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Effective field theories for nuclear forces

Weinberg (1990): extended chiral perturbation theory to two- and
three-nucleon systems

• effective field theory expanded in powers of Q/Λ0

low-energy scales, Q: momenta, mπ (. 200 MeV)
scales of underlying physics, Λ0: 4πFπ, MN , mρ (& 800 MeV)
• convergent expansion of potential and observables

provided Q/Λ0 is small enough (good separation of scales)
• terms organised by naive dimensional analysis

aka “Weinberg power counting”
(simply counts powers of low-energy scales)
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Interactions with ranges ∼ 1/Λ0 not resolved at scales Q

• replaced by contact interactions
• infinite number of terms, constrained only by symmetries of QCD
• iterations (loop diagrams) usually infinite
→ need to renormalise
• we can, provided we have a consistent expansion

But. . .

• simply counting powers of low-energy scales: perturbative
• may work for weakly interacting systems: ≤ 1 nucleon
• but nucleons interact strongly at low-energies
• bound states exist (nuclei!)
→ need to treat some interactions nonperturbatively
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Problem: basic nonrelativistic loop diagram of order Q

M
(2π)3

∫ d3q
p2−q2 + iε

=−i
M p
4π

+ analytic

• lowest-order potential, Q0: contact term and
one-pion exchange
• each iteration suppressed by power of Q/Λ0

• perturbative provided Q < Λ0

• integral linearly divergent
• cut off (or subtract) at q = Λ
• still perturbative provided we keep Λ < Λ0

−p p

−p p

−q q
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Workaround: “Weinberg prescription”

• expand potential to some order in Q
• then iterate to all orders in favourite dynamical equation

(Schrödinger, Lippmann-Schwinger, . . . )
• widely applied and even more widely invoked

• but no clear power counting for observables
• resums subset of terms to all orders in Q

(and some of these depend on regulator)
• not necessarily a problem if these terms are small
• but we need them to generate bound states

(and we don’t want just to play “Steven says...”)

5 / 25



Workaround: “Weinberg prescription”

• expand potential to some order in Q
• then iterate to all orders in favourite dynamical equation

(Schrödinger, Lippmann-Schwinger, . . . )
• widely applied and even more widely invoked
• but no clear power counting for observables
• resums subset of terms to all orders in Q

(and some of these depend on regulator)

• not necessarily a problem if these terms are small
• but we need them to generate bound states

(and we don’t want just to play “Steven says...”)

5 / 25



Workaround: “Weinberg prescription”

• expand potential to some order in Q
• then iterate to all orders in favourite dynamical equation

(Schrödinger, Lippmann-Schwinger, . . . )
• widely applied and even more widely invoked
• but no clear power counting for observables
• resums subset of terms to all orders in Q

(and some of these depend on regulator)
• not necessarily a problem if these terms are small
• but we need them to generate bound states

(and we don’t want just to play “Steven says...”)

5 / 25



Workaround: “Weinberg prescription”

• expand potential to some order in Q
• then iterate to all orders in favourite dynamical equation

(Schrödinger, Lippmann-Schwinger, . . . )
• widely applied and even more widely invoked
• but no clear power counting for observables
• resums subset of terms to all orders in Q

(and some of these depend on regulator)
• not necessarily a problem if these terms are small
• but we need them to generate bound states

(and we don’t want just to play “Steven says...”)

5 / 25



How can we iterate interactions consistently?

Identify new low-energy scales

• promote leading-order terms to order Q−1

→ cancels Q from loop and so iterations not suppressed
• can, and must, then be iterated to all orders

(all other terms: perturbations)

Then use the renormalisation group to determine the power counting

• general tool for analysing scale dependence
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The renormalisation group

• identify all relevant low-energy scales Q
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• cut off theory at an arbitary scale Λ
between Q and Λ0

(assumes good separation of scales)
• “integrate out” high momentum

states by lowering Λ
• demand that physics be independent

of Λ (eg T matrix)

• rescale express all dimensioned quantities in units of Λ
(potential and all low-energy scales)
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Λ is highest acceptable low-energy scale

• do not take it above breakdown scale Λ0

(unless you know the rules and follow them to the letter!)
• really of order Q
• rescaling→ power of Λ counts low-energy scales

Endpoints of flow of effective potential as Λ→ 0

• fixed points: rescaled theories independent of Λ
(except for some three-body systems→ limit cycles)
• correspond to scale-free systems
• expand around one using perturbations that scale like Λν

→ EFT with power counting: Qd where d = ν−1
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RG for short-range potentials

• potential analytic in all scales Q

V (k ′,k ,p;Λ) = b00(Λ) + b20(Λ)(k2 + k ′2) + b02(Λ)p2 + · · ·

k , k ′: initial, final relative momenta, p =
√

ME : on-shell
momentum
• reactance matrix K satisfies Lippmann-Schwinger equation

K (k ′,k ,p) = V (k ′,k ,p;Λ)+
M

2π2 P
∫ Λ

0
q2dq

V (k ′,q,p;Λ)K (q,k ,p)

p2−q2

P : principal value (standing wave bc’s)

• demand full off-shell K matrix be independent of cutoff
∂K/∂Λ = 0
(need off-shell to disantangle scaling of redundant operators)
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• leads to

∂V
∂Λ

=
M

2π2 V (k ′,Λ,p,Λ)
Λ2

Λ2−p2 V (Λ,k ,p,Λ)

◦ RHS: contribution to scattering of states at cutoff q = Λ
◦ removed from loop integrals as we lower Λ
→ effects added into the potential to compensate

• rescale: express all low-energy scales in units of Λ: k̂ = k/Λ etc
and define V̂ (k̂ ′, k̂ , p̂;Λ) = MΛ

2π2 V (Λk̂ ′,Λk̂ ,Λp̂;Λ)
→ RG equation [Birse, McGovern, Richardson (1998)]

Λ
∂V̂
∂Λ

= p̂
∂V̂
∂p̂

+ k̂ ′
∂V̂

∂k̂ ′
+ k̂

∂V̂

∂k̂
+V̂ +V̂ (k̂ ′,1, p̂;Λ)

1
1− p̂2 V̂ (1, k̂ , p̂;Λ)

• two interesting fixed-point solutions ∂V̂0/∂Λ = 0
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Trivial fixed point V0 = 0

Describes free particles (scale-free system)

Expansion around V0 = 0 in powers of momenta

• p2n is an eigenfunction of the RG equation: scales as Λ2n+1

• order in EFT given by naive dimensional analysis: Q2n

• perturbative→ appropriate EFT for weakly interacting systems

Nontrivial fixed point

V0(p,Λ) =− 2π2

MΛ

[
1− p

2Λ
ln

Λ + p
Λ−p

]−1

(sharp cutoff)

• order Q−1 (so must be iterated)
→ scatteringmatrix T (p) = i4π/Mp
• describes “unitary limit”: scattering length a→ ∞

or bound state exactly at threshold (also scale-free)
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Expanding around this point

V (p,Λ) = V0(p,Λ) + V0(p,Λ)2 M
4π

(
− 1

a
+

1
2

re p2 + · · ·
)

• factor V 2
0 ∝ Λ−2 promotes terms by two orders compared to naive

expectation: Q−2, Q0, . . .
• coefficients of perturbations related to effective-range expansion

[Bethe (1949)]
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First example of new scales

NN scattering lengths 1/a . 40 MeV
[van Kolck; Kaplan, Savage and Wise (1998)]

• for p�mπ only contact interactions: “pionless EFT”
• (effective-range) expansion around unitary limit: 1/a→ 0

Promotion of potential follows from form of wave functions as r → 0

• Schrödinger equation at zero energy for r > 1/Λ0[
d2

dr2 +
2
r

d
dr

]
ψ0(r) = 0 (S wave)

• unitary limit→ irregular solutions: ψ(r) ∝ r−1

• cutoff smears contact interaction over range R ∼ Λ−1

→ need extra factor Λ−2 to cancel cutoff dependence from
|ψ(R)|2 ∝ Λ2 in matrix elements of potential

13 / 25



First example of new scales

NN scattering lengths 1/a . 40 MeV
[van Kolck; Kaplan, Savage and Wise (1998)]

• for p�mπ only contact interactions: “pionless EFT”
• (effective-range) expansion around unitary limit: 1/a→ 0

Promotion of potential follows from form of wave functions as r → 0

• Schrödinger equation at zero energy for r > 1/Λ0[
d2

dr2 +
2
r

d
dr

]
ψ0(r) = 0 (S wave)

• unitary limit→ irregular solutions: ψ(r) ∝ r−1

• cutoff smears contact interaction over range R ∼ Λ−1

→ need extra factor Λ−2 to cancel cutoff dependence from
|ψ(R)|2 ∝ Λ2 in matrix elements of potential

13 / 25



One-pion exchange

• important for nuclear physics at energies ∼ 100 MeV
• order Q0 in chiral counting
→ treat as a perturbation [Kaplan, Savage and Wise (1998)]
• S waves: series coverges slowly, if at all

[Fleming, Mehen and Stewart (1999)]
• OPE “unnaturally” strong

• strength of OPE set by scale

λNN =
16πF 2

π

g2
A MN

' 290 MeV

built out of high-energy scales (4πFπ, MN) but ∼ 2mπ

→ another low-energy scale?
• promotes OPE to order Q−1
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Central potential

• Yukawa form

VπC(r) =
1
3

m2
π

MNλπ

e−mπr

r
(σ1 ·σ2)(τ1 · τ2)

• behaves like 1/r for small r
• not singular enough to alter powers of r in wave functions
→ same power countings as for short-range potential alone

(except for a few additional logarithms)

Tensor potential

• much more singular

VπT (r) =
1
3

1
MNλπ

(
3 + 3mπr + m2

πr2) e−mπr

r3 S12(τ1 · τ2)

• dominated by 1/r3 for small r
→ very different forms for wave functions
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Schrödinger equation for spin-triplet channels at short distances
(uncoupled waves, keep only most singular term in potential)

• tends to energy-independent form[
d2

dr2 +
2
r

d
dr
− L(L + 1)

r2 +
βLJ

r3

]
ψ0(r) = 0 βLJ ∝

1
λNN

• can be converted to Bessel’s equation by defining x = 2
√
|βLJ |/r

ψ0(r) ∝ r−1/2

[
sinαJ2L+1

(
2
√

βLJ
r

)
+ cosαY2L+1

(
2
√

βLJ
r

)]
• βLJ > 0: solutions undetermined as r → 0
→ α: fixes phase of short-distance oscillations

(self-adjoint extension of Hamiltonian)
• equivalent to fixing leading contact interaction
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Attractive potential β > 0

• r � 1/β: oscillatory behaviour (1/r3)

r−1/2Y2L+1

(
2
√

β

r

)
∼ r−1/4 sin

(
2
√

β

r −
(
L + 3

4

)
π

)
• r � 1/β: usual power law (centrifugal)

r−1/2Y2L+1

(
2
√

β

r

)
∼ rL

• fine tune α = π/2

r−1/2J2L+1

(
2
√

β

r

)
∼ r−(L+1)

irregular solution for r � 1/β→ unitary limit
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Repulsive case β < 0: modified Bessel functions

• r � 1/β: exponential behaviour (regular as r → 0)

r−1/2K2L+1

(
2
√

β

r

)
∼ r−1/4 exp

(
−2
√

β

r

)
• r � 1/β: power law

r−1/2K2L+1

(
2
√

β

r

)
∼ rL
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Wave functions ψ(r)/pL for (a) 3P0, (b) 3P1, (c) 3D2, (d) 3G4.
Solid lines: energy-independent asymptotic form
Short-dashed lines: T = 5 MeV; long-dashed lines: T = 300 MeV
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New power countings

Power-law behaviour of wave functions in presence of tensor OPE:

ψ(r)∼ r−1/4×sine or exponential

Renormalised contact interactions

• extra factor of Λ−1/2 to cancel |ψ(R)|2 ∝ Λ1/2

→ promoted by half order compared to naive dimensional analysis
for S waves, but in all partial waves
• leading term: order Q−1/2 (not quite relevant)
• matches results of full RG analysis [Birse (2006)]
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RG analysis→ second fixed point

• unstable, like effective-range point
• contact interactions promoted by further power of Q−1

• leading term: order Q−3/2 → iterate
• presumably related to bound state with momentum scale p . β

equivalent to taking α close to π/2

Leading term is relevant only in small regions of α

• explains “new leading order”
[Nogga, Timmermans and van Kolck (2005)]
• also “plateaux” in Λ-dependence seen there
• need to fix α to get well-defined wave functions but away

low-energy scattering depends weakly on α

except around α = π/2

21 / 25



RG analysis→ second fixed point

• unstable, like effective-range point
• contact interactions promoted by further power of Q−1

• leading term: order Q−3/2 → iterate
• presumably related to bound state with momentum scale p . β

equivalent to taking α close to π/2

Leading term is relevant only in small regions of α

• explains “new leading order”
[Nogga, Timmermans and van Kolck (2005)]
• also “plateaux” in Λ-dependence seen there
• need to fix α to get well-defined wave functions but away

low-energy scattering depends weakly on α

except around α = π/2

21 / 25



1/r3 “short-ranged” for a long-range potential

• nonperturbative region not resolved by long-wavelength S waves
• higher partial waves shielded by centrifugal barrier

below critical momentum

pc ∼ [L(L + 1)]3/2/|β|

→ perturbative treatment of tensor potential for p� pc

Critical momenta in chiral limit

Channel pc
3S1–3D1 66 MeV

3P0 182 MeV
other P, D waves ∼ 400 MeV

F waves and above & 2000 MeV

22 / 25



Summary

Identifying λNN as another low-energy scale justifies (requires) iteration
of OPE

• scale ∝ λNN defining nonperturbative region depends on L
• “natural” systems: scattering depends weakly on short-distance

parameter α or leading contact interactions
• “unnatural” systems: fine-tuned to give low-energy bound state

(cf effective-range expansion around unitary limit)

RG analysis

• gives the possible power countings
• can explain features seen by Nogga, Timmermans and van Kolck,

and Pavòn Valderrama and Ruiz Arriola
• but does not say whether separation of scales is good enough
→ need to examine specific system and its scales
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Suggested power countings for triplet waves:
• naive dimensional analysis (“Weinberg”)

◦ F waves and above
◦ P and D waves for p� λNN

• “natural” counting with iterated tensor potential: leading contact
term promoted to order Q−1/2

◦ P and D waves for p & λNN

• “unnatural” counting: leading contact term of order Q−3/2

◦ 3S1–3D1
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Open questions

• Is the new power counting needed for all P and D waves?
• Is the unnatural counting required in the 3S1–3D1 waves?

(And what does it mean in terms of wave functions?)
• Do the same power countings also apply to waves where tensor

OPE is repulsive?
• Shold we identify factors of 1/ΛNN in two-pion exchange

potentials?
• What is the counting for three-body forces in presence of tensor

OPE?
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