we use the size of the CR-CC(2,3) triples correction to
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SRG Model Space for Heavy Nuclei

■ studied SRG space dependence with several SRG ramps

⇒ insufficient model space for partial waves with J > 5
2

■ introduce extended SRG space D as standard for heavy nuclei
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Error estimates 3: many-body expansion

✪ Gorkov-Green’s functions
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FIG. 1. (Color online) Convergence of the binging energy of 51K with
respect to the basis size and HO frequency, for the full Hamiltonian.

model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

[Somà et al. 2013]
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FIG. 1. (Color online) Binding energy of Ca isotopes from (sc0)
second-order Gorkov-SCGF obtained in a fixed model space of eight
shells. Gorkov propagators are calculated for even A (filled symbols)
while odd-A results (open symbols) are computed according to the
prescription of Ref. [24].

introduced by triples [!-CCSD(T)] [9] are closely reproduced
by Dyson-SCGF in the ADC(3) approximation [18] after
including doubles corrections to its coupling amplitudes
[ADC(3)-D] [3]. Since the extension of Gorkov’s formalism
to ADC(3) schemes is within computational reach, this gives
confidence that Gorkov-SCGF calculations can be improved
to the desired accuracy. Note that earlier calculations with
second-order self-energies already gave quantitative results,
although these were limited to small model spaces and
closed-shell systems [31,32]. The findings shown in Fig. 1
demonstrate the feasibility of first-principle calculations along
full isotopic chains and constitute the main result of the present
work.

Let us now go to larger model spaces and discuss the two
examples of mid-shell 44Ca and 74Ni. In the following, calcu-
lations are performed with a next-to-next-to-next-to-leading-
order (N3LO) 2N chiral interaction [33] complemented by
the Coulomb force and evolved using free-space similarity
renormalization group (SRG) [34] to λ = 2.0 fm−1. Figure 2
displays the binding energy of 74Ni as a function of the
harmonic oscillator spacing h̄ω and for an increasing size,
Nmax, of the single-particle model space. The convergence
pattern obtained here on the basis of a soft 2N interaction is

FIG. 2. (Color online) Binding energy 74Ni as a function of the
harmonic oscillator spacing h̄ω and for an increasing size Nmax of
the single-particle model space. Results are from (sc0) second-order
Gorkov-SCGF calculations. The insert show an enlargement of the
most converged results.

TABLE I. Binding energy, neutron pairing gap, and matter root-
mean-square radius. Results are from second-order (sc0) Gorkov-
SCGF calculations and are extrapolated to infinite oscillator basis size
using the method of Ref. [35]. The extrapolation error is indicated
only when it is bigger than the last digit shown.

EA
0 (MeV) $(3)

n (A) (MeV) rrms (fm)

44Ca − 669.6(1) 1.16 2.48
74Ni − 1269.7(2) 1.17(1) 2.75

similar to those generated for doubly closed shell nuclei with
currently available ab initio methods. Overall, convergence
is well attained for Nmax = 13. In 44Ca, going from Nmax =
11 to Nmax = 13 lowers the minima by just a few keV.
Also, the binding energy calculated for Nmax = 13 varies
by less than 200 keV over a wide range of h̄ω values.
In 74Ni, going from Nmax = 11 to Nmax = 13 yields an
additional 600 keV, while scanning a large range of oscil-
lator frequencies only changes the binding energy by about
1 MeV.

Table I gives examples of observables of interest in
the ground state of 44Ca and 74Ni. The values quoted are
extrapolated to infinite oscillator basis size using the method
proposed in Ref. [35]. Note that the present results nicely
demonstrate the feasibility of Gorkov-SCGF in the medium-
mass region but are not expected to reproduce the experiment.
Issues related to overbinding of SRG-evolved 2N interactions
are known to be resolved by including 3N forces [4,5,36] and
this is also confirmed by preliminary work in which 3N forces
are approximately added to Gorkov-SCGF [37]. For example,
3N forces raise the radius of 44Ca to 2.94 fm (closer to the
experimental value of 3.52 fm) and the neutron f7/2-d3/2 shell
gap is reduced to 7.2 MeV, in agreement with the data-driven
predictions of Ref. [38].

Figure 3 displays one-neutron addition and removal spectral
strength distributions (SSDs) in 44Ca. Results are shown over
a large range of final states in 43Ca and 45Ca characterized by
spectroscopic factors as small as 0.2%. One observes a frag-
mentation of the spectroscopic strength that is characteristic of
correlated many-body systems. Overall the pattern is similar
to the one found in doubly magic nuclei [3]. Close to the
Fermi energy, however, one notices a feature that is unique to
open-shell nuclei; i.e., the 7/2− strength is equally fragmented
into addition and removal channels, which results in the fact
that both 43Ca and 45Ca ground states have angular momentum
and parity J π = 7/2−. This reflects static pairing correlations
that manifest themselves as a result of emerging degeneracies
in the ground state of open-shell nuclei. It is the main strength
of Gorkov-SCGF theory to explicitly handle such degeneracies
and the resulting pairing correlations.

The right column in the upper panel of Fig. 4 shows an
enlargement of Fig. 3 around the Fermi energy for states
with spectroscopic factors larger than 10%. The left column
provides the same quantities for first-order (i.e., HFB) calcu-
lations. The center column displays effective single-neutron
energies. The same information is provided for 74Ni in the
lower panel of Fig. 4. The main fragmentation of the strength is
absent from first-order calculations; i.e., it is due to dynamical

011303-3
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Error estimates 3: many-body expansion

✪ IM-SRG

truncation of the many-body expansion, while the effect of
theNO2Bapproximation is found to be independent of!SRG.

For !3N ¼ 350 MeV=c we do not expect significant
induced 4N interactions [27]. As !SRG is reduced, we
capture additional repulsive 3N strength in matrix elements
with e1 þ e2 þ e3 # E3max. We also speed up the conver-
gence of the many-body expansion and reduce the error due
to the MR-IM-SRG(2) truncation, but for the resolution
scales considered here, this effect is already saturated. In
total, we find a slight artificial increase of the ground-state
energies as we lower !SRG [13].

For our standard choice !3N ¼ 400 MeV=c, effects
from omitted 4N interactions, the E3max cut, and the
many-body truncation cancel, and the !SRG dependence
of the energies in Fig. 2 is extremely weak [13]. The
omission of 4N interactions becomes the dominant source
of uncertainty as we increase!3N to 450 MeV=c, resulting
in an enhanced !SRG dependence of the ground-state ener-
gies of the heavier oxygen isotopes. This is consistent with
the even stronger !SRG dependence for!3N ¼ 500 MeV=c
observed in Refs. [23,26,27].

To assess the quality of our MR-IM-SRG(2) ground-
state energies, we compare them to results from the
IT-NCSM, which yields the exact NCSM results within
quantified uncertainties from the importance truncation
[26,32]. In the IT-NCSM calculations, we use the full
3N interaction without the NO2B approximation, and the
E3max cut is naturally compatible with the IT-NCSM
model-space truncation [13]. In Fig. 3 we show the
convergence of the oxygen ground-state energies for the
NN þ 3N-induced and NN þ 3N-full Hamiltonians as a
function of Nmax, along with exponential fits which ex-
trapolate Nmax ! 1 [26,32,33]. With the exception of 26O,
all isotopes converge well, and the uncertainties of the
threshold and model spaces truncations of the IT-NCSM
results are typically about 1 MeV. For 26O, the rate of
convergence is significantly worse, which is expected due
to the resonance nature of this ground state.

The neutron-rich oxygen isotopes are the heaviest nuclei
studied so far in the IT-NCSMwith full 3N interactions. For
26O, the computation of the complete Nmax sequence shown
in Fig. 3 requires about 200 000 CPU hours. In contrast, a
corresponding sequence of single-particle basis sizes in the
MR-IM-SRG requires only about 3000 CPU hours on a
comparable system.Overall, themethod scales polynomially
with OðN6Þ to larger basis sizes N, which makes it ideally
suited for the description ofmedium- and heavy-mass nuclei.

In Fig. 4, we compare the MR-IM-SRG(2) and
IT-NCSM ground-state energies of the oxygen isotopes, for
the NN þ 3N-induced and NN þ 3N-full Hamiltonians
with !SRG ¼ 1:88 fm&1 to experiment. For the latter, the
overall agreement between the twovery differentmany-body
approaches and experiment is striking: Except for slightly
larger deviations in 12O and 26O, we reproduce experimental
binding energies within 2–3 MeV. This is a remarkable

demonstration of the predictive power of current chiral
NN þ 3N Hamiltonians, at least for ground-state energies.
For further confirmation, we perform CC calculations with
singles and doubles (CCSD), as well as perturbative triples
[!-CCSD(T)] [15,22,34,35] for oxygen isotopes with sub-
shell closures. Using the same Hamiltonians in the NO2B
approximation, the MR-IM-SRG energies are bracketed
by the CC results, and similar to the !-CCSD(T) values,
consistentwith the closed-shell results discussed inRef. [13].
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FIG. 3 (color online). IT-NCSM ground-state energies of the
even oxygen isotopes for the NN þ 3N-induced (a) and NN þ
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FIG. 4 (color online). Oxygen ground-state energies for the
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to infinite model space. Experimental values are indicated by
black bars [28,36].
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✪ Within one Hamiltonian by varying λSRG

a very good agreement of the converged ground-state
energies, with the IT-NCSM giving 1 to 2 MeV more
binding. This difference is consistent with the contribu-
tions expected from triples corrections and the missing
3N matrix elements with E3max > 14. The latter point
has been confirmed by comparing to lower E3max cuts.
Altogether, the CCSD calculations for 16O with soft
SRG-evolved NN þ 3N Hamiltonians in NO2B approxi-
mation provide a ground-state energy within 1% to 2%
of the IT-NCSM results with the exact 3N interaction.
Using CCSD with the NO2B approximation we can now
study the systematics of ground-state energies with
SRG-evolved chiral NN þ 3N Hamiltonians beyond
16O. Following the analysis of Ref. [18] we discuss the
! dependence observed with the NN-only, the NN þ
3N-induced, and the NN þ 3N-full Hamiltonians for
16O and 24O, shown in Fig. 4, and for 40Ca and 48Ca,
shown in Fig. 5. For all nuclei we observe the same pattern:
The NN-only Hamiltonian exhibits strong ! dependence
of the converged ground-state energies hinting at induced
3N interactions. Their inclusion at the NN þ 3N-induced
level eliminates the ! dependence, thus providing a
strong indication that induced 4N contributions originat-
ing from the initial NN are irrelevant for ground-state
energies. The converged energies, therefore, correspond
to the solutions for the initial chiral NN interaction.
We obtain "120:2ðþ0:8Þ MeV for 16O ground-state
energy, "152:1ðþ0:5Þ MeV for 24O, "343ðþ6Þ MeV for

40Ca, and "392ðþ7Þ MeV for 48Ca using the NN þ
3N-induced Hamiltonian at ! ¼ 0:04 fm4 for emax ¼ 14.
The numbers in parenthesis give the changewhen going to
! ¼ 0:08 fm4 as a measure for the residual! dependence.
These results are in very good agreement with the CC
results reported in Refs [23,24] for the bare chiral NN
interaction.
When including the initial 3N interaction, i.e., when

using the NN þ 3N-full Hamiltonian, the ! dependence
reemerges, indicating that 4N terms induced by the initial
3N interaction become sizable. These CCSD results
confirm the findings of Ref. [18] and extend the system-
atics to heavier nuclei.
In addition to the standard chiral 3N interaction [17]

with cutoff momentum of 500 MeV, we also employ a
chiral 3N interaction with a modified cutoff of 400 MeV
and cE ¼ 0:098 refitted to reproduce the 4He binding
energy. We keep the value cD ¼ "0:2 as in the standard
3N interaction. Based on the findings of Ref. [17] a
selective change of the 3N cutoff or of cE will not affect
the triton lifetime. Effectively the lower cutoff reduces the
strength of the two-pion terms of the 3N interaction and
limits them to lower momenta. As a result the ! depen-
dence and thus the induced 4N contributions are reduced
significantly. This allows for a quantitative comparison
of the NN þ 3N-full predictions with experimental
binding energies. We obtain ground-state energies of
"126:4ð"1:9Þ MeV for 16O, "164:8ð"2:8Þ MeV for
24O, "357ð"6Þ MeV for 40Ca, and "403ð"8Þ MeV for
48Ca using ! ¼ 0:04 fm4 with the change when going to
! ¼ 0:08 fm4 given in parenthesis. The agreement with
experiment is remarkable. For 16O and 24O the predictions
based on the chiral NN þ 3N Hamiltonian reproduce the
experimental energies within the theoretical uncertainties.
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a very good agreement of the converged ground-state
energies, with the IT-NCSM giving 1 to 2 MeV more
binding. This difference is consistent with the contribu-
tions expected from triples corrections and the missing
3N matrix elements with E3max > 14. The latter point
has been confirmed by comparing to lower E3max cuts.
Altogether, the CCSD calculations for 16O with soft
SRG-evolved NN þ 3N Hamiltonians in NO2B approxi-
mation provide a ground-state energy within 1% to 2%
of the IT-NCSM results with the exact 3N interaction.
Using CCSD with the NO2B approximation we can now
study the systematics of ground-state energies with
SRG-evolved chiral NN þ 3N Hamiltonians beyond
16O. Following the analysis of Ref. [18] we discuss the
! dependence observed with the NN-only, the NN þ
3N-induced, and the NN þ 3N-full Hamiltonians for
16O and 24O, shown in Fig. 4, and for 40Ca and 48Ca,
shown in Fig. 5. For all nuclei we observe the same pattern:
The NN-only Hamiltonian exhibits strong ! dependence
of the converged ground-state energies hinting at induced
3N interactions. Their inclusion at the NN þ 3N-induced
level eliminates the ! dependence, thus providing a
strong indication that induced 4N contributions originat-
ing from the initial NN are irrelevant for ground-state
energies. The converged energies, therefore, correspond
to the solutions for the initial chiral NN interaction.
We obtain "120:2ðþ0:8Þ MeV for 16O ground-state
energy, "152:1ðþ0:5Þ MeV for 24O, "343ðþ6Þ MeV for

40Ca, and "392ðþ7Þ MeV for 48Ca using the NN þ
3N-induced Hamiltonian at ! ¼ 0:04 fm4 for emax ¼ 14.
The numbers in parenthesis give the changewhen going to
! ¼ 0:08 fm4 as a measure for the residual! dependence.
These results are in very good agreement with the CC
results reported in Refs [23,24] for the bare chiral NN
interaction.
When including the initial 3N interaction, i.e., when

using the NN þ 3N-full Hamiltonian, the ! dependence
reemerges, indicating that 4N terms induced by the initial
3N interaction become sizable. These CCSD results
confirm the findings of Ref. [18] and extend the system-
atics to heavier nuclei.
In addition to the standard chiral 3N interaction [17]

with cutoff momentum of 500 MeV, we also employ a
chiral 3N interaction with a modified cutoff of 400 MeV
and cE ¼ 0:098 refitted to reproduce the 4He binding
energy. We keep the value cD ¼ "0:2 as in the standard
3N interaction. Based on the findings of Ref. [17] a
selective change of the 3N cutoff or of cE will not affect
the triton lifetime. Effectively the lower cutoff reduces the
strength of the two-pion terms of the 3N interaction and
limits them to lower momenta. As a result the ! depen-
dence and thus the induced 4N contributions are reduced
significantly. This allows for a quantitative comparison
of the NN þ 3N-full predictions with experimental
binding energies. We obtain ground-state energies of
"126:4ð"1:9Þ MeV for 16O, "164:8ð"2:8Þ MeV for
24O, "357ð"6Þ MeV for 40Ca, and "403ð"8Þ MeV for
48Ca using ! ¼ 0:04 fm4 with the change when going to
! ¼ 0:08 fm4 given in parenthesis. The agreement with
experiment is remarkable. For 16O and 24O the predictions
based on the chiral NN þ 3N Hamiltonian reproduce the
experimental energies within the theoretical uncertainties.
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FIG. 4 (color online). CCSD ground-state energies for 16O and
24O as a function of emax for the three types of Hamiltonians (see
column headings) using the NO2B approximation for a range of
flow parameters: ! ¼ 0:04 fm4 (d), 0:05 fm4 (r), 0:0625 fm4

(m), and 0:08 fm4 (j). The filled symbols for the NN þ 3N-full
Hamiltonian are for the standard chiral 3N interaction with
cutoff 500 MeV, the open symbols for a modified 3N interaction
with cutoff 400 MeV (see text).
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changing A. To extract the energy of a system with mass
A! 1, we recalculate g!"ð!Þ for the doubly closed sub-
shell A-nucleon system but with a ~HðA! 1Þ corrected
Hamiltonian. We then obtain

EA!1 ¼ !"A!1
0 ½ ~HðA! 1Þ& þ EA

0 ½ ~HðA! 1Þ&; (10)

where we made explicit the dependence on the c.m.
correction for the Hamiltonian and EA

0 ½ ~HðA! 1Þ& is calcu-
lated using the corrected Koltun SR.

Results.—We perform calculations using chiral effective
field theory (EFT) two-nucleon (2N) and 3NFs evolved to
low momentum scales by using free-space similarity re-
normalization group (SRG) [34,35]. The original 2N inter-
action is next-to next-to next-to leading order (N3LO) with
cutoff !2N ¼ 500 MeV [36,37]. For the 3NF we use the
NNLO interaction in a local form [38] with a reduced
cutoff of!3N ¼ 400 MeV and low-energy constants cD ¼
(0:2 and cE ¼ 0:098, refitted to reproduce the 4He bind-
ing energy as discussed in Ref. [30]. This choice of !3N

softens the contributions of two-pion 3NF terms, herby
minimizing the impact of evolved 4NF. The 3NF obtained
by evolving only the original 2N N3LO Hamiltonian will
be referred to as ‘‘induced’’ 3NF and it is independent of
the pre-existing 3N NNLO interaction. Similarly, the
‘‘full’’ Hamiltonian is generated by evolving both initial
2N and 3NFs together. Since two-pion exchange diagrams
that incorporate physics from the Fujita-Miyazawa 3NF
appear at leading order in the chiral 3N NNLO force, their
effects are incorporated only in the full Hamiltonian.
Calculations were performed in model spaces up to 12
harmonic oscillator shells [Nmax ) maxð2nþ lÞ ¼ 11],
including all 2N matrix elements and limiting 3NF ones
to configurations with N1 þ N2 þ N3 * N3NF;max ¼ 14.

Figure 1 shows the convergence pattern of total binding
energies for 16O and 24O as a function of the model space
size. The convergence is optimized by the choice of the
chosen oscillator frequency which is close to the minimum
of the @! dependence for the present interaction [11]. The
staggering between adjacent results is due to the particular
truncation of 3NF matrix elements and the alternate par-
ities of harmonic oscillator shells. Separate exponential fits
to the calculated 24O energies, for Nmax either even or odd,
differ by 100 keVand are within 600 keVof the Nmax ¼ 11
result. Similarly, changing @! between 20 and 24 MeV we
find up to 450 keV variation in our results (see Fig. 2).
Overall, these errors amount to about 0.6% of the total
binding energy. The right panel of Fig. 1 demonstrates the
similar convergence of the h"A

0 jWj"A
0 i expectation values.

The contribution of hWTDAi, Eq. (9), is never bigger than
300 keV and represents a small correction to the Koltun
SR. A proper study of the contributions to hWi will be
addressed in a forthcoming publication. For the present
purposes, we sum the above uncertainties to make a con-
servative estimate for our convergence error of 1% for the
calculated total binding energies.

The differences between calculated binding energies and
the experiment, are demonstrated in Fig. 2 for different
values of @! and #SRG. Refs. [11,28] studied variations of
#SRG within larger intervals than the one considered here
and found uncertainties of at most a few per cent. This
gives an estimate of the error due to neglecting 4NF and
higher terms. Our results with #SRG in the limited range
1:88–2:0 fm(1 do not exceed variations of 0.5% and this in
agreement with Ref. [28].
From previous studies based on the ADC(3) method, we

expect an accuracy of the many-body truncation scheme
of about 1% [39,40]. The extrapolated 16O ground state
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FIG. 1 (color online). Convergence of 16O and 24O as a func-
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and #SRG ¼ 2:0 fm(1. Left: Binding energies from the corrected
Koltun sum rule, Eq. (7), as obtained from the induced and
full interactions. Right. Expectation value h"A
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0 i obtained

at first order only, Eq. (8), (full lines) and with correction from
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✪ One would like to test different chiral orders…
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FIG. 3. (Color online) Phase shifts (nuclear bar) for the 1P1,
3P0,

3P1 and 3P2 −
3F2 channels with the LO piece of the

chiral potential (OPE) fully iterated and the NLO and N2LO pieces (chiral TPE) treated perturbatively. A LO counterterm in
included in the attractive triplets (3P0, 3P2 −

3F2) to remove the uncontrolled cut-off dependence. The contact operators are
used to fix the value of the scattering lengths to a3P0

= −2.7 fm3 and a3P2
= −0.04 fm3. The bands are generated by varying

the cut-off radius in the region rc = 0.6 − 0.9 fm and they are formally a higher order effect. However, as a result of the mild
cut-off dependence of the results, the full uncertainty of the calculation at a given order is expected to be much higher than the
cut-off variation bands. The light blue band corresponds to the N2LO results of Ref. [19] in the standard Weinberg counting.
The dashed dark blue line represents the N2LO results for rc = 0.3 fm.

the k = 100− 200MeV region to the Nijmegen II phase
shifts [76], which are in turn equivalent to the Nijmegen
PWA [77].
It should be noticed that the perturbative regulariza-

tion techniques employed in this work are specifically cho-
sen to identify divergences in the amplitudes rather than
to optimize the phenomenology. In fact, the regulator
we employ can be considered to be the coordinate space
equivalent of the sharp regulator in momentum space,
which is known to be suboptimal from the phenomeno-
logical point of view. Even with this proviso, the phase
shifts we obtain are better than the corresponding ones

in the Weinberg scheme at the same order. However, the
amplitudes are clearly amenable to improvements.

A. P-waves

The results for the p-wave phase shifts are shown in
Fig. (3). The renormalization of the LO phase shifts
requires the inclusion of a counterterm in each of the
attractive triplets. Therefore we fix the value of the
scattering length in the 3P0 and 3P2 − 3F2 channels to

[Pavon Valderrama 2011]
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… and eventually different Hamiltonians
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FIG. 3. (Color online) Nuclear matter NN-only results for dif-
ferent chiral N3LO potentials (EM [19] and EGM [30]). The upper
panel shows the third-order results for Vlow k-evolved interactions at
! = 2.0 fm−1 (solid lines) and Brueckner-Hartree-Fock results for
the two unevolved chiral potentials that provide the lowest and highest
energies (dashed lines), EGM 600/700 MeV and EM 600 MeV. The
lower panel shows the maximal spread of the energy results at these
two cutoff scales ! for Vlow k and λ for SRG-evolved NN interactions.

c1 = −0.76 GeV−1, c3 = −4.78 GeV−1, c4 = 3.96 GeV−1).
The fit values for cD and cE are given in Table I.

The resulting nuclear matter energies are shown in Fig. 4.
For all three cases we find realistic saturation properties within
the theoretical uncertainties implied by the cutoff dependence
shown in Fig. 1 and the NN interaction dependence shown
in Fig. 3. The difference between Vlow k and SRG results for
a given set of ci is similar to the NN-only case (see Fig. 1),
which helps support the general nature of the 3NF fit. However,
the present sensitivity study can clearly only provide a first
estimate for the energy spread due to uncertainties of the ci

couplings. A more systematic study will require a correlation
analysis based on a larger set of results.

The theoretical errors of our nuclear matter results arise
from truncations in the initial chiral EFT Hamiltonian, the
approximation of the 3NF, and the many-body approximations.
Corrections to the present calculation include higher-order
many-body terms, in particular, particle-hole corrections, and
contributions from higher-order many-body forces and from
3NF contributions that cannot be expressed in terms of density-
dependent two-body interactions. While the improvements
in the cutoff dependence suggest that these corrections are
relatively small, an approach such as coupled cluster theory
that can perform a high-level resummation is ultimately
necessary for a robust validation.

While nuclear matter has lost to light nuclei its status as the
first step to nuclear structure, it is still key as a step to heavier
nuclei and astrophysical applications like the structure of
neutron stars [17]. Our results can help with efforts to develop
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FIG. 4. (Color online) Nuclear matter energy at the third-order
level comparing low-momentum Vlow k with SRG-evolved chiral NN
interactions for 3NF with different EM/PWA/EGM ci values used
(see text).

ab initio density functional theory (DFT) based on expanding
about nuclear matter [34]. This is analogous to the application
of DFT in quantum chemistry and condensed matter starting
with the uniform electron gas in local-density approximations
and adding constrained derivative corrections. Phenomeno-
logical energy functionals (such as Skyrme) for nuclei have
impressive successes but lack a (quantitative) microscopic
foundation based on nuclear forces and seem to have reached
the limits of improvement with the current form of functionals
[35,36]. At present, the theoretical errors of our results, while
small on the scale of the potential energy per particle, are too
large to be quantitatively competitive with existing functionals.
The implementation of higher-order chiral Hamiltonians and
their RG evolution can be expected to provide more accurate
and reliable predictions. However, there is also the possibility
of fine tuning to heavy nuclei, of using EFT/RG to guide next-
generation functional forms [37,38], and of benchmarking
with ab initio methods for low-momentum interactions. Work
in these directions is in progress.

In summary, we have presented new results for nuclear
matter based on chiral NN and 3N interactions with RG
evolution. The chiral EFT framework provides a systematic
improvable Hamiltonian while the softening of nuclear forces
by RG evolution enhances the convergence and control of
the many-body calculation. The empirical saturation point is
reproduced within our estimates of uncertainties despite input
only from few-body data. Because of the fine cancellations,
however, significant reduction of these uncertainties will
be needed before direct DFT calculations of nuclei are
competitive. Nevertheless, these results are very promising
for a unified description of all nuclei and nuclear matter.

We thank J. W. Holt for helpful discussions. This work
was supported in part by NSERC, the NSF under Grants No.
PHY-0653312, No. PHY-0758125, and No. PHY-1002478,
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FIG. 1. (Color online) Energy per particle E/A of pure neutron matter (x = 0) and asymmetric nuclear matter for three di↵erent
proton fractions x = 0.05, 0.1, and 0.15 as a function of density n. The bands estimate the uncertainty of our calculations (see
text for details). Where available, we compare our results to the Brueckner-Hartree-Fock energies of Ref. [37] (Zuo) and to the
energies obtained from in-medium chiral perturbation theory (Fiorilla et al.) [18].

FIG. 2. (Color online) Interaction energy per particle from NN (left panel) and 3N (right panel) contributions for pure neutron
matter (blue) and asymmetric nuclear matter with proton fraction x = 0.1 (red bands) as a function of density.

B. Quadratic expansion and symmetry energy

The technical di�culties of asymmetric matter calcu-
lations have triggered approximate or phenomenologi-
cal expansions for the nuclear equation of state. Start-

ing from the saturation point of symmetric matter,
the quadratic expansion expresses the energy of asym-
metric matter in terms of the asymmetry parameter
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FIG. 1. (Color online) Nuclear matter energy per particle versus Fermi momentum kF at the Hartree-Fock level (left) and including
second-order (middle) and third-order particle-particle/hole-hole contributions (right), based on evolved N3LO NN potentials and 3NF fit to
E3H and r4He. Theoretical uncertainties are estimated by the NN (lines)/3N (band) cutoff variations.

as in Ref. [22]. Our 3NF central fit values are given in Table I;
we estimate that cD has an uncertainty of approximately 0.4
due to the uncertainties of the charge radius in 4He. We use
a 3NF regulator of the form exp{−[(p2 + 3/4q2)/!2

3NF]nexp}
with nexp = 4, where the 3N cutoff !3NF is allowed to vary
independently of the NN cutoff, which probes the sensitivity to
short-range three-body physics. The shaded regions in Fig. 1
show the range of results for 2.0 fm−1 < !3NF < 2.5 fm−1

at fixed ! = 2.0 fm−1.
Nuclear matter is calculated in three approximations:

Hartree-Fock (left), Hartree-Fock plus second-order contribu-
tions (middle), and additionally summing third-order particle-
particle and hole-hole contributions (right). The technical
details regarding the treatment of the 3NF and the many-body
calculation are as for neutron matter in Ref. [16]. We first
construct a density-dependent two-body interaction from the
3NF by summing one particle over occupied states in the Fermi
sea (see also Ref. [23]). This conversion simplifies the many-
body calculation significantly and allows the inclusion of
all 3NF double-exchange terms beyond Hartree-Fock, which
were only approximated in Refs. [10,15]. Furthermore, we
have corrected the combinatorial factors at the normal-ordered

TABLE I. Results for the cD and cE couplings fit to E3H =
−8.482 MeV and to the point charge radius r4He = 1.464 fm (based
on Ref. [26]) for the NN/3N cutoffs and different EM/EGM/PWA
ci values used. For Vlow k (SRG) interactions, the 3NF fits lead to
E4He = −28.22 . . . − 28.45 MeV (−28.53 . . . − 28.71 MeV).

Vlow k SRG

! or λ/!3NF (fm) cD cE cD cE

1.8/2.0 (EM ci’s) +1.621 −0.143 +1.264 −0.120
2.0/2.0 (EM ci’s) +1.705 −0.109 +1.271 −0.131
2.0/2.5 (EM ci’s) +0.230 −0.538 −0.292 −0.592
2.2/2.0 (EM ci’s) +1.575 −0.102 +1.214 −0.137
2.8/2.0 (EM ci’s) +1.463 −0.029 +1.278 −0.078
2.0/2.0 (EGM ci’s) −4.381 −1.126 −4.828 −1.152
2.0/2.0 (PWA ci’s) −2.632 −0.677 −3.007 −0.686

two-body level of the 3NF from 1/6 to 1/2 in diagrams
beyond Hartree-Fock used in these references (see Refs. [9,16]
for detailed discussions of these factors, which are correctly
included in Refs. [3,5,16,17]). To our knowledge, previous
calculations in the literature of nuclear matter using normal-
ordered 3NF contributions need the same correction.

The dashed lines in the left panel of Fig. 1 (for ! =
1.8 and 2.8 MeV) show the exact Hartree-Fock energy in
comparison with the results obtained using the effective
two-body interaction (solid lines). The excellent agreement
supports the use of this density-dependent two-body ap-
proximation for symmetric nuclear matter. For the results
beyond the Hartree-Fock level we use full momentum-
dependent single-particle Hartree-Fock propagators. We have
checked that the energies obtained using a self-consistent
second-order spectrum overlap with the band of curves
in Fig. 1.

The Hartree-Fock results show that nuclear matter is
bound even at this simplest level. A calculation without
approximations should be independent of the cutoffs, so
the spread in Fig. 1 sets the scale for omitted many-body
contributions. The second-order results show a significant
narrowing of this spread over a large density region. It is
encouraging that our results agree with the empirical saturation
point within the uncertainty in the many-body calculation and
omitted higher-order many-body forces implied by the cutoff
variation (the greater spread compared to Ref. [15] is mostly
attributable to the corrected combinatorial factor). We stress
that the cutoff dependence of order 3 MeV around saturation
density is small compared to the total size of the kinetic energy
(≈23 MeV) and potential energy (≈−38 MeV) at this density.
Moreover, the cutoff dependence is smaller at kF ≈ 1.1 fm−1,
which more resembles the typical densities in medium-mass
to heavy nuclei (ρ = 0.11 fm−3). For all cases in the right
panel of Fig. 1, the compressibility K = 175–210 MeV is in
the empirical range.

The inclusion of third-order contributions gives only small
changes from second order except at the lowest densi-
ties shown. This is consistent with nuclear matter being
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➟ Infinite (symmetric) matter
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Error estimates 4: input Hamiltonian

… and eventually different Hamiltonians

➟ First steps in this direction using N2LOoptPreliminary: Oxygen from NCSM-objective function
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Results: g.s. energies in the O chain

The MR-IM-SRG method can be extended systemati-
cally by improving the truncation scheme: One would
include 3; . . . ; A-body operators when Eq. (6) is expanded
in normal-ordered components, as well as additional terms
involving irreducible density matrices. While the number
of flow equations is the same as in the single-reference case,
their complexity grows much more rapidly due to addi-
tional terms from the generalized normal ordering [12–14].

Calculation details.—Reference states for the MR-IM-
SRG calculation are obtained by solving the HFB equations
in 15major harmonic-oscillator (HO) shells, and projecting
the resulting state on good proton and neutron numbers
[13,21]. For the 3N interaction, the sum of the HO energy
quantum numbers of a 3N basis state is limited by e1 þ
e2 þ e3 " E3max ¼ 14, as discussed in Refs. [13,22].
Reducing E3max from 14 to 12 changes the MR-IM-SRG
(2) ground-state energies for oxygen isotopes by less than
1% for the Hamiltonians used in this work. The intrinsic
NN þ 3N Hamiltonian is normal ordered with respect to
the reference state, and the residual normal-ordered 3N
interaction term is discarded, leading to the normal-ordered
two-body (NO2B) approximation, which is found to over-
estimate oxygen binding energies by about 1% [13,22].

In this Letter, we use the same nuclear Hamiltonians as
in our recent IM-SRG and CC studies [13,22,23]: The NN
interaction is the chiral N3LO interaction by Entem and
Machleidt, with cutoff !NN ¼ 500 MeV=c [2,24]. Our
standard three-body Hamiltonian is a local N2LO 3N
interaction with initial cutoff !3N ¼ 400 MeV=c. The
resolution scale of the Hamiltonian is lowered to !SRG ¼
1:88; . . . ; 2:24 fm$1 by means of a SRG evolution in three-
body space [25–27]. Hamiltonians which only contain
SRG-induced 3N forces are referred to as NN þ
3N-induced Hamiltonians, those also containing an initial
3N interaction as NN þ 3N-full Hamiltonians.

In Fig. 1, we illustrate the convergence of the MR-IM-
SRG(2) ground-state energies for 18O and 26O with respect
to the single-particle basis size. At the optimal @", the
change in the ground-state energy is 0.1%whenwe increase
the basis from emax ¼ 12 to 14. This rapid convergence is
representative for all Hamiltonians used in this work.

Results.—In Fig. 2, we show MR-IM-SRG(2) ground-
state energies of the even oxygen isotopes for NN þ
3N-full Hamiltonians with initial cutoffs !3N ¼ 350, 400,
and 450 MeV=c. For the 3N low-energy constants, we use
a fixed cD ¼ $0:2, and cE ¼ 0:205, 0.098, and $0:016,
respectively, which are fit to the 4He binding energy in
NCSM calculations [23,27]. For the NN þ 3N-full
Hamiltonian with !3N ¼ 400 MeV=c, we achieve an
excellent reproduction of experimental data all the way to
the neutron drip line at 24O [28], with deviations of 1%–2%.
Recent experiments place the 26O ground-state resonance at
Ex & 150 keV above the 24O ground-state energy [29,30].
We slightly overestimate this energy in our calculation
because the HO basis expansion of our single-particle

wave functions is ill suited to the description of resonances
and other continuum states. The inset in Fig. 2 illustrates
that the correct drip-line systematics is independent of !SRG

in the studied range and also robust against variations of
the cutoff!3N . This suggests that the long-range part of the
two-pion exchange (2PE) 3N interaction, which remains
unchanged as we lower !3N , is key to obtaining the proper
isotopic trends. The 2PE contribution has significant spin-
orbit and tensor terms, and is therefore important for the
evolution of the shell structure along the isotopic chain, as
also demonstrated in other studies, e.g., Ref. [31].
Let us now discuss the effect of varying the resolution

scale. As discussed in Refs. [13,22], the !SRG dependence of
our energies is the net result of omitted induced four-nucleon
(4N) interactions, the E3max cut, and the MR-IM-SRG(2)
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FIG. 1 (color online). Convergence of the MR-IM-SRG(2)
ground-state energies of 18O (a) and 26O (b) with respect to
the single-particle basis size emax, for the NN þ 3N-full
Hamiltonian at !SRG ¼ 2:0 fm$1.
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considered in this work we apply the Fermi momentum

kF ¼ 1:05 fm"1 in our potential V̂3Neff . Consistent
with the NN force, the effective cutoff for the 3NF is
! ¼ 500 MeV.

Let us comment on our phenomenological two-body

potential V̂3Neff that contains effects of 3NFs. The normal-
ordered approximation of 3NFs [9,21,22] still requires
one to compute an enormous number of three-body matrix
elements. This poses a great challenge for the large model
spaces we need to consider. The approach of this Letter is
thus simpler: The summation over the third particle is
performed in momentum space before the transformation
to the oscillator basis takes place [24]. This procedure
avoids the costly computation of three-body matrix
elements in large oscillator spaces, but it introduces an
uncontrolled approximation by replacing the mean-field
of a finite nucleus by that of symmetric nuclear matter.
To correct for this approximation, we adjusted the LEC
cE away from the optimal value established in light
nuclei [26].

The coupled-cluster method is essentially a similarity
transformation of the Hamiltonian with respect to a refer-
ence state. This method is accurate and efficient for nuclei
with closed (sub-)shells [27–29]. We compute the ground
states of 16;22;24;28O within the singles and doubles approxi-
mation, while three-particle-three-hole (3p-3h) excitations
are included in the !-CCSD(T) approach of Ref. [30]. For
excited states in these closed-shell isotopes we employ the
equation-of-motion (EOM) coupled-cluster method with
singles and doubles. The open-shell nuclei 15;17;21;23;25O
are computed within the particle attached or removed
EOM formalism, and we employ the two-particle attached
EOM formalism [31] for the nuclei 18;26O. For details about
our implementation see Ref. [32]. These EOM methods
work very well for states with dominant 1p-1h, 1p, 1h, and
2p structure, respectively. We use a Hartree-Fock basis
built in 17 major oscillator shells and varied the oscillator
spacing @! between 24 and 32 MeV. Well converged
energy minima are found at @! # 28 MeV for all oxygen
isotopes. Open decay channels and the particle continuum
near the dripline nucleus 24O are included within the
Gamow shell model [33,34]. The single-particle bound
and scattering states result from diagonalizing a spherical
Woods-Saxon Hamiltonian in a discrete momentum basis
in the complex plane [34,35]. In the case of computing
resonances in 24O we used 35 mesh points for the d3=2
partial wave on a rotated or translated contour in the
complex momentum plane as described in Ref. [36]. The
excited states we compute in 22;24O are dominated by
1p-1h excitations and continuummixing from other partial
waves is small. They result as solutions of a complex-
symmetric eigenvalue problem, and the imaginary part of
the energy yields the width of the state. In computing radii
we discretized the real momentum axis with 40 points
for the neutron and proton partial waves closest to the

threshold. This guarantees the correct exponential decay
of matter and charge densities at large distances.
Results.—Figure 1 shows the ground-state energies of

the computed oxygen isotopes (red squares) compared
with experimental data (black circles) and results limited
to chiral NN interactions only (blue diamonds). For the
isotopes around 16O, NN interactions alone already de-
scribe separation energies rather well, and the inclusion of
effects of 3NFs mainly changes underbinding into over-
binding. For the more neutron-rich oxygen isotopes, the
3NFs significantly change the systematics of the binding
energies, and energy differences are particularly well re-
produced. The nuclei 25;26O are unbound with respect to
24O by about 0.4 MeV and about 0.1 MeV, respectively, in
good agreement with experiments [4,5]. We predict 28O to
be unbound with respect to 24O by about 4 MeVand with a
resonant width of about 1 MeV. The extremely short life
time of 28O poses a challenge for experimental observa-
tion. The energy difference between light and heavy oxy-
gen isotopes is not correctly reproduced when compared to
data. We believe that this is due to the fact that our

interaction V̂3Neff is based on symmetric nuclear matter.
For smaller values of kF, the ground-state energy of the
lighter oxygen isotopes is increased (and can be brought to
good agreement with data), while the heavier isotopes are
significantly underbound. The value we chose for kF is thus
a compromise.
Let us comment on our computation of oxygen isotopes

with open shells. First, we solve the CCSD equations for
the Hamiltonian (1) of the closed-shell reference state, but
employ the mass number A$ 1 in the intrinsic kinetic
energy. In a second step, we add (remove) a neutron within
the particle attached (removed) EOM. This procedure
ensures that the final result is obtained for the intrinsic
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FIG. 1 (color online). Ground-state energy of the oxygen iso-
tope AO as a function of the mass number A. Black circles:
experimental data; blue diamonds: results from nucleon-nucleon
interactions; red squares: results including the effects of three-
nucleon forces.
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
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illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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✪ Shell Model (NN + 3N)

✪ SCGF (NN + 3N)
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FIG. 3. (Color online) Top. Evolution of single-particle energies for
neutron addition and removal around sub-shell closures of oxygen
isotopes. Bottom. Binding energies obtained from the Koltun SR and
the poles of propagator (1), compared to experiment (bars) [32, 33].
All points are corrected for the kinetic energy of the c.o.m. motion.
For all lines, red squares (blue dots) refer to induced (full) 3NFs.

the full Hamiltonian—is to raise this last orbit above the con-
tinuum threshold and confirms the increasing repulsive ef-
fects of the two-pion exchange Fujita-Miyazawa interaction
on this orbits, as the neutron sd shell is filled [34]. Instead,
the d5/2 quasiparticle states are lowered by about 1 MeV on
average, providing extra binding through the Koltun SR for-
mula (7). The consequences of this trends are demonstrated
by the calculated ground state energies shown in the bottom
panel: the induced hamiltonian systematically under binds the
whole isotopic chain, and confirms earlier predictions based
solely on the original 2N-N3LO interaction [35]. The dripline
is also erroneously placed at 28O because of the lack of re-
pulsion in the d3/2 orbit. On the other hand, contributions
from pre-existing 3NFs are substantial and increase with the
mass number up to 24O, when the unbound d3/2 orbit starts be-
ing filled. As a result, the full Hamiltonian nicely reproduces
both the experimental ground state energies and the observed
dripline at 24O [36]. Our result suggest a ground state reso-
nance for 28O unbound by 5.2 MeV with respect to 24O. How-
ever this estimate is likely to be affected the presence of the
continuum which is important for this nucleus but neglected
in the present work.
The same effects are demonstrated in Fig. 4 for the semi-

magic odd-even isotopes of nitrogen and fluorine. Induced
3NF forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully corrected by
full 3NFs that strongly binds 23N with respect to 27N, in accor-
dance with the experimentally observed dripline. The repul-
sive effects of filling the d3/2 is also observed in 29F. However,
the inclusion of an extra proton provides enough extra binding
to keep the latter isotope bound by about 700 keV with respect
to 25F, in much better agreement with the experimental value
of 1.47 MeV. The induced interaction alone would overesti-
mate this binding and pre-existing 3NFs are fundamental in
achieving the correct balancing between the attraction gener-
ated by the extra proton and the repulsion due to the filling of
the neutron sd shell.
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In conclusion, we have considered the extension of the
SCGF method to include three-body hamiltonians. By prop-
erly defining system dependent effective one- and two-body
interactions that include the relevant contribution form 3NFs,
calculations can be performed with formalisms already ex-
isting for two-body Hamiltonians. This approach, however,
goes beyond usual truncations based on normal ordering of
the Hamiltonian and employs fully correlated densities instead
of unperturbed reference states. We applied this approach for
the first time to study SRG-evolved chiral 2N and 3N inter-
actions on the isotopic chains of nitrogen, oxygen and fluo-
rine. We find that chiral 3NF at N2LO are crucial in predicting
the binding energies of these isotopes and they reproduce the
correct behaviour at the neutron driplines for all three cases.
Within the estimated errors due to the many-body techniques
and the dependence on the SRG evolutions, we find a remark-
able agreement between our calculations and the experimental
energies along all three isotopic chains.
Recent results [11] clearly show that state of the art SCGF

methods can be straightforwardly extended to the correspond-
ing Gorkov formalism for open shells, which is now under-
way. This would not only allows direct calculations of semi-
magic even-even isotopes with analogous quality as above but
would also allow extracting a wealth of information on neigh-
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Not only oxygen...

!

!

!

! !

"

"

"

"

"

!

!

!
!

!

"

"

"
" "

#Ω"24 MeV
ΛSRG"2.0 fm$1

15F 17F 23F 25F 29F

$180

$160

$140

$120

$100

$80

13N 15N 21N 23N 27N

E g
.s.
!MeV

"

Exp
2N%3N#ind$2N%3N#full$

4

!

!

!
!

!

"

"

"

"

"

!
!

!
!

!

"

"

"

"

"

!

!

!

!

!

!!

"

"

"

"

"

2s1!2

1d5!2

1d3!2

!8

!6

!4

!2

0

2

4

6

Ε iA
#
1
"M
eV
#

2N$3N$full%
2N$3N$ind%

!

!

!!

!
!

!

!
!!

! !
! !

!

"

"

""

"
"

"

" ""
" " " "

"

#Ω&24 MeV
ΛSRG&2.0 fm!1

14O 16O 22O 24O 28O
!180

!160

!140

!120

!100

!80

!60

E g
.s.
"M
eV
#

Exp
2N$3N$full%
2N$3N$ind%

FIG. 3. (Color online) Top. Evolution of single-particle energies for
neutron addition and removal around sub-shell closures of oxygen
isotopes. Bottom. Binding energies obtained from the Koltun SR and
the poles of propagator (1), compared to experiment (bars) [32, 33].
All points are corrected for the kinetic energy of the c.o.m. motion.
For all lines, red squares (blue dots) refer to induced (full) 3NFs.

the full Hamiltonian—is to raise this last orbit above the con-
tinuum threshold and confirms the increasing repulsive ef-
fects of the two-pion exchange Fujita-Miyazawa interaction
on this orbits, as the neutron sd shell is filled [34]. Instead,
the d5/2 quasiparticle states are lowered by about 1 MeV on
average, providing extra binding through the Koltun SR for-
mula (7). The consequences of this trends are demonstrated
by the calculated ground state energies shown in the bottom
panel: the induced hamiltonian systematically under binds the
whole isotopic chain, and confirms earlier predictions based
solely on the original 2N-N3LO interaction [35]. The dripline
is also erroneously placed at 28O because of the lack of re-
pulsion in the d3/2 orbit. On the other hand, contributions
from pre-existing 3NFs are substantial and increase with the
mass number up to 24O, when the unbound d3/2 orbit starts be-
ing filled. As a result, the full Hamiltonian nicely reproduces
both the experimental ground state energies and the observed
dripline at 24O [36]. Our result suggest a ground state reso-
nance for 28O unbound by 5.2 MeV with respect to 24O. How-
ever this estimate is likely to be affected the presence of the
continuum which is important for this nucleus but neglected
in the present work.
The same effects are demonstrated in Fig. 4 for the semi-

magic odd-even isotopes of nitrogen and fluorine. Induced
3NF forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully corrected by
full 3NFs that strongly binds 23N with respect to 27N, in accor-
dance with the experimentally observed dripline. The repul-
sive effects of filling the d3/2 is also observed in 29F. However,
the inclusion of an extra proton provides enough extra binding
to keep the latter isotope bound by about 700 keV with respect
to 25F, in much better agreement with the experimental value
of 1.47 MeV. The induced interaction alone would overesti-
mate this binding and pre-existing 3NFs are fundamental in
achieving the correct balancing between the attraction gener-
ated by the extra proton and the repulsion due to the filling of
the neutron sd shell.
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In conclusion, we have considered the extension of the
SCGF method to include three-body hamiltonians. By prop-
erly defining system dependent effective one- and two-body
interactions that include the relevant contribution form 3NFs,
calculations can be performed with formalisms already ex-
isting for two-body Hamiltonians. This approach, however,
goes beyond usual truncations based on normal ordering of
the Hamiltonian and employs fully correlated densities instead
of unperturbed reference states. We applied this approach for
the first time to study SRG-evolved chiral 2N and 3N inter-
actions on the isotopic chains of nitrogen, oxygen and fluo-
rine. We find that chiral 3NF at N2LO are crucial in predicting
the binding energies of these isotopes and they reproduce the
correct behaviour at the neutron driplines for all three cases.
Within the estimated errors due to the many-body techniques
and the dependence on the SRG evolutions, we find a remark-
able agreement between our calculations and the experimental
energies along all three isotopic chains.
Recent results [11] clearly show that state of the art SCGF

methods can be straightforwardly extended to the correspond-
ing Gorkov formalism for open shells, which is now under-
way. This would not only allows direct calculations of semi-
magic even-even isotopes with analogous quality as above but
would also allow extracting a wealth of information on neigh-

✪ Consistent description of Z = 7, 8, 9 isotopic chains with GF method

➟ 3NF crucial for reproducing driplines

3BF beyond the EoS

Shear viscosity with CBF

Benhar & Valli, PRL 99, 232501 (2007)
Benhar & Carbone, arxiv:0912.0129

PNS dynamical evolution with BHF

Burgio et al., arxiv:1106.2736

• Many-body modelers are aiming at complete descriptions!
• Consistent description of transport coefficients
• Response of nuclear & neutron matter
• Transport coefficients & dynamical evolution of NS 27 / 30

Results

Three-body forces

! Realistic microscopic calculations cannot avoid the use of NNN forces

    ° Binding energies, saturation properties and radii

    ° Shell evolution

    ° Spin-orbit splitting

    ° Three-nucleon scattering
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

⟨jm j′m′|V |jm j′m′⟩
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

[Otsuka et al. 2010]

" Dripline location in O isotopes (24O) possibly due to NNN physicsT. Otsuka et al, PRL 105,032501 (2010)
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FIG. 1. (Color online) Convergence of the binging energy of 51K with
respect to the basis size and HO frequency, for the full Hamiltonian.

model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
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results including full 3NF corrected for the ADC(3) correlation en-
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IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

Estimate of the many-body !
truncation error
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

Estimate of the many-body !
truncation error

Original 3NF correct for trend
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

Estimate of the many-body !
truncation error

Original 3NF correct for trend

Systematic overbinding
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model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ⌘ EA

0 � EA�2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ⇡500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~⌦=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. We do so
by calculating closed-shell isotopes 40Ca, 48Ca and 52Ca for
which Dyson ADC(3) calculations with Nmax=9 can be per-
formed and compared to second order Gorkov calculations
(Gorkov-GF theory intrinsically reduces to Dyson-GF theory
in closed-shell systems). Results in the top panel of Fig. 2
show that the correction from third- and higher-order dia-
grams is similar in the three isotopes. Specifically, we ob-
tain EADC(3)�Dys

0 � E2nd�Gkv
0 = -10.6, -12.1 and -12.6 MeV that

correspond to ⇡2.7% of the total binding energy. Assuming
that these di↵erences are converged with respect to the model
space, we add them to our second order Gorkov results with
Nmax=13 and display the results in the bottom panel of Fig. 2.
Resulting values agree well with IM-SRG calculations of 40Ca
and 48Ca based on the same Hamiltonian [10]. This confirms
the robustness of the present results across di↵erent many-
body methods. The error due to missing induced 4NFs was
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second or-
der Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with a
Nmax =9 model space and the full Hamiltonian. Bottom panel: sec-
ond order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Second order Gorkov
results including full 3NF corrected for the ADC(3) correlation en-
ergy extracted from the top panel (dotted line with full triangles).
IM-SRG results [10] are for the same 3NF and are extrapolated to
infinite model space (diamonds with error bars).

also estimated in Ref. [10] by varying the SRG cuto↵ over a
(limited) range. Up to ⇡1% variations were found for masses
A  56 (e.g. less than 0.5% for 40Ca and 48Ca) when chang-
ing � between 1.88 and 2.24 fm�1. We take this estimate to be
generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are

➟ Results confirmed within different many-body approaches

➟ NN + full 3N correct the trend of binding energies

➟ Systematic overbinding through all chains around Z=20
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

[Gallant et al. 2012]
[Wienholtz et al. 2013]

Challenging new data 
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

➟ Neighbouring Z=18-22 chains computed within the same GGF framework
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isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
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shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

4

38 40 42 44 46 48 50 52
5

10

15

20

25

30

35

40
Experiment
NN + 3N (full)
NN + 3N (ind.)
SM (NN + 3N)
CC

ACa

S 2
n [

M
eV

]

FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

➟ Neighbouring Z=18-22 chains computed within the same GGF framework

➟ Overestimation of N=20 gap traced back to spectrum too spread out
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

➟ Neighbouring Z=18-22 chains computed within the same GGF framework

➟ Overestimation of N=20 gap traced back to spectrum too spread out
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

➟ S2n well reproduced with chiral NN + 3N interactions

➟ Microscopic calculations extended to the whole Ca chain

➟ Neighbouring Z=18-22 chains computed within the same GGF framework

➟ Overestimation of N=20 gap traced back to spectrum too spread out
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42Ti

pf
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on

Extrapolation to infinite model space [Coon et al., Furnstahl et al.]
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✪ Convergence worsens after N=32
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Going open-shell: Gorkov-Green’s functions

➟ Goes beyond standard expansion schemes limited to doubly closed-shell
✪ Gorkov scheme

○ Formulate the expansion scheme around a Bogoliubov vacuum
○ Single-reference method (cf. MR in quantum chemistry or IM-SRG )

➟ From few tens to hundreds of medium-mass open-shell nuclei

✪ Self-consistent Green’s functions
➟ Many-body truncation in the self-energy expansion (cf. CC, IM-SRG, ...)

○ Formalism   VS, Duguet & Barbieri, PRC 84 064317 (2011)
○ Proof of principle   VS, Barbieri & Duguet, PRC 87 011303 (2013)
○ Technical aspects   VS, Barbieri & Duguet, PRC 89 024323 (2014)
○ NN+3N   VS, Cipollone, Barbieri, Navrátil & Duguet, arXiv:1312.2068 (2013)

➟ Access to A±1 systems via spectral function

○ Exploit breaking (and restoration) of U(1) symmetry

➟ Natural connection to scattering (e.g. optical potentials)



Gorkov framework

✪ Expand around an auxiliary many-body state

➟ Introduce a “grand-canonical” potential

Breaks particle- !
number symmetry

➟ Observables of the A-body system

5

FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-

dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.
Let us make the hypothesis that ideal one-nucleon pick-

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

S�
a (!) ⌘

X

k

��h A�1
k |aa| A

0 i
��2 �(! � (EA

0 � EA�1
k )) =

1

⇡
ImGaa(!) (16)

Gab(!) =
X

k

h A
0 |aa| A+1

k ih A+1
k |a†a| A

0 i
! � (EA+1

k � EA
0 ) + i⌘

+
X

k

h A
0 |a†a| A�1

k ih A�1
k |aa| A

0 i
! � (EA

0 � EA�1
k )� i⌘

(17)

| 0i ⌘
evenX

A

cA | A
0 i (18)
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⌦ = H � µA (19)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (20)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (21)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (20) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (22)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (23a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (23b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the

kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].

Equation (21) demonstrates that the centroid matrix
is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (21); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.

On the practical side, Eq. (21) underlines that the av-
eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (25) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (25) with a density matrix
reflecting the presence of correlations in the system.

Using that the even-even ground state the one-nucleon
transfer is performed on is a J⇧ = 0+ state, Wigner-
Eckart’s theorem allows one to obtain the explicit de-
pendence of spectroscopic amplitudes on mp and Mµ,
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⌦ = H � µA (19)

A = h 0|A| 0i (20)

⌦0 =
X

A0

|cA0 |2 ⌦A0

0 ⇡ EA
0 � µA (21)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (22)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (23)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (23) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (24)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (25a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (25b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (24) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (24); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (24) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (28) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ ⟨1:a; 2:b|V NN |1:c; 2:d⟩

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
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ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as
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where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ ⟨1:a; 2:b|V NN |1:c; 2:d⟩
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the

4

and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (21)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (26a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (26b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (26c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]
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ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (26c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{
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where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)
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≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (21)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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0 ≈ ... ≈ 2µ , (24)
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (16)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (19)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (20)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (21a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (21b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (21c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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minimizes under the constraint➟
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⌦ = H � µA (19)

A = h 0|A| 0i (20)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (21)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (22)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (21) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (23)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (24a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (24b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (22) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (22); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (22) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (26) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (26) with a density matrix
reflecting the presence of correlations in the system.
Using that the even-even ground state the one-nucleon
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Eventually, standard Dyson’s equation is generalized as
set of coupled equations involving the two types of prop-
agators and self-energies. These are known as Gorkov’s
equations [45] and read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G(0)
ac (ω) Σ̃cd(ω)Gdb(ω) . (34)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
one-body normal and anomalous Green’s functions in
terms of unperturbed ones. If the method is self-
consistent, the final result does not depend on the choice
of the auxiliary potential, which disappears from the
equations once the propagators are dressed with the cor-
responding self-energies. From a practical point of view
it is useful to track where the auxiliary potential enters
and how its cancelation is eventually worked out. This
point is addressed in Section IVA, where the solution of
Gorkov’s equations is discussed. In particular, and since
such a solution is to be found through an iterative pro-
cedure, one is eventually interested in choosing a good
auxiliary potential as a starting point.

Let us further remark that, as the auxiliary potential
(29) has a one-body character, i.e. it acts as a mean field,
the search for the ground state of ΩU corresponds to solv-

ing a Bogoliubov-like problem, as becomes evident when
writing the unperturbed grand potential in its Nambu’s
form

[ΩU ]ab =

(

Tab + Uab − µ δab Ũ †
ab

Ũab −Tab − Uab + µ δab

)

.

(35)
In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
(HFB) problem and then uses the resulting propagators
GHFB

ab as the unperturbed ones. Notice that the self-
energy corresponding to this solution, ΣHFB , eventually
differs from the first-order self-energy Σ(1) as soon as
higher orders are included in the calculation because of
the associated self-consistent dressing of the one-body
propagators.

G. Lehmann representation

Let us consider a complete set of normalized eigen-
states of Ω with no definite particle number

Ω|Ψk⟩ = Ωk|Ψk⟩ , (36)

and which span the Fock space F . Inserting the corre-
sponding completeness relation, G11(t, t′) becomes

G11
ab(t, t

′) = −iθ(t− t′)
∑

k

⟨Ψ0|aa|Ψk⟩⟨Ψk|a†b|Ψ0⟩ ei[Ω0−Ωk](t−t′) + iθ(t′ − t)
∑

k

⟨Ψ0|a†b|Ψk⟩⟨Ψk|aa|Ψ0⟩ e−i[Ω0−Ωk](t−t′) .

Using the integral representation of the theta function
and reading out the Fourier transform, one obtains the
propagator in energy representation under the form

G11
ab(ω) =

∑

k

⟨Ψ0|aa|Ψk⟩⟨Ψk|a†b|Ψ0⟩
ω − [Ωk − Ω0] + iη

+
∑

k

⟨Ψ0|a†b|Ψk⟩⟨Ψk|aa|Ψ0⟩
ω + [Ωk − Ω0]− iη

. (37)

One can proceed similarly for the other three Gorkov-
Green’s functions and obtain the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Uk
a Uk∗

b

ω − ωk + iη
+

V̄k∗
a V̄k

b

ω + ωk − iη

}

, (38a)

G12
ab(ω) =

∑

k

{
Uk
a Vk∗

b

ω − ωk + iη
+

V̄k∗
a Ūk

b

ω + ωk − iη

}

, (38b)

G21
ab(ω) =

∑

k

{
Vk
a Uk∗

b

ω − ωk + iη
+

Ūk∗
a V̄k

b

ω + ωk − iη

}

, (38c)

G22
ab(ω) =

∑

k

{
Vk
a Vk∗

b

ω − ωk + iη
+

Ūk∗
a Ūk

b

ω + ωk − iη

}

. (38d)

with Gorkov’s spectroscopic amplitudes defined as

Uk∗
a ≡ ⟨Ψk|a†a|Ψ0⟩ , (39a)

Vk∗
a ≡ ⟨Ψk|āa|Ψ0⟩ , (39b)

and

Ūk∗
a ≡ ⟨Ψk|ā†a|Ψ0⟩ , (40a)

V̄k∗
a ≡ ⟨Ψk|aa|Ψ0⟩ , (40b)

from which follows that2

Ūk
a = +ηa Uk

ã , (41a)

V̄k
a = −ηa Vk

ã . (41b)

The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
The relation of such poles to separation energies between

2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
a =

+Uk
ā and V̄k

a = −Vk
ā .

3 As discussed later on, eigensolutions of Gorkov’s equations come
in pairs (ωk ,−ωk) such that one should only sum on positive
solutions in Eq. 39.
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a ≡ ⟨Ψk|ā†a|Ψ0⟩ , (40a)

V̄k∗
a ≡ ⟨Ψk|aa|Ψ0⟩ , (40b)

from which follows that2

Ūk
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ã . (41b)

The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
The relation of such poles to separation energies between

2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
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where the symmetry quantum number denoting the par-
ticle number has been singled out. The label µ collects
a principal quantum number nµ, total angular momen-
tum Jµ, the projection of the latter along the z axis Mµ,
parity ⇧µ and isospin projection along the z axis Tµ of
the many-body state of interest. Use of the Greek label
µ will be made to denote the subset of quantum num-
bers µ ⌘ (⇧µ, Jµ, Tµ). Due to rotational invariance of
the nuclear Hamiltonian, eigenenergies EA

µ ⌘ EA
nµµ

are
independent of Mµ.

In the following, we consider a spherical single-
particle basis {a†p} appropriate to discussing the spher-

ical shell structure. Basis states are labelled by p ⌘
{np,⇡p, jp,mp, ⌧p} ⌘ {np,mp,↵p}, where np represents
the principal quantum number, ⇡p the parity, jp the total
angular momentum, mp its projection along the z-axis,
and ⌧p the isospin projection along the same axis.

We also consider the direct-product basis {b†~r�⌧},
where ~r is the position vector, � the projection of the
nucleon spin along the z axis, and ⌧ its isospin projec-
tion.

A. Spectroscopic amplitudes

The physical processes providing information on the
single-particle shell structure are one-nucleon transfer re-
actions. Although the discussion can be carried out for
the transfer on any initial [13]. many-body state, we
restrict ourselves in the following to the transfer on the
ground state | A

0 i of an even-even system, i.e. a J⇡ = 0+

state. Furthermore, we consider this nucleus to be of dou-
bly closed-shell character2.

In this context, let us introduce Uµ (V⌫) as the ampli-
tude to reach a specific eigenstate | A+1

µ i (| A-1
⌫ i) of the

A+1 (A-1) system by adding (removing) a nucleon in a
specific single-particle state to (from) the ground state of
the A-body system | A

0 i. Such spectroscopic amplitudes
can be defined through their representation in any given
single-particle basis. In basis {a†p}, they read

Up
µ ⌘ h A+1

µ |a†p| A
0 i⇤ , (2a)

V p
⌫ ⌘ h A-1

⌫ |ap| A
0 i⇤, (2b)

whereas their representation in basis {b†~r�q} provides the
associated wave functions or overlap functions

Uµ(~r�⌧) ⌘ h A+1
µ |b†~r�⌧ | A

0 i⇤ , (3a)

V⌫(~r�⌧) ⌘ h A-1
⌫ |b~r�⌧ | A

0 i⇤. (3b)

An important property regarding the asymptotic be-
haviour of overlap functions derives from their equation

2 Such a notion relates to the filling of shells in the uncorrelated,
e.g. Hartree-Fock, picture.

of motion given by [18]

[h1 + ⌃(!)]!=E+
µ
Uµ = E+

µ Uµ , (4)

and similarly for (V⌫ , E�
⌫ ), where (observable) one-

nucleon separation energies are defined through

E+
µ ⌘ EA+1

µ � EA
0 , (5a)

E�
⌫ ⌘ EA

0 � EA-1
⌫ . (5b)

The energy-dependent potential ⌃(!) denotes the dynam-

ical part of the irreducible self-energy [18] that naturally
arises in self-consistent Green’s-function theory and that
is to be evaluated at the eigensolution E+

µ in Eq. (4).
The static field h1 is defined in Eq. (18) and contains
both the kinetic energy and the energy-independent part
of the one nucleon self-energy. One can show from Eq. (4)
that the long-distance behaviour of the radial part of the
overlap function is governed by the corresponding one-
nucleon separation energy, e.g. for E+

µ < 0

Uµ(r�⌧) �!
r!+1 A+

µ
e�&+µ r

&+µ r
, (6)

where A+
µ denotes the so-called asymptotic normalization

coe�cient (ANC) while the decay constant is given by
&+µ ⌘ (�2mE+

µ /~2)1/2, where m is the nucleon mass3.
A similar result can, of course, be obtained for V⌫(r�⌧)
whose decay constant &�⌫ relates to E�

⌫ .
From spectroscopic amplitudes one defines addition S+

µ

and removal S�
⌫ spectroscopic probability matrices asso-

ciated with states | A+1
µ i and | A-1

⌫ i, respectively. Their
matrix elements read in basis {a†p}

S+pq
µ ⌘ h A

0 |ap| A+1
µ ih A+1

µ |a†q| A
0 i (7a)

= Up
µ Uq ⇤

µ ,

S�pq
⌫ ⌘ h A

0 |a†q| A-1
⌫ ih A-1

⌫ |ap| A
0 i (7b)

= V p ⇤
⌫ V q

⌫ ,

such that their diagonal parts, when expressed in the co-
ordinate space basis, are nothing but transition densities

for the one-nucleon transfer from | A
0 i to | A+1

µ i and
| A-1

⌫ i, respectively.
Tracing the two spectroscopic probability matrices

over the one-body Hilbert space H1 gives access to spec-
troscopic factors

SF+
k ⌘

X

a2H1

��h k|a†a| 0i
��2 =

X

a2H1

��Uk
a

��2 , (8a)

SF�
k ⌘

X

a2H1

|h k|aa| 0i|2 =
X

a2H1

��Vk
a

��2 , (8b)

3 Subtracting the center-of-mass motion would lead to using the
reduced mass of the added/removed nucleon.

5

FIG. 2: (Color online) Same as Fig. ?? for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure ??, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (??)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (??), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
whether the system is correlated or not.

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful def-
inition of ESPEs does exist and goes back to French [?
] and Baranger [? ]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. ??). E↵ective single-particle
energies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

E+(A)
k ⌘ EA+1

k � EA
0 ⌘ µ+ !k (16)

Equation (??) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (??) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion ?? might not be exhausted.
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from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-
dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.

Let us make the hypothesis that ideal one-nucleon pick-

4 Except for selection rules dictated by symmetries that lead, ac-
cording to Eq. (21), to ⇡p = ⇡µ, jp = Jµ and ⌧p = Tµ � T0.

5 Of course, the dimension of HA+1 or HA�1 remains the same
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up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

E� (A)
k ⌘ EA

0 � EA�1
k ⌘ µ� !k (16)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (17)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with

6 The definition of ecentp sometimes incorporates the denominator
P

µ2HA+1
S+pp
µ +

P
⌫2HA�1

S�pp
⌫ in Eq. (15) to compensate for

the possibility that, e.g. experimentally, normalization condi-
tion 10 might not be exhausted.
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pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C9c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)
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V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k
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where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been introduced. Summing the two terms one has

Σ11 (2′+2′′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + 2Pk1k2k3
b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b + 2Qk1k2k3
b )

ω + Ek1k2k3 − iη

}

, (94)

which can be written, using properties (90) and (91), as

Σ11 (2)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

=
1

6

∑

k1k2k3

{

(Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a ) (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη

}

+
1

6

∑

k1k2k3

{

(N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a )† (N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

Σ11
ab(ω) =

∑

k1k2k3

{

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

†Dk1k2k3
b

ω + Ek1k2k3 + iη

}

, (95)

with the definitions

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a

]

, (96a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a

]

. (96b)

One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

=

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

≡ Ξ

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

(100)
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads

36

convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)
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d

=
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where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)
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Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′ + ω′′ − ω) . (C13)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C14)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C13) we obtain

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f Ūk2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d Ūk2

f Ūk2∗
g Vk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Vk2

g Ūk3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

. (C15)

With the same technique we can evaluate all other terms contributing to the second order self-energy. We have

Σ11 (2′′)
ab (ω) = ↑ ω′

d ḡ

c f

↑ ω′′′↑ ω′′

b

a

h̄

e

(C16)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dḡbh̄ G11
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C17)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d Ūk2

f V̄k2∗
h Uk3∗

g Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Uk2

h V̄k3
g Ūk3∗

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C18)
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for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄hb̄gd̄ G12
cd(ω′)G11

eg(ω′′)G11
hf (ω′ + ω′′ − ω) (C23)

=

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2
e Ūk2∗

g

ω′′ − ωk2
+ iη

+
Vk2∗

e Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
f

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3

f

ω′ + ω′′ − ω + ωk3
− iη

}

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d Ūk2
e Ūk2∗

g Vk3∗
h Vk3

f

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
e Vk2

g Ūk3

h Ūk3∗
f

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

and

Σ12 (2′′)
ab (ω) =

c f

← ω′

↓ ω′′′

h̄ b̄

↖ ω′′

e
a

d̄ḡ

, (C24)

yielding

Σ12 (2′′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd(ω′)G12

fg(ω
′′)G21

he(ω
′ + ω′′ − ω) (C25)

=
1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2
g

ω′′ + ωk2
− iη

} {

V̄k3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2

f V̄k2∗
g Uk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
f Vk2

g V̄k3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

Finally

Σ21 (2′)
ab (ω) =

g d

↑ ω′′ ↓ ω′′′

ā e

c̄

b

↑ ω′′′

h

f

, (C26)

✪ Gorkov equation energy dependent eigenvalue problem

10

substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ ⟨Ψ0|a†baa|Ψ0⟩ =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)
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(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ ⟨Ψ0|a†baa|Ψ0⟩ =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

energy independent eigenvalue problem
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

= ωk

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3

⎧

⎨

⎩

(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2

⎫

⎬

⎭

= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

∝ Nb3

∝ NLanczos

Krylov space eigenvalue problem
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In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3

⎧

⎨

⎩

(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2

⎫

⎬

⎭

= 1−
∑

k1k2k3
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Wk1k2k3
k
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k

†Zk1k2k3
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]
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typically ~106-107

[Schirmer & Angonoa 1989]

typically ~102-103



Testing Krylov projection
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Odd-even systems

① From separation energies

✪ Current implementation targets JΠ = 0+ states

✪ Different possibilities to compute odd-even g.s. energies:

Inside the Green’s function

✪ Separation energy spectrum
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➟ Equations simplify: j-coupled scheme, block-diagonal structure, ...
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Odd-even systems

① From separation energies

Inside the Green’s function

✪ Separation energy spectrum

② From fully-paired even number-parity state

✪ Current implementation targets JΠ = 0+ states

Two methods agree within 2-300 keV

✪ Different possibilities to compute odd-even g.s. energies:

Such a perturbative qp creation on top of the odd fully
paired state, instead of the even neighbor’s one, has already
been introduced by Ring et al. !6" and has been used with
success in Ref. !7". Its main justification was simplicity with
respect to the self-consistent blocking, but not the formal
step achieved with respect to a perturbative qp creation per-
formed on the even vacuum.
The introduction of an intermediate reference vacuum re-

quires one to study an odd nucleus in two steps. This proce-
dure, illustrated on Fig. 1, eliminates the inconsistency be-
tween the addition of a nucleon and the creation of an
energetically favorable qp excitation. From a mathematical
point of view, it shows that the odd fully paired state is better
grounded than an even neighbor ground state as the zero-
order reference for a perturbation theory of odd nuclei. In the
rest of this paper, we will analyze these steps from a physical
point of view and use them to separate self-consistent calcu-
lations in two identified processes.

C. Limit of zero pairing

The description of an odd nucleus with respect to an even
neighbor is at first sight less complicated in the absence of
pairing. Indeed, there is no problem related to the particle
number and an odd nucleus is simply obtained by adding a
nucleon on the first empty level in the even neighbor’s HF
state. Two different approximations are used within this pic-
ture.
If time-reversal invariance is not broken, each single-

particle state is at least doubly degenerate and the odd
nucleon is added using the filling approximation: the first
pair of empty levels in the even neighbor are identically oc-
cupied with probability 0.5 in the odd state.3

If time-reversal symmetry breaking is properly taken into
account and for a deformed configuration, all degeneracies
are lifted and the first pair of empty levels in the even isotope
are occupied with probability 1 and 0 in the odd neighbor.4
Let us now analyze how the standard HF picture matches

with the zero-pairing limit of the perturbative method de-
scribed in Sec. II B. Most of the developments presented in
this section have straightforward zero-pairing limits. Let us
look explicitly to the limit for odd states only.
The limit of the perturbative one qp BCS state with an

odd particle number is

!#n
BCS$N!1 %&→!#n

HF$N!1 %&"an
†'

k"1

N/2

ak
†ak 
†!0&, $3%

whereas the fully paired odd vacuum leads to

!#BCSE$N!1 %&→!#HFE$N!1 %&

"
1
!2

$1!an
†an 
†
%'

k"1

N/2

ak
†ak 
†!0&. $4%

One can check that

!#n
HF$N!1 %&"(n

†!#HFE$N!1 %& $5%

where (n
†"1/!2(an

†#an ) is the singular5 zero-pairing limit
for the lowest qp creation operator.
The wave function !#HFE(N!1)& introduced as the limit

of the BCSE state is none of the two currently used HF wave
functions. However it leads to the same one-body density
matrix, and thus to the same energy as the HF wave function6
obtained using the filling approximation.
The HF ground state for odd nuclei is now described by a

one qp excitation on top of the HFE state and not as in the
usual procedure directly on top of the HF wave function of
an even neighbor through particle operators. The two-step
picture defined in the BCS case is thus extended to the zero-
pairing limit and will allow an analysis of the OES for any
pairing correlations intensity.
The zero-pairing limit illustrates the physical content of

the nucleon addition process. The nucleon is added in the
HFE wave function by increasing the occupation of each
state of the last couple of degenerate orbits by 0.5. For odd
N, the qp excitation specifies which one of the two states will
eventually be occupied by the single nucleon in the odd

3For spherical nuclei, one adds 1/2j!1 particle in each state of
the last degenerate j shell.

4For spherical nuclei, one orbital of the shell is completely filled,
thus lifting the degeneracies. Several tries have to be made in order
to get the lowest in energy.
5Other qp operators (k

(†) (k)n ,n ) tend to standard particle cre-
ation or annihilation operators ak

(†) .
6The filling approximation is actually defined through a density
operator that is a statistical mixture of the two Slater determinants
where one of the two time-reversed orbitals at the Fermi energy is
filled. The !#HFE& state $4% for odd nuclei is a linear combination of
the two neighboring even HF states.

FIG. 1. Schematic picture of the two-step procedure proposed to
determine the ground state of an odd isotope.

PAIRING CORRELATIONS. I. DESCRIPTION OF . . . PHYSICAL REVIEW C 65 014310

014310-3

[Duguet et al. 2001]

➟ Equations simplify: j-coupled scheme, block-diagonal structure, ...

➟ “Fake” odd-A plus correction➟ Either from A-1 or A+1



✪ 3N potential: chiral N2LO (400 MeV) SRG-evolved to 2.0 fm-1  [Navrátil 2007]

➟ Fit to three- and four-body systems only

➟ Modified cutoff to reduce induced 4N contributions  [Roth et al. 2012]

✪ NN potential: chiral N3LO (500 MeV) SRG-evolved to 2.0 fm-1

[Entem and Machleidt 2003]

✪ In the future:

➟ Chiral 3NF at N3LO
➟ ∆-full chiral interactions
➟ NN & 3N consistently SRG-evolved in momentum space

➟ Inputs from lattice QCD: couplings & YN interactions
➟ Chiral interactions with improved/correct power counting
➟ ...

The GGF input: NN & 3N interactions



Potassium ground states (re)inversion

0 50 100

-30

-25

-20

-15

-10

0 50 100

1/2+

3/2+

44Ca

[M
eV

]

SF [%]

0 50 100

-30

-25

-20

-15

-10

0 50 100

46Ca
0 50 100

-30

-25

-20

-15

-10

0 50 100

48Ca
0 50 100

-30

-25

-20

-15

-10

0 50 100

50Ca

0 50 100

-30

-25

-20

-15

-10

0 50 100

52Ca

-30

-25

-20

-15

-10

[M
eV

]

ESPE -30

-25

-20

-15

-10

-30

-25

-20

-15

-10

-30

-25

-20

-15

-10

-30

-25

-20

-15

-10

-30

-25

-20

-15

-10

0 50 100

54Ca

-30

-25

-20

-15

-10

agreement for the 3=2þ state in 51K is even better than
0:1 !N for all of them. The lowest positive parity states
(5=2þ, 7=2þ) appear around 2 MeV and have magnetic
moments that deviate significantly more from the experi-
mental values (Table II). Negative parity 3=2", 5=2",
7=2" states, due to a proton excited in the pf shell, all
have a magnetic moment that is larger than þ3:3 !N,
incompatible with the observed small value around
þ0:5 !N. All arguments together consistently confirm
that the ground-state spin-parity of 51K is 3=2þ. The mag-
netic moment of the 1=2þ ground state in 47K is also
reproduced very well, while the experimental moment of
the I ¼ 1=2þ ground state of 49K is somewhat overesti-
mated by all calculations, suggesting that some particular
mixing in the wave function is not well taken into account.
A simple two-level mixing calculation shows that 25%
mixing of a ½"d"1

3=2ð#fpÞ2þ'1=2þ allows us to reproduce

the ground-state spins observed 1=2þ moment [38].
By establishing the ground-state spins of 49K and 51K,

we have demonstrated that the gradual reduction of the
energy gap between the proton "2s1=2 " "1d3=2 orbits
reaches a minimum around N ¼ 29 and again increases
towards the more neutron rich isotopes. It is the first time
that such a ‘‘reinversion’’ of single-particle levels is
observed and it illustrates how the residual monopole
interaction dominates their evolution.

In Fig. 3 we compare the experimental 3=2þ and 1=2þ

levels to those calculated with the different shell-model
effective interactions. The SDPF-NR and SDPF-U inter-
actions show the best overall agreement, which is not
surprising because their monopole matrix elements were
tuned by fitting to experimental spectra, including that of
47K [14]. With the recently developed SDPF-MU interac-
tion [37] a reasonable agreement with the data is found,
considering that its cross-shell interaction is described
in a functional form using the simple tensor-subtracted
monopole evolution as described in Ref. [12], with only
six parameters.

In conclusion, the hyperfine structures of atomic 49;51K
isotopes were measured for the first time. The data

establish a ground-state spin I ¼ 1=2 for 49K and
I ¼ 3=2 for 51K. The magnetic moments !ð49KÞ ¼
þ1:3386ð8Þ½40'!N and !ð51KÞ ¼ þ0:5129ð22Þ½15'!N

reveal a mixed configuration for 49K and a rather pure
"1d"1

3=2 configuration for 51K. Comparison with shell-

model calculations shows good agreement for 51K, but
none of the interactions reproduce the low experimental
value of 49K. The best overall agreement with the ground-
state moment and energy levels in 49K is observed for the
SDPF-NR interaction, which predicts the highest mixing
with "1d3=2 components in its wave function. The experi-
mentally observed evolution of the 1=2þ and 3=2þ levels is
now established up to 51K. Different effective interactions
predict very different energy gaps between the 3=2þ and
the first exited 1=2þ level in 51K. Along with the current
results, spectroscopy of the excited states in 51K is required
to further improve the effective interactions in this region.
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Knockout & transfer experiments

tected in the High-Resolution Array (HiRA) [22] in coin-
cidence with the recoil residues detected in the S800 focal
plane [23]. An array of 16 HiRA telescopes [22] was
placed at 35 cm from the target where they subtended polar
angles of 6! " !lab " 45!. Each telescope contained
65 "m thick !E and 1500 "m thick E silicon strip de-
tectors, backed by 3.9 cm thick CsI(Tl) crystals. The strips
in these telescopes effectively subdivided each telescope
into 1024 pixels of 2 mm# 2 mm area. Detailed descrip-
tions of experimental setup can be found in Ref. [20].

Deuterons were identified in HiRAwith standard energy
loss techniques using the energy deposited in the!E and E
Silicon strip and CsI detectors. Reaction residues were
identified in the S800 spectrometer using the energy loss
and the time-of-flight (TOF) information of the focal plane
detectors [23]. Figures 1(a)–1(c) show the Q value spectra
for deuterons that stop in the thick Si detector for
pð34;36;46Ar; dÞ33;35;45Ar. The observed resolutions of 500,
470, and 410 keV FWHM for the transitions to the ground
states of 33;35;45Ar, respectively, agree with the expectation
from GEANT4 [24] simulations taking into account the finite
beam spot size, the energy resolution of the Si detectors,
energy loss, and angular straggling in the target.
Measurements using a 1:7 mg=cm2 carbon target reveal
that the background from reactions on carbon is negligible
when both deuteron and the heavy recoil are detected. The
absolute normalization of the cross section was achieved to
within 10% by directly counting the beam particles with a
microchannel plate detector [25] placed&10 cm upstream
of the target. This also provided the start TOF signal for
particles detected by the S800 spectrometer.

Figures 1(d)–1(f) show the differential cross sections for
the ground state transition of pð34Ar; dÞ33Ar,
pð36Ar; dÞ35Ar, and pð46Ar; dÞ45Ar, respectively. The solid
circles in the lower panels denote the data from present
measurements, and the open squares in Fig. 1(e) denote
previous 36Ar ðp; dÞ35Ar data in normal kinematics at
33:6 MeV=nucleon [21]. The agreement between the mea-
sured cross sections from the present work and Ref. [21]
for the first excited state is also very good [20]. For
pð46Ar; dÞ45Ar reaction, the ground state (f7=2) and the
first excited state (542 keV, p3=2) were not resolved for
center-of-mass angles larger than 8!. Fortunately, the l
values for the ground state (l ¼ 3) and first excited state
(l ¼ 1) are different, resulting in very different angular
distributions. Specifically, the angular distribution for the
excited state exhibits a deep minimum near !c:m: ¼

20!–27!, close to a factor of 100 smaller than that of
ground state; therefore, the cross sections for the ground
state could be unambiguously extracted [20].
The dashed curves in Figs. 1(d)–1(f) show the ADWA

calculations using the CH89 potential with the conven-
tional neutron bound-state Woods Saxon potential. The
solid lines in Figs. 1(d)–1(f) show the ADWA calculations
using the JLM microscopic potential and the bound-state
neutron potential, which have been constrained by Hartree-
Fock calculations. Both calculations reproduce the shape
of experimental angular distributions. Normalizing the
ADWA model calculations to the data results in the SF
values listed in Table I. Similar to previous analyses,
SFðJLMþ HFÞ values are about 30% smaller than the SF
(CH89) values. The ground state neutron SF’s for 34Ar and
36Ar were calculated in the sd-shell model space using
USDB effective interaction [26]. The ground state neutron
SF for 46Ar was calculated in the sd-pf model space using
the interaction of Nummela et al. [27].

TABLE I. Experimental and theoretical neutron spectroscopic factors (SF) and reduction factors (Rs) for ground state 34Ar, 36Ar and
46Ar.

(theo.) (expt.) (expt.)
Isotopes lj# Sn(MeV) !S (MeV) SF(LB-SM) SFðJLMþ HFÞ RsðJLMþ HFÞ SF(CH89) RsðCH89Þ

34Ar s1=2þ 17.07 12.41 1.31 0:85) 0:09 0:65) 0:07 1:10) 0:11 0:84) 0:08
36Ar d3=2þ 15.25 6.75 2.10 1:60) 0:16 0:76) 0:08 2:29) 0:23 1:09) 0:11
46Ar f7=2* 8.07 *10:03 5.16 3:93) 0:39 0:76) 0:08 5:29) 0:53 1:02) 0:10

FIG. 2 (color online). Reduction factors Rs ¼
SFðexptÞ=SFðLB-SMÞ as a function of the difference between
neutron and proton separation energies, !S. The solid and open
circles represent Rs deduced in JLMþ HF and CH89 approach
using the present transfer reaction data, respectively. The open
triangles denote the Rs from knockout reactions [11]. The
dashed line is the best fit of Rs of 32;34;46Ar from knockout
reactions. The use of different !S values from the present work
and knockout reactions in Ref. [11] is explained in Ref. [28].
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clei with 3 ! Z ! 28 [13,14]. For most excited states of
stable nuclei with 3 ! Z ! 24, the agreement is slightly
worse, but within 30% [14]. If one uses a different optical
model potential, developed by Jeukenne, Lejeune, and
Mahaux (JLM) [16] with conventional scale factors of
!V ¼ 1:0 and !W ¼ 0:8 for the real and imaginary parts,
and constrains the geometry of these potentials and that of
the transferred-neutron bound state by Hartee-Fock calcu-
lations [17], one observes an overall reduction #30% in
the measured ground state spectroscopic factors [18]. This
implies reduction factors Rs $ ðexperimentalSFÞ=ðLB'
SM SFÞ of 30% in the latter approach, similar to the
reductions in proton SF’s extracted from (e, e0p) measure-
ments [19].

Regardless of the choice of optical model potential or
the geometry of the mean-field potential for the transferred
neutron, systematic analyses of neutron transfer reactions
display no strong dependence of the reduction factor Rs on
the neutron-proton asymmetry of the nuclei [13,14,18].
However, systematic uncertainties inherent in comparing
SF’s from different experiments published over a period of
more than 40 years reduce the sensitivity of such studies.

The available transfer reaction data include very few
neutron-rich or neutron-deficient nuclei. To explore more

extreme asymmetries, we extracted the ground state neu-
tron SF’s for 34Ar and 46Ar from (p, d) reactions using
proton-rich 34Ar and neutron-rich 46Ar beams in inverse
kinematics. SF’s from knockout reactions on these nuclei
have been published, and a significant reduction of the
neutron SF for 34Ar has been reported [11]. The difference
between the neutron and proton separation energy (!S),
which characterizes the relative shift of neutron and proton
Fermi energies in these nuclei, is 12.41 and '10:03 MeV
for 34Ar and 46Ar, respectively. In previous studies of
transfer reactions, there were no nuclei with j!Sj (
7 MeV [13,18].
In the present experiments, the deuteron angular distri-

butions from pð34Ar; dÞ 33Ar and pð46Ar; dÞ45Ar transfer
reactions were measured using radioactive secondary
beams of 34Ar and 46Ar at 33 MeV=nucleon at the
National Superconducting Cyclotron Laboratory at
Michigan State University [20]. The pð36Ar; dÞ35Ar reac-
tion was also measured using a degraded 36Ar primary
beam at 33 MeV=nucleon to compare with data previously
measured in normal kinematics [21]. These beams were
transported and focused on polyethylene targets ðCH2Þn
targets with areal densities of 7:10 mg=cm2 for 34;36Ar
and 2:29 mg=cm2 for 46Ar reactions. Deuterons were de-

FIG. 1 (color online). Q-value spectrum [(a)–(c), top panels] and ground state deuteron angular distributions [(d)–(f), bottom panels]
of pð34;36;46Ar; dÞ33;35;46Ar. The open squares in panel (e) are data from previous normal kinematics experiments [21]. The solid and
dashed lines represent the calculations using JLMþ HF and CH89 approach, respectively.
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✪ Agreement between different many-body methods

✪ Gorkov-Green’s functions

Summary & outlook

➟ Model independent calculations challenge chiral interactions

➟ Novel path to extend first-principle calculations to open-shells

➟ GGF(2) provides good reproduction of S2n around Ca

➟ Separation spectra at a qualitative level

➟ Work in progress: GGF(3)
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on


