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MINOS @ RIBF : what and why

* liquid hydrogen target and vertex tracker A% 8 Liquid H, Target

150 mm Mylar cell
 ready to use from 2014 - 60 — 200 mm long

* Dedicated to Exotic Nuclei Studies
at the RIKEN Radioactive Isotope Beam Facility
at energies of ~250 MeV/nucleon
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MINOS : improves luminosity AND resolution

»  Higher luminosity (factor > 5)

»  better energy resolution (in-beam y: limitation is y detector)
» (semi) exclusive (p,2p) or (p,pn): “cleaner” probe
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Shell Evolution and Search for Two-plus Energies
At the RIBF (SEASTAR)

Spokesperson: P. Doornenbal (RIKEN), A. Obertelli (CEA)
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http://www.nishina.riken.jp/collaboration/SUNFLOWER/experiment/seastar/index.html




Shell Evolution and Search for Two-plus Energies
At the RIBF (SEASTAR)

Spokesperson: P. Doornenbal (RIKEN), A. Obertelli (CEA, RIKEN)
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Spring 2014:

* Spectroscopy of ®6Cr

* Spectroscopy of 7%72Fe 3()
* Spectroscopy of 8Ni
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SEASTAR in 2015 (tentative)

Image from H. Hergert (ESNT, 2014)
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Spectroscopy of >2Ar

and neutron-rich K, Cl isotopes
Spectroscopy of >3°6Ca

Spectroscopy of 62Ti



Spectroscopy of unbound Oxygen isotopes

Spokesperson: Y. Kondo, Tokyo Institute of Technology 29F(p,2p)*20 — 20 + 4n
graded S by the 13t RIBF NP-PAC
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Spectroscopy of unbound Oxygen isotopes
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H. Hergert et al.
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Origin of di-neutron correlations in Halo nuclei

Spokesperson: Y. Kubota (CNS, RIKEN) and A. Corsi (CEA)
graded A by the 13t RIBF NP-PAC
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A program to understand Neutron Halos in Borromean nuclei

* Exclusive measurement
* Quasi-free scattering (p,pn) as a probe / minimize Final State Interactions

= Requires high luminosity: MINOS
e core excitations (y detection)



AGATA at the RIBF: a possible program with MINOS

* AGATA: new generation high resolution Ge tracking array
H, target (150 mm) e 2keVFWHM at E=1.3 MeV, 5 mm FWHM resolution
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Naive (already asked?) questions related to 3N:

1) Apart from extra repulsion, is there any intuition on the mass dependence,
asymmetry dependence of the 3N force effect?

2) Is there any saturation — upper limit with mass of the 3N effect
(at saturation density)?

3) Would/Does comparison with QCD (very preliminary) studies on 3N forces bring
valuable information?

4) Have we reached a stage where the interpretation of nuclear spectroscopy
should be more and more left to theorists? Are experimentalists usually pertinent in
their approach?

5) Would/does the spectroscopy of hypernuclei give more insight on the 3N forces?
[first excited state of Lambda much lower than of Nucleons]
Is it on your research line?



