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Probability

Interpretation of a probability

As a matter of fact, the core mathematical concept which is used is the concept of
probability. To simplify our purpose, we consider two main interpretations of a
probability:

Frequentist/objective: the probability is the asymptotic measure of the
following ratio:

P (A) =
Number of observations of the Event A

Total number of observations

For instance, if the modelling and simulation are accurate, it is possible to
compare a sample of simulated lifetime of a modelled device with a sample of
real lifetimes of the device.

Bayesian/subjective: the probability is considered as a measure of risk, it is not
directly linked to the frequency of an event but to the level of
certainty/uncertainty expressed on the phenomenon.

It is important to note that, even if the interpretation between the two propositions is
fundamentally different, the mathematical representation of both is identical.
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What is the nature of uncertainty in this context?
“Model” uncertainty

Reference model h∗: Usually not
accessible, expression of a natural or a
complex technical object.

Theoretical model hth: Scientific expert
activity (modelling activity, theoretical
solution of a PDE system, ...),
corresponding to the level of
understanding and simplification of the
problem.

Numerical model hnum: Numerical
solution of the theoretical model (effects
of meshing, choice of a numerical
scheme, truncature effects, ...)

Implementation model h: Software
implementation of the model on a given
hardware architecture (computer
accuracy, choice of coding rules, ...)

h∗  h

x

y Original phenomenon

Theoretical model

Numerical model

Implementation  model h

h*

hthth

hnum

x

y *Original phenomenon

Implementation  model h

h*
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What is the nature of uncertainty in this context?

Parametric input uncertainty

For a given numerical model h : (x, θ) ∈ X ×Θ 7→ y = h(x, θ) ∈ Y, we consider
an uncertainty attached to the input variables X modelled by a statistical
law P∗X.

In practical contexts, it is often difficult to build P∗X due to scarsity of data,
heterogeneous database, lack of information on the dependency, ... As a matter
of fact, one has to work with an approximate statistical law PX.

P∗X  PX

Computational budget B
In many situations, it is difficult to compute analytically the risk measures
ρ(h(X, θ)). Numerical methodsM(B, ε, h(X, θ) (either stochastic or not) are
required using a fixed computational budget B for a given accuracy ε

ρ(h(X, θ)) M(h(X, θ),B, ε)
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How to manage all the components of the error?

Recap of the errors

1 Building of the model: NS(h∗, hth)

2 Numerical approximation: NN (hth, hnum)

3 Hardware/Software implementation: NI(hnum, h)

4 Model paramaters uncertainty: NQ(P∗X,PX)

5 Uncertainty propagation error: NP(ρ(h(X, θ)),M(h(X, θ),B, ε))

Naive form of the total error
∆ ≤ NS(h∗, hth)︸ ︷︷ ︸

Scientific Validation

+ NN (hth, hnum)︸ ︷︷ ︸
Numerical Validation

+ NI(ĥ, h)︸ ︷︷ ︸
Hardware/Software Validation

+ NQ(PX∗ ,PX )︸ ︷︷ ︸
Statistical Validation

+ NP (ρ(Y ), ρ̂B(Y ))︸ ︷︷ ︸
Propagation Validation
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How to manage some components of the error?

Figure : Four steps engineering process for uncertainty study (ref EsREDA [9],
Open TURNS [23])
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Computer experiments

Scope of computer experiments in statistics

The literature in computer experiments classically uses the computer
code h as a predefined object (Owen [24], Sack [27], Santner [29]).
Several objectives are classically assigned to computer experiment:

Optimization
Sensitivity analysis
Approximation of some measures of risk
Visualization
Calibration
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Computer experiments

Scope of computer experiments in numerical analysis

h is the solution of a PDE. Some coefficients of the PDE are unknown for
some reasons. The methods and tools that are developed in this
framework take advantage of the structure of the problem (Ghanem and
Spanos [6], Ladeveze [15], LeMaitre [16], Lucor [17], Maday [18]). The
same type of goals is assigned to the computer experiments:

Optimization
Sensitivity analysis
Approximation of some measures of risk
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Our motivation in terms of computer experiment

Goal
Let Q be the unknown probability measure associated to the real random
variable Y∗ defined over (RQ ,B(RQ),Q). Our goal is to predict some
feature ρ(Q) ∈ F of the distribution Q (also abusively noted ρ(Y∗)).
This feature corresponds to the measure of risk over our variable of
interest Y∗.

Examples of probabilistic measures of risk ρ(Y∗)

Mean: ρµ(Y∗) = E [Y∗] ∈ F = R
Variance: ρσ(Y∗) = Var [Y∗] ∈ F = R+

Quantile: ρq(Y∗) = qr (Y∗) ∈ F = R+

Probability: ρp(Y∗) = P (Y∗ ∈ DP) ∈ F = [0, 1]

CDF: ρcdf (Y∗) = P (Y∗ ≤ y∗) ∈ F = Fcdf (RQ , [0, 1])

PDF: ρpdf (Y∗) = fY∗(y∗) ∈ F = Fpdf (RQ ,R+)
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Our motivation in terms of computer experiment

Properties of a numerical model h

Dimension: h is classically a real function belonging to F(RP × RT ,RQ).
Even if the dimension of x can be large, most of the engineering problems
we are focused on only contain P ≤ 50 and Q ≤ 5.

Computational budget: A single computation of h can be very expensive.
The computational budget B will be represented by the number m of runs
affordable to solve the problem.

Black box/white box: h is either a black box (the inner operations of the
model are not accessible), a grey box (part of the inner operations is
accessible) or a white box (all the operations of the model are accessible).

Mathematical properties: the basic mathematical properties (regularity,
monotony, linearity or non linearity towards certain parameters) may be
unknown to the engineer.

Domain of validity: h should be delivered with its domain of validity
V [ε] ⊆ RP × RT .
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Our motivations in terms of computer experiment

Prediction of the feature ρ(Q) = ρ(Y∗) thanks to a pre defined model
h(x, θ) = y, a statistical law PX and a numerical methodM(m, ε)

The probability measure Q being unknown, it is approximated by the
composition of a model h, defined over X ×Θ and a statistical law PX. Thus, it
is possible to approximate the feature ρ(Y∗) by ρ(h(X, θ)).

ρ(Y∗) ≈ ρ(h(X, θ))

As it is quite rare to compute exactly ρ(h(X, θ)), it is approximated by either a
deterministic or a stochastic numerical methodM. M is characterized by its
accuracy ε for a given budget of computations B.

M(h(X, θ),B, ε)
B→∞,ε→0−−−−−−−−→ ρ(h(X, θ))

Moreover, alternative strategies using surrogate models h̃ are often used to
obtain a better estimation of the feature ρ(Y∗). The final approximation with
numerical methodM′ should be more accurate in a certain sense ‖‖ than the
previous one:

‖M′
(
h(X, θ), h̃(X, η),B, ε

)
− ρ(h(X, θ)‖ ≤ ‖M(h(X, θ),B, ε)− ρ(h(X, θ)‖
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Our motivations in terms of computer experiment

Sensitivity analysis to the choice of predefined model h(x, θ) = y and
the statistical law PX on the prediction of the feature ρ(Q) = ρ(Y∗)

The probability measure Q being unknown, it is approximated by the
composition of a model h, defined over X ×Θ and a statistical law PX. Thus, it
is possible to approximate the feature ρ(Y∗) by ρ(h(X, θ)).

ρ(Y∗) ≈ ρ(h(X, θ))

Influence of the group of input variables XK (K ⊆ {1, · · · ,P}) on the feature of
interest ρ(h(X, θ)):

ρ(h(X, θ)|XK = xK ) = ρ(h(X, θ)) ??

Influence of the statistical model PX on the feature of interest ρ(h(X, θ))

ρ(h(P1
X, θ)) = ρ(h(P2

X, θ)) ??

Influence of the choice of model hi among the panoply of model
H = {h1, · · · , hD}

ρ(hi (X(i), θ(i))) = ρ(hi (X(i), θ(i))) ??
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Strategy to decrease the computational cost

Surrogate model

Let h be the numerical model defined over X ×Θ with values in Y. h̃ is
a surrogate model, belonging to F(X ×Θ,Y), with the following
properties:

h̃ is “close” from h in a domain of interest V :
∀x ∈ V , ‖h(x, θ)− h̃(x)‖ ≤ ε with a certain norm ‖.‖ and a criterion
ε.
The computational cost of h̃ is much cheaper than the one of h
(either in memory or CPU cost).

Notation: h̃(X, θ) = Ỹ

Examples

Polynomial chaos, Kriging models, Radial based functions, Reduced
basis, Neural networks, SVM, Taylor expansions, ...

Page 18



Uncertainty Quantification II February 12, 2014

What is a polynomial chaos expansion ?
Spectral approach

The random vector Y = h(X, θ) is considered as an element of a
functional space F with condition E

[
||Y||2

]
<∞.

The goal is to build a basis of this functional space, Y will be represented
by its coordinates in this basis.

Meaning in practice

In other terms, the model h(X, θ) is replaced by a decomposition in an
adequate basis.

As a first step, only non intrusive methods are considered.

In a practical way, it means that the CPU cost will be paid in two steps:

1 A cost to build the truncated polynomial chaos expansion h̃ (by a
numerical and approximation technique).

2 A cost to estimate the feature of interest ρ(Y) with the help of the
surrogate model h̃. With M >> N:

ρ̂M(h̃(X, θ))→ ρ̂N(h(X, θ))→ ρ(h(X, θ))(= ρ(Y))
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General approach

Representation of the model

Y = h(X, θ) ≈
∑
j∈N

ỹjΨj(X)

B = (Ψj(X))j∈N: basis of the polynomial chaos, which is a basis of
the space L2(PX,RP ,R)

ỹj ∈ RQ : coordinates in the basis B

Two algorithmic steps for implementation

1 Building of the polynomial chaos basis B = (Ψ1, ...ΨR)

2 Computation of the coefficients ỹj in the basis
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Building of the PC basis

The basis is adapted to the input distribution PX of the input random
vector X.

In case of dependency, develop an iso probabilistic transformation to obtain a
transformed distribution with independent components.

When the components are independent,

fX(x) =
P∏
i=1

fXi (xi )

Building orthogonal polynoms towards the measure fXi (xi ):

< ψi
k , ψ

i
l >≡

∫
ψi
k(x)ψi

l (x)fXi (x)dx = δkl

Tensorial product of unidimensional polynoms:

α ≡ {α1, · · · , αP} Ψα(x) =
P∏
i=1

ψi
αi (xi )
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Computation of the coefficients ỹi
Methods by projection

Representation: Y =
∑
α∈NP ỹαΨα(X)

ỹα = E [Y.Ψα(X)] =
∫
X h(x, θ)Ψα(x)fX(x)

Computation by numerical integration (quadrature formula) or
Monte Carlo methods

Methods by regression

Regression of the model on a truncated basis:

Y =
R−1∑
j=O

ỹjΨj(x) + εR

Classical least square minimization to obtain the coefficients for
example or more elaborated regression techniques including
penalization over dimension to increase the sparsity of the
representation (Ridge regression, LASSO, elastic net, ...).

Page 22



Uncertainty Quantification II February 12, 2014

Outline
1 Probability and statistics

Introduction
2 Link with computer experiments

Uncertainty management
3 Computer experiments

Introduction
Our motivation in terms of computer experiment

4 Reduced model techniques
Introduction
Polynomial chaos expansion

5 Sensitivity analysis
6 Formalization of the problem in a statistical framework

Link with statistical learning
Contrast and risk function
Mono feature estimation by a single model approach

7 Conclusion and perspectives
8 Bibliography

Page 23



Uncertainty Quantification II February 12, 2014

Sensitivity analysis

Context
In this part, we suppose that the model h(x, θ) and the statistical law PX are
known. Thus, it is possible to define a random variable Y = h(X, θ) defined by
its statistical law PY. See references Antoniadis [1], Saltelli [28], Sobol [30].

Objectives of sensitivity analysis

To determine the most influential input variables from X that contribute
to the uncertainty measured by the measure of risk ρ(Y). The
uncertainties over these variables could be reduced or the model adapted
to reduce the uncertainty.

To determine the less influential input variables from X that contribute
to the uncertainty measured by the measure of risk ρ(Y). These variables
could be considered deterministic for future studies.

To analyse the interactions between some input variables or some groups
of input variables.

To check the fidelity of the model h towards the problem studied. An
other model h could be developed.Page 24
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Several sensitivity analysis techniques

LOCAL : • → •
The local sensivity techniques are based on the local behaviour of
the model, classically linearized around a point of interest
(differentiation by direct or adjoint, ...).
GLOBAL : DX → DY
The global sensitivity techniques aim at exploring the full domain of
variation Dx without any a priori assumption on the model.
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Several sensitivity analysis techniques

Local sensitivity analysis

Local sensitivity analysis enabled to obtain good results for linearized systems.
Efficient methods are developed from the differential analysis (adjoint methods,
...):

y = h(x, θ)⇒ δy ' ∂h
∂x
δx = Sδx⇒ Var [Y] = S .Var [X] .ST

Global sensitivity analysis

Global sensitivity analysis aims at exploring all possible variations of the
parameters, without a priori simplification of the model.

Sobol indexes:

First-order indexes:
Si =

Var [E [Y|Xi ]]

Var [Y]

Higher order indexes

Si1,··· ,ik =
Var

[
E
[
Y|Xi1 , · · · ,Xik

]]
Var [Y]Page 26
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Link with statistical learning
Classical learning areas (see Hastie et al [12], Massart [20])

• Unsupervised learning: We observe X∗1 , ...,X∗n i.i.d P∗X (unknown) and we
look for a map g : X ∗ → Y∗

• Semi-supervised learning With l < n, we observe (X∗i ,Y
∗
i )i≤l +

X∗l+1, ...,X
∗
n and we look for a map g : X ∗ → Y∗

• Supervised/inductive learning: We observe (X∗1 ,Y∗1), ..., (X∗n,Y∗n) and we
look for a map g : X ∗ → Y∗

Our learning context

If the X∗i ’s are observed ?
Data at disposal:
(X∗1 ,Y∗1), ..., (X∗n,Y∗n) + (X1, h(X1, θ)), ..., (Xm, h(Xm, θ)), m >> n
The framework Y∗

1 , ...,Y
∗
n + X1, ...,Xm may be seen between Supervised and

Semi-supervised learning...

If the X∗i ’s are NOT observed ?
Data at disposal: Y∗1 , ...,Y∗n + h(X1, θ), ..., h(Xm, θ), m >> n
The framework Y∗

1 , ...,Y
∗
n + X1, ...,Xm may be seen between Unsupervised

and Semi-supervised learning...
Page 28
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Definitions

Contrast
Definition: A contrast function is defined by:

Ψ : F× Y −→ R
(ρ, y) 7→ Ψ(ρ, y)

Examples

F = R:
Mean-contrast: Ψ(ρ, y) = (y − ρ)2

F = {Set of density function}:
Log-contrast: Ψ(ρ, y) = − log(ρ(y))
L2-contrast: Ψ(ρ, y) = ‖ρ‖22 − 2ρ(y)
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Definitions

Risk function

Definition: Given (Ψ,F,Q), the risk function RΨ is a real function
defined as:

∀ρ ∈ F, RΨ(ρ) :=

∫
Y

Ψ(ρ, v) Q(dv) = EV∼Q [Ψ(ρ,V )]

Application to our problem

ρ = ρh(θ)

RΨ(h, θ) = EY∗∼Q [Ψ(ρh(θ),Y∗)]

Some classical risk functions:
The mean-squared contrast gives a distance between means:
RΨ(h, θ) = (E [Y∗]− ρh(θ))2 + Var [Y∗]
The log-contrast gives the Kullbach-Leiber divergence between pdfs:
RΨ(h, θ) = KL(fY∗ , ρh(θ))− E [log(Y∗)], where
KL(g1, g2) =

∫
log( g1g2 (y) g1(y) dy
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Pb 1: Mono feature estimation by a single model approach

Mathematical goal

Let Q be the unknown probability measure associated to the real random
variable Y∗ defined over (RQ ,B(RQ),Q). Our main goal is to predict
one feature ρ(Q) of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of the feature ρ based
upon the availability of a reference database (Y∗1, · · · ,Y

∗
n), a numerical

model h(x, θ), with X following PX and a computational budget B that
can be spent either m times all at once or in an adptative way.
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Pb1: Example of density prediction

Suppose that (X∗1,Y
∗
1), ..., (X∗n,Y

∗
n) are available.

Calibration of θ by mean-Squares minimization

θ̂MS = Argmin
θ∈Θ

1
n

n∑
i=1

(Y ∗i − h(X∗i , θ))2

Prediction of ρ
Compute the probability density of h(X, θ̂MS) under X ∼ PX

→ f̂MS
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Pb1: Example of density prediction
Other M-estimators...

Kullback-Leibler minimization KL(f1, f2) =
∫
Y log( f1

f2
) f1

- fY∗ = density of Y∗, fθ = density of h(X, θ)
- Goal: Find θ that minimizes KL(f , fθ) .

Two difficulties
- f is unknown → replaced by f n = 1

n

∑n
i=1 δYi

- fθ untractable → replaced by a simulation density (Kernel,

projection, etc...)
(

f mθ = 1
m

∑m
j=1 Kbm (· − h(Xj , θ)), Xj ∼

i.i.d
PX

)
M-estimator

θ̂KL = Argmin
θ∈Θ

KL(f n, f m
θ ) = Argmin

θ∈Θ
−1
n

n∑
i=1

log(f m
θ )(Y∗i )

Prediction
Compute the probability density of h(X, θ̂KL) under X ∼ PX

→ f̂KL
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Question ?

What is the "best" estimator of f ,

f̂MS or f̂KL ?
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Pb 1: Toy application

Y∗ = sin(X∗) + 0.01 ε, X∗ ⊥ ε ∼ N (0, 1)

h(X, θ) = θ1 + θ2 X + θ3 X 3, X ∼ Px = N (0, 1)

n = 50 and m = 103
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Pb 1: Toy application

Y∗ = sin(X∗) + 0.01 ε, X∗ ⊥ ε ∼ N (0, 1)

h(X, θ) = θ1 + θ2 X + θ3 X 3, X ∼ Px = N (0, 1)

n = 50 and m = 104
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Pb1: Theoretical results from N. Rachdi PhD Thesis [26]

Theorem: Oracle Inequality (Rachdi et al [25])

Under some conditions on the contrast Ψ and under tightness conditions,
for all ε > 0, with high probability it holds:

0 ≤ RΨ(h, θ̂)− inf
θ∈Θ

(RΨ(h, θ)) ≤
K ε

(ρ̃,Ψ)√
n

(
1 +

√
n
m

(
K ε

(ρ̃,h) + Bm

))
where K ε

(ρ̃,Ψ), K
ε
(ρ̃,h) some concentration constants and Bm a bias factor

Nonasymptotic result, i.e valid for all n,m ≥ 1

infθ∈Θ (RΨ(h, θ)) = the minimal risk we can achieve for Ψ
= Modeling error (mesh size ..., model complexity)

Kε(ρ̃,Ψ)√
n

(
1 +

√ n
m (K ε

(ρ̃,h) + Bm)
)

= Statistical error linked to model
complexity and size of the databases
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Pb1: Theoretical results from Rachdi et al [26]

Compare RΨp (θ̂Ψp ) and RΨp (θ̂Ψ)

study the difference RΨp (θ̂Ψp )−RΨp (θ̂Ψ)

By definition of θΨp : RΨp (θΨp )−RΨp (θ̂Ψ) ≤ 0 for all θ̂Ψ

Question : RΨp (θ̂Ψp )−RΨp (θ̂Ψ) ≤
0? a.s?w .h.p?, in L1? · · · difficult in general?

Proposition: [Mean squares for mean prediction] (N. Rachdi, JC. Fort 2010)

• Feature of interest: ρp = E(Y ) 99K Ψp : (ρ, y) 7→ (ρ− y)2

• Model: h(X, θ) = Φ(X) · θ, Φ = (φ1, ..., φk) orho. w.r.t PX

• Suppose: Yi = Φ(Xi ) · θ∗ + εi , E(εi ) = 0 i.i.d

• Let 2 Ψ-estimators: θ̂Ψp = Argminθ∈Θ

∑n
i=1 (Yi − EΦ(X) · θ)2 and

θ̂Ψreg = Argminθ∈Θ

∑n
i=1 (Yi − Φ(Xi ) · θ)2

• Result:
E(Xi ,Yi )1..n

(
RΨp (θ̂Ψp )−RΨp (θ̂Ψ)

)
≤ 0Page 37
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Some CHALLENGES

CULTURAL challenges

Engineers ARE NOT USED to express the uncertainty in their domain. By the way, only a few
of them are trained on the subject !

Problem to build the probabilistic criteria

Quantification of the sources of uncertainty

A strong effort is required in basic training and professional training.

TECHNOLOGICAL challenges

The simulation tools are not adapted to evolve towards this revolution !

Automatization of the computational workflow

Is the computational budget compatible with the probabilistic criterion? Development of
high performance computations capabilities.

CERTIFICATION challenges

The uncertainty management process has to be compatible with certification issues (legal
responsability, safety issues, ...)
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