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Courtesy of B. Bally

Ab initio approach to nuclear structure 

→ Pushing ab initio  requires computationally affordable (polynomial) many-body methods 

Ab initio
Solve the A-body Schrödinger equation: 

using controlled approximations
→      systematically improvable



Correlation expansion methods

Partitioning: 

Mean-field-like

 : Taylor expansion in powers of 
Many-body perturbation theory (MBPT)

with cluster excitation operator 
Coupled-cluster theory (CC)

✓ closed -shell ✘ open -shell
Lifts degeneracy

Symmetry breaking of         &    

 Correlation expansion

✓ open -shell



Semi-magic nuclei spontaneously break U(1) symmetry associated with pairing correlations 



U(1) broken correlation expansion methods
Hartree-Fock-Bogoliubov (HFB)

 Correlation expansion

 : Taylor expansion in powers of 
Bogoliubov many-body perturbation theory (BMBPT)

with cluster excitation operator 
Bogoliubov coupled-cluster theory (BCC)

✓ closed -shell ✘ open -shell
✓ open -shell

Lifts degeneracy

Symmetry breaking of         &    

Grand potential: 

Partitioning: 
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Bogoliubov many-body perturbation theory

● BMBPT(2) gives satisfactory description

● BMBPT(3) flawed by large shift of average particle number

→ U(1) breaking expansions require constraint on 

● BMBPT(2 & 3) binding energy with EM(1.8/2.0) chiral EFT interaction



BMBPT - particle number constraint

● Order-by-order particle number constraint

● Order-dependent chemical potential

●            obtained as a root of an order P–1 polynomial equation

● Constrained BMBPT(3) in good agreement with VS-IMSRG(2) & exp.

[@ BMBPT(P)]

PD. T. Duguet, A. Tichai, EPJA 61 (2025). 



BMBPT - particle number constraint

●         affected by strong sensitivity to isotope-dependent particle-number constraint

→ Non-perturbative expansion: Bogoliubov coupled-cluster theory

● Order-by-order particle number constraint

● Order-dependent chemical potential

●            obtained as a root of an order P–1 polynomial equation

● Constrained BMBPT(3) in good agreement with VS-IMSRG(2) & exp.

[@ BMBPT(P)]

PD. T. Duguet, A. Tichai, EPJA 61 (2025). 
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Bogoliubov coupled-cluster (BCC) theory
with cluster excitation operator 

Bogoliubov coupled-cluster theory (BCC)

Exponential ansatz: 

{BCCSD

Quasi-particle cluster operator: 

[singles]

[doubles]

[triples]

Excitation amplitudes : solutions of set of non-linear algebraic equations which must be solved iteratively 

Quasi-particle excitation operators : mix of ordinary single-particle creation and annihilation operators  

A. Signoracci, et al. PRC 91 (2015). 



Applying BCCSD: energies

● Ground-state energy along Sn chain: 100Sn – 180Sn

● Flat trend in         
→ drip line location is fine tuned

● BCCSD agrees with experiment within error band
→ dominated by lacking triples excitations

A. Tichai, PD, T. Duguet, PLB 851 (2024). 

● BMBPT(2) performs well (soft interaction)



Applying BCCSD to tin: charge radii

 PD, T. Duguet, A. Tichai (unpublished) 

● BCCSD radii in good agreement with VS-IMSRG(2) 
→ no core and scalable to large open shells 



Applying BCCSD to tin: neutron skin thickness

● Neutron skin thickness proportional to isospin asymmetry

→ studied for closed-shell nuclei using CC

→ confirmed in open-shell tin isotopes using BCC

 S.J. Novario et al., PRL 130 (2023) 
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Applying BCCSD to tin: neutron skin thickness

● Neutron skin thickness proportional to isospin asymmetry

→ studied for closed-shell nuclei using CC

→ confirmed in open-shell tin isotopes using BCC

 S.J. Novario et al., PRL 130 (2023) 

 PD,  PhD thesis (2024) 

● BCCSD radii in good agreement with VS-IMSRG(2) 
→ no core and scalable to large open shells 

● Bump at N=56 due to residual neutron number shift ? {

Both yield 0 in the exact limit
Goal: 0=



Particle-number constraint in BCCSD

→ constraining                        is trivial : one additional update of singles at each BCC iteration 

→ constraining                    is slightly more involved : several additional updates of singles at each BCC iteration

● Adjust the chemical potential at each iteration of the cluster amplitude equation: 

● Update is linear in        : 



Particle-number constraint in BCCSD

● Constraining                    has very little effect on the energy and radius

→ dependence on the interaction?  



Particle-number constraint in BCCSD

● Constraining                    has very little effect on the energy and radius

→ dependence on the interaction? 

● Kink at N = 82 shell closure well reproduced by the EM(7.5) interaction

● BCCSD results for EM(1.8/2.0), △NNLOGO and EM(7.5)



Towards a more complete account of correlations

More complete

Greater computational cost

HFB BMBPT(2) BMBPT(3)

BCCSD BCCSDT

BMBPT(4)
full CI

~ N3 ~ N5 ~ N6 ~ N7 ~ N8 ~ N!

…



Towards a more complete account of correlations

More complete

Greater computational cost

HFB BMBPT(2) BMBPT(3)

BCCSD BCCSDT

BMBPT(4)
full CI

~ N3 ~ N5 ~ N6 ~ N7 ~ N8 ~ N!

BCCSD[T] BCCSD{T} BCCSD(T)

…
BCCSD[T]



First application of BCCSD[T]: calcium energies

● BCCSD[T] prediction in good agreement with VS-IMSRG(2)

● Sub-percent accuracy on binding energies for Ca and Ni

● Further improvement expected from Λ-BCCSD(T)

→ Application of BCCSD[T] for Sn isotopes are underway

U. Vernik, PD, T. Duguet, A. Tichai (unpublished) 
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Pairing potential energy surface

PES

Scaling the HFB pairing field: 

→



Pairing potential energy surface

     →  In BCC:           acts as Thouless transformation absorbing the reference state dependence



T. Duguet, introductory lecture, last week



Static pairing: odd-even scattering at mean-field level in Sn isotopes

EM(1.8/2.0) : ~ 27 %

△NNLOGO : ~   8 %

EM(7.5) : ~ 19 %

● Motivates the extension BCC to odd isotopes

→ requires equation-of-motion (EOM) techniques  



Dynamic pairing in Sn isotopes

Pairing moment of inertia (MoI): 



Pairing moment of inertia (MoI): 

● HFB predicts negative △2n and pairing MoI
→ E is concave rather than convex

● Correlations captured by BCCSD turn △2n positive

Dynamic pairing in Sn isotopes

 A. Scalesi et al. EPJA 60 (2024) 



Dynamic pairing in Sn isotopes

→ True for several interactions: EM(1.8/2.0), △NNLOGO, EM(7.5)

Pairing moment of inertia (MoI): 

● HFB predicts negative △2n and pairing MoI
→ E is concave rather than convex

● Correlations captured by BCCSD turn △2n positive
 A. Scalesi et al. EPJA 60 (2024) 



Dynamic pairing in Ca isotopes

● BCCSD[T]: inclusion of triples further improve △2n and pairing 

MoI E

E



Dynamic pairing in Ca isotopes

● Comparing several complementary many-body methods

○ VS-IMSRG(2) with Si28 core reproduces △2n the best

… but VS-IMSRG(3) worsens description again … 

● BCCSD[T]: inclusion of triples further improve △2n and pairing MoI

 A. Scalesi et al. EPJA 60 (2024) 

E

E



More things to learn: boosting the pairing

● Inspired by Andreas Ekström’s presentation last week

→ repeat by simple           scaling of HFB pairing field 

Courtesy of: A. Scalesi, A. Ekström
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More things to learn: boosting the pairing

● Inspired by Andreas Ekström’s presentation last week

→ repeat by simple           scaling of HFB pairing field 

● Breaking down the HFB energy into HF and pairing energies

● Boosting HFB pairing field by 50% brings            to exp: ~2 MeV
… BUT            barely affected, even slight negative shift (!)        

● Very new results from A. Scalesi: similar observation with           scaling
→ at extreme scaling (blue), positive pairing curvature dominates negative HF curvature

Courtesy of: A. Scalesi, A. Ekström

→ compensation of normal and anomalous contribution to the curvature 



Teaser for upcoming BCC applications
Side note

- “Only” eMax 12

TODO: error analysis



Conclusion
Bogoliubov coupled-cluster theory pushes ab initio frontiers to  
● heavy nuclei thanks to its polynomial scaling 
● open-shell systems via the breaking of  U(1) symmetry
● high precision by incorporating (leading-order) triples excitations

→   Ideal many-body method to investigate pairing properties along semi-magic chains

Next steps
Further developments of BCC foreseen
● odd isotopes & excited states via its equation of motion extension
● projection on particle number

“Where has the pairing gone?”    →    Obscured by realistic mean-field (≠ EDF), dynamical correlation are vital in ab initio
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