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Effective field theories for nuclear forces

Weinberg (1990): extended chiral perturbation theory to two- and
three-nucleon systems

o effective field theory expanded in powers of Q/Ag

low-energy scales, Q: momenta, my (< 200 MeV)

scales of underlying physics, Ag: 41Fy, My, my (2 800 MeV)
e convergent expansion of potential and observables

provided Q/Ag is small enough (good separation of scales)
e terms organised by naive dimensional analysis

aka “Weinberg power counting”

(simply counts powers of low-energy scales)
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Interactions with ranges ~ 1/Aq not resolved at scales Q

replaced by contact interactions

infinite number of terms, constrained only by symmetries of QCD
iterations (loop diagrams) usually infinite

need to renormalise

we can, provided we have a consistent expansion

.l...

But. ..
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Interactions with ranges ~ 1/Aq not resolved at scales Q

replaced by contact interactions

infinite number of terms, constrained only by symmetries of QCD
iterations (loop diagrams) usually infinite

need to renormalise

we can, provided we have a consistent expansion

.l...

But. ..

simply counting powers of low-energy scales: perturbative
may work for weakly interacting systems: < 1 nucleon

but nucleons interact strongly at low-energies

bound states exist (nucleil)

— need to treat some interactions nonperturbatively
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Problem: basic nonrelativistic loop diagram of order Q

M / dq i Mp + analytic p p
= —1— -
n)e ) P—?trie | an y
e lowest-order potential, Q°: contact term and
one-pion exchange -q q

each iteration suppressed by power of Q/Ag

perturbative provided Q < Ag

integral linearly divergent

cut off (or subtract) at g=A -P p
still perturbative provided we keep A < Ag



Workaround: “Weinberg prescription”

e expand potential to some order in Q

e then iterate to all orders in favourite dynamical equation
(Schrédinger, Lippmann-Schwinger, .. .)

e widely applied and even more widely invoked
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Workaround: “Weinberg prescription”

e expand potential to some order in Q

e then iterate to all orders in favourite dynamical equation
(Schrédinger, Lippmann-Schwinger, .. .)

e widely applied and even more widely invoked

e but no clear power counting for observables

e resums subset of terms to all orders in Q
(and some of these depend on regulator)

e not necessarily a problem if these terms are small

e but we need them to generate bound states
(and we don’t want just to play “Steven says...”)



How can we iterate interactions consistently?

Identify new low-energy scales

e promote leading-order terms to order Q'
— cancels Q from loop and so iterations not suppressed
e can, and must, then be iterated to all orders
(all other terms: perturbations)
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How can we iterate interactions consistently?

Identify new low-energy scales

e promote leading-order terms to order Q'
— cancels Q from loop and so iterations not suppressed
e can, and must, then be iterated to all orders
(all other terms: perturbations)

Then use the renormalisation group to determine the power counting
e general tool for analysing scale dependence



The renormalisation group

e identify all relevant low-energy scales Q
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The renormalisation group
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e cut off theory at an arbitary scale A
between Q and Ag
(assumes good separation of scales)
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The renormalisation group

e identify all relevant low-energy scales Q

=X

e cut off theory at an arbitary scale A
between Q and Ag
(assumes good separation of scales)

e ‘“integrate out” high momentum
states by lowering A

e demand that physics be independent
of A (eg T matrix)

e rescale express all dimensioned quantities in units of A
(potential and all low-energy scales)
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N is highest acceptable low-energy scale

e do not take it above breakdown scale A

(unless you know the rules and follow them to the letter!)
e really of order Q
e rescaling — power of A counts low-energy scales
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N is highest acceptable low-energy scale

e do not take it above breakdown scale A

(unless you know the rules and follow them to the letter!)
e really of order Q
e rescaling — power of A counts low-energy scales

Endpoints of flow of effective potential as A — 0

e fixed points: rescaled theories independent of A
(except for some three-body systems — limit cycles)
e correspond to scale-free systems
e expand around one using perturbations that scale like AY
— EFT with power counting: Q° where d =v — 1
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RG for short-range potentials
e potential analytic in all scales Q
V(K k,p; \) = boo(N\) + bao(A) (K* + k™) + boa(A) pP + - -

k, K': initial, final relative momenta, p = v/ ME: on-shell
momentum
e reactance matrix K satisfies Lippmann-Schwinger equation

V(K',q.p; N)K(q, k,p)

M A
K(Kk' k,p)= V(K k,p:\ —iP/ 2d
(K'k.p) = V(K. k. pi N+ o | adg g,

P: principal value (standing wave bc’s)
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RG for short-range potentials
e potential analytic in all scales Q
V(K k,p; \) = boo(N\) + bao(A) (K* + k™) + boa(A) pP + - -

k, K': initial, final relative momenta, p = v/ ME: on-shell
momentum
e reactance matrix K satisfies Lippmann-Schwinger equation

V(K',q.p; N)K(q, k,p)

M A
K(K k,p)= V(K k,p;\ —iP/ 2d
(K'k.p) = V(K. k. pi N+ o | adg g,
P: principal value (standing wave bc’s)
e demand full off-shell K matrix be independent of cutoff
0K/dAN=0
(need off-shell to disantangle scaling of redundant operators)
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e |eads to

V. M N2
= — V(KA p,A\
a/\ TCZ ( 9 7:07 )

Ne— p? V(A k,p,\)

o RHS: contribution to scattering of states at cutoff g = A
o removed from loop integrals as we lower A
— effects added into the potential to compensate
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e |eads to

oV M A?
_ (k/’/\”D’/\)W

— V(A k,p,\
a/\ 2 (77p7)

o RHS: contribution to scattering of states at cutoff g = A
o removed from loop integrals as we lower A
— effects added into the potential to compensate

e rescale: express all low-energy scales in units of A: k= k/N etc
and define V(K', k,p;A) = Y5 v(AK', Ak, Ap; A
— RG equation [Birse, McGovern, Richardson (1998)]

ov Vv av OV 1
— =P+ k—+V+ V(K A,p:A —V(1,k,p;\

e two interesting fixed-point solutions 8/\70/8/\ =0
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Trivial fixed point Vo =0
Describes free particles (scale-free system)

Expansion around Vy = 0 in powers of momenta

e p?"is an eigenfunction of the RG equation: scales as A2"!
e order in EFT given by naive dimensional analysis: Q"
e perturbative — appropriate EFT for weakly interacting systems
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Trivial fixed point Vo =0
Describes free particles (scale-free system)

Expansion around Vy = 0 in powers of momenta

e p?"is an eigenfunction of the RG equation: scales as A2"!
e order in EFT given by naive dimensional analysis: Q*”
e perturbative — appropriate EFT for weakly interacting systems

Nontrivial fixed point

2 A -1
Vo(p,\) = — i [1 P +Z] (sharp cutoff)

e order Q' (so must be iterated)
— scatteringmatrix T(p) = i4n/Mp
e describes “unitary limit”: scattering length a — oo
or bound state exactly at threshold (also scale-free)
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Expanding around this point

M 1 1
V(p.N) = Vol A) + Vo(p A o (—a +2rep2+-~->

e factor V2 o< A~2 promotes terms by two orders compared to naive
expectation: Q2, Q°, ...

e coefficients of perturbations related to effective-range expansion
[Bethe (1949)]

12/25



First example of new scales

NN scattering lengths 1/a < 40 MeV
[van Kolck; Kaplan, Savage and Wise (1998)]

e for p < my only contact interactions: “pionless EFT”
e (effective-range) expansion around unitary limit: 1/a— 0
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First example of new scales

NN scattering lengths 1/a < 40 MeV
[van Kolck; Kaplan, Savage and Wise (1998)]

e for p < my only contact interactions: “pionless EFT”
e (effective-range) expansion around unitary limit: 1/a— 0

Promotion of potential follows from form of wave functions as r — 0

e Schrodinger equation at zero energy for r > 1/Ag

2 2d
—+-— r)y=0 S wave
e unitary limit — irregular solutions: y(r) o< r™"
e cutoff smears contact interaction over range R ~ A~
— need extra factor A2 to cancel cutoff dependence from
[Ww(R)[2 o< A% in matrix elements of potential
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One-pion exchange

e important for nuclear physics at energies ~ 100 MeV
e order Q° in chiral counting
— treat as a perturbation [Kaplan, Savage and Wise (1998)]
e S waves: series coverges slowly, if at all
[Fleming, Mehen and Stewart (1999)]
e OPE “unnaturally” strong
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One-pion exchange

—

important for nuclear physics at energies ~ 100 MeV
order @Q° in chiral counting

treat as a perturbation [Kaplan, Savage and Wise (1998)]
S waves: series coverges slowly, if at all

[Fleming, Mehen and Stewart (1999)]

OPE “unnaturally” strong

strength of OPE set by scale

167F2

Ay =
NN gf M,

~ 290 MeV

built out of high-energy scales (47tFy, M) but ~ 2my
another low-energy scale?
promotes OPE to order Q"
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Central potential

e Yukawa form

1 m e M

" 3 Mg

e behaves like 1/r for small r
e not singular enough to alter powers of r in wave functions
— same power countings as for short-range potential alone
(except for a few additional logarithms)

Vie(1)

(01 '02)(’51 'Tz)
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Central potential

e Yukawa form

1 m e M

= 3 M\,

e behaves like 1/r for small r
e not singular enough to alter powers of r in wave functions
— same power countings as for short-range potential alone
(except for a few additional logarithms)

Vie(1)

(01 '02)(’51 'Tz)

Tensor potential

e much more singular

1 1 Ik

e
= 3+ 3myr + m2r? Sio(Ty -
! om0 st

Vier(r)

e dominated by 1/r® for small r
— very different forms for wave functions
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Schrédinger equation for spin-triplet channels at short distances
(uncoupled waves, keep only most singular term in potential)

e tends to energy-independent form
[dz 2d L(L+1) BLJ:|

Yo(r) =0 P

drz2 = rdr ré Ay

e can be converted to Bessel's equation by defining x = 21/|Bry|/r

Wo(r) o< r1/2 [SinOCJzL+1 (2\/ B,“) +c0s 0t Yar 1 (2 Bf“)}

e ., > 0: solutions undetermined as r — 0
— o fixes phase of short-distance oscillations
(self-adjoint extension of Hamiltonian)
e equivalent to fixing leading contact interaction
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Attractive potential B > 0
e r < 1/P: oscillatory behaviour (1/r°)

r 2 14 (2\/E> ~r~1/4sin <2\/E— (L+3) Tl:)

e r>>1/PB: usual power law (centrifugal)

r2 Yo 4 (2 E) ~rt
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Attractive potential B > 0
e r < 1/P: oscillatory behaviour (1/r°)

r 2 14 (2\/E> ~r~1/4sin <2\/E— (L+3) Tl:)

e r>>1/PB: usual power law (centrifugal)
r2 Yo 4 (2 E) ~rt

e fine tune . =m/2

r12dp 44 <2\/§> ~ = (LH1)

irregular solution for r > 1/B — unitary limit
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Repulsive case B < 0: modified Bessel functions
e r < 1/B: exponential behaviour (regular as r — 0)

r 12Ky <2\/E> ~r4exp <—2\/E>

e r>1/B: power law

r=12Kop 4 4 (2\/E> ~rt
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Wave functions y(r)/p* for (a) 2Py, (b) 3Py, (c) 3Ds, (d) 3G.
Solid lines: energy-independent asymptotic form
Short-dashed lines: T =5 MeV; long-dashed lines: T = 300 MeV
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New power countings
Power-law behaviour of wave functions in presence of tensor OPE:
,1/4 . .
y(r) ~ r~'/*xsine or exponential

Renormalised contact interactions

e extra factor of A~ '/2 to cancel |y(R)[? o< A1/2
— promoted by half order compared to naive dimensional analysis
for S waves, but in all partial waves
e leading term: order @ '/2 (not quite relevant)
e maitches results of full RG analysis [Birse (2006)]
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RG analysis — second fixed point

unstable, like effective-range point

contact interactions promoted by further power of Q'

leading term: order Q3/2 — iterate

presumably related to bound state with momentum scale p < B
equivalent to taking o close to /2
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RG analysis — second fixed point

unstable, like effective-range point

contact interactions promoted by further power of Q'

leading term: order Q~3/2 — iterate

presumably related to bound state with momentum scale p < B
equivalent to taking o close to /2

Leading term is relevant only in small regions of o

e explains “new leading order”
[Nogga, Timmermans and van Kolck (2005)]

e also “plateaux” in A-dependence seen there

e need to fix o to get well-defined wave functions but away
low-energy scattering depends weakly on o
except around o = /2
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1/r3 “short-ranged” for a long-range potential

e nonperturbative region not resolved by long-wavelength S waves
e higher partial waves shielded by centrifugal barrier
below critical momentum

pe~ [L(L+1)]?/IB|

— perturbative treatment of tensor potential for p < p.

Critical momenta in chiral limit

Channel De
38,-2Dy 66 MeV
3P, 182 MeV
other P, D waves ~ 400 MeV

F waves and above 2 2000 MeV

22/25



Summary

Identifying A,y as another low-energy scale justifies (requires) iteration
of OPE

e scale = A,y defining nonperturbative region depends on L

e “natural” systems: scattering depends weakly on short-distance
parameter o or leading contact interactions

e “unnatural” systems: fine-tuned to give low-energy bound state
(cf effective-range expansion around unitary limit)
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Summary

Identifying A,y as another low-energy scale justifies (requires) iteration
of OPE

e scale = A,y defining nonperturbative region depends on L

e “natural” systems: scattering depends weakly on short-distance
parameter o or leading contact interactions

e “unnatural” systems: fine-tuned to give low-energy bound state
(cf effective-range expansion around unitary limit)

RG analysis

e gives the possible power countings
e can explain features seen by Nogga, Timmermans and van Kolck,
and Pavon Valderrama and Ruiz Arriola
e but does not say whether separation of scales is good enough
— need to examine specific system and its scales

23/25



Suggested power countings for triplet waves:
e naive dimensional analysis (“Weinberg”)

o F waves and above
o Pand D waves for p < Ay

e “natural” counting with iterated tensor potential: leading contact
term promoted to order Q@ 1/2
o Pand D waves for p > Ayy
e “unnatural” counting: leading contact term of order Q32
o 38,-3D,
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Open questions

e |s the new power counting needed for all P and D waves?

e Is the unnatural counting required in the S;—2Dy waves?
(And what does it mean in terms of wave functions?)

e Do the same power countings also apply to waves where tensor
OPE is repulsive?

e Shold we identify factors of 1/Ay in two-pion exchange
potentials?

e What is the counting for three-body forces in presence of tensor
OPE?
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