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Superfluidity in terrestrial laboratories

▶ Superfluidity: absence of viscosity at low temperature
(analogous to absence of resistance in superconductors)

▶ 4He (bosons): Tc ≈ 2.2 K
[Kapitza (1938)]

▶ 3He (fermions): Tc ≈ 2.6 mK
[Osheroff et al. (1972)]

▶ Bose-Einstein condensation in atom traps: Tc ∼ 100 nK
[Cornell, Wieman, Ketterle (1995)]

▶ Fermionic superfluid in atom traps: Tc ∼ 100 nK
[JILA, MIT, Innsbruck, ENS Paris (2004)]

▶ Since 1950s: indications for Cooper pairing and
superfluidity in atomic nuclei:
▶ odd-even mass staggering,
▶ collective excitations,
▶ reduced moments of inertia. . .

[JILA]

[MIT]



Ultracold atoms

▶ 1995: first BEC of trapped bosonic atoms

▶ Fermions are more difficult to cool

→ Fermi superfluid realized only in 2004

▶ Interaction between the atoms:

R ∼ 10−9 m ≪ d ∼ 1/kF ∼ 10−6 m

→ contact interaction

▶ Pauli principle: interaction (s wave) only
between atoms of opposite “spin” (↑,↓)

▶ Interaction strength is characterized by the
scattering length a

▶ Feshbach resonance: scattering length a
can be tuned experimentally by changing
the magnetic field B

▶ The case a → ∞ is called the unitary limit

[Heidelberg University]
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BCS-BEC crossover in ultracold atoms

▶ Superfluidity in bosonic system: Bose-Einstein condensation (BEC)

▶ For a > 0, fermionic atoms form dimers
(molecules made from one ↑ and one ↓ atom)

▶ The bosonic dimers condense (BEC) at T < Tc

▶ Substructure of dimers negligible if
ξ ≪ d (i.e., 1/(kFa) ≫ 1)

ξ

d

▶ For a < 0, two atoms in free space do not have a
bound state

▶ But in the medium, they can form Cooper pairs

▶ BCS theory valid if
ξ ≫ d (i.e., 1/(kFa) ≪ −1)

ξd

▶ BCS-BEC crossover: continuous transition between these two limits
ξ ∼ d (−1 ≲ 1/(kFa) ≲ 1)

▶ Particular case: unitary limit 1/(kFa) = 0
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Basic properties of neutron stars

▶ Produced in core-collapse supernova explosions

▶ Very compact: M ∼ 1− 2M⊙ (2− 4× 1030 kg) in a radius of R ∼ 10 km
→ ρ > nuclear saturation density

▶ Rapid rotation (periods range from seconds to milliseconds)

▶ Strong magnetic field B
typically 1012 G, in “magnetars” up to 1014 G

▶ B not aligned with the rotation axis leads to periodic
e.m. emission (pulsar) and slows down the rotation

▶ A neutron star has a complex inner structure:

Ω

B

~10 km

1−2 km

outer crust: Coulomb lattice of neutron rich nuclei
in a degenerate electron gas

inner crust: unbound neutrons form a
neutron gas between the nuclei (clusters)

outer core: homogeneous n, p, e−, (µ−) matter

inner core: densities up to a few times ρ0,
new degrees of freedom: hyperons? quark matter?



Structure of the inner crust

▶ Presence of a gas of unbound neutrons between the nuclei (clusters)
+ almost uniform degenerate electron gas to ensure global charge neutrality

▶ BCC crystal and “pasta phases”: rods (“spaghetti”), slabs (“lasagne”)
n 2.5 x 10-4/fm3 
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[figure adapted
from W. Newton
et al. (2011)]



Superfluidity in neutron stars

▶ Typical temperature of a neutron star: T ∼ 106 − 109 K ∼ 0.1− 100 keV

▶ Compared to nuclear energy scales, this is very low!

▶ BCS gap equation: ∆p = −
∑
p′

Vp,p′
∆p′

2
√

(ϵp′ − µ)2 +∆2
p′

▶ Different types of superfluidity may exist in neutron stars:

n n

nn p p

u d

inner crust:
neutron pairing in s wave (pairs with total spin S = 0),
Tc ∼ 1 MeV → main subject of this talk

outer core:
neutron pairing in p wave (pairs with total spin S = 1)
proton pairing in s wave

quark core (speculative):
“color superconductivity”, Tc ∼ 10 MeV
[e.g. Alford et al. RMP (2008)]



Pulsar glitches
▶ Rotation of a neutron star: very regular,

period increases slowly with time

▶ Glitch = sudden speed-up of the rotation,
followed by a slow relaxation

▶ First glitch observed 1969 in the Vela pulsar,
since then 520 glitches in 180 different
pulsars [R.N. Manchester (2017)]

▶ Widely accepted explanation by Manchester
and Itoh (1975): pinning of quantized
vortices to the clusters in the inner crust

▶ While the normal part of the star is slowing
down (Ωn), the superfluid neutrons are
spinning at constant frequency (Ωs)

▶ When Ωs − Ωn becomes too large, the
vortices get unpinned and the superfluid
transfers angular momentum to the normal
part

[Radhakrishnan and Manchester, Nature 222 (1969)]

[Chandra]



Cooling
▶ One day after the supernova, T has already dropped from ∼ 1011 to ∼ 109 K

▶ For about 105 years, ν emission (from the core) is the dominant cooling mechanism

▶ For older stars, cooling is dominated by photon emission

▶ Cooper pairing affects cooling through:
▶ νν̄ emission via the PBF (pair breaking and formation) mechanism,
▶ strongly reduced specific heat

Special case: accreting neutron stars

▶ Neutron star with a companion star

▶ Matter falling on the neutron star heats the
surface

▶ Deep crustal heating: nuclear reactions in
deeper layers of the crust

▶ X-ray outbursts take a few weeks or months
(or even years), then cooling during a couple
of years of quiescence

▶ Particularly sensitive to Cooper pairing in the
neutron-star crust

neutron drip to a maximum value near T 10 Kc
9 before

decreasing again at high mass densities where the repulsive
core of the neutron interaction removes the tendency to form
pairs. Calculation of the critical temperature, however, is
complicated by the influence of the nuclear clusters, and a wide
range of predictions for Tc r( ) have been made in the literature
(e.g., see the plot in Page & Reddy 2012 and references
therein). One of the uncertain aspects of the pairing gap is
whether the 1S0 gap closes before or after the crust–core
transition (Chen et al. 1993). If the gap closes before the crust–
core transition and there is a low thermal conductivity pasta
layer, a layer of normal neutrons will persist near the base of
the crust where T Tc> , significantly increasing its heat
capacity. Here, we show that a normal neutron layer with a
large heat capacity leaves a signature in the cooling curve at
late times and a crust cooling model with normal neutrons
gives the best fit to the quiescent cooling observed in
MXB1659-29.

The months to years long flux decays following magnetar
outbursts have also been successfully fit with crust thermal
relaxation models (e.g., Lyubarsky et al. 2002; Pons &
Rea 2012; Scholz et al. 2014). Many uncertainties remain,
including the origin of the X-ray spectrum, the nature of the
heating event that drives the outburst, and the role of other heat
sources such as magnetospheric currents (Beloborodov 2009).
Despite this, magnetar flux decays are interesting because the
decay can span a large range of luminosity, and because
multiple outbursts from the same source can be studied. The
outburst models typically require energy injection into the outer
crust of the star, but a significant amount of energy is
conducted inward to the core. Late-time observations as the
magnetar’s crust relaxes may then probe the thermal properties
of the inner crust.

We investigate the role of a low thermal conductivity pasta
layer and normal neutrons in cooling neutron stars in more
detail in this paper. In Section 2, we outline our model of the
crust cooling in MXB1659-29, highlighting the important role
of the density dependence of the neutron superfluid critical
temperature near the crust–core transition. In Section 3, we
discuss late-time cooling in other sources, including the
accreting neutron star KS1731-260 and the magnetar
SGR1627-41. We conclude in Section 4.

2. The Late Time Cooling of MXB 1659-29

2.1. Crust Cooling Model and the Role of the Normal Neutron
Layer at the Base of the Crust

We follow the thermal evolution of the neutron star crust
using the thermal evolution code dStar (Brown 2015) that
solves the fully general relativistic heat diffusion equation
using a method of lines algorithm in the MESA numerical
library (Paxton et al. 2011, 2013, 2015). The microphysics of
the crust follows Brown & Cumming (2009). The results are
verified with the code crustcool6 that solves the heat
diffusion equation assuming constant gravity through the crust.

We model the 2.5 year» outburst in MXB1659-29
(Wijnands et al. 2003, 2004) using a local mass accretion rate
m m0.1 Edd=˙ ˙ , where m 8.8 10 g cm sEdd

4 2 1= ´ - -˙ is the local
Eddington mass accretion rate. The model uses a neutron star
mass of M M1.6=  and radius of R 11.2 km= that are

consistent with the MXB1659-29 quiescent light curve fits
from Brown & Cumming (2009). The model includes a
Q 1 MeVs = per accreted nucleon shallow heat source spread
between y 2 10 g cm13 2= ´ - and y 2 10 g cm14 2= ´ - , in
addition to deep crustal heating from electron capture and
pycnonuclear reactions (Haensel & Zdunik 1990, 2003, 2008).
For the crust composition we use the accreted composition
from Haensel & Zdunik (2008) that assumes an initial
composition of pure 56Fe (see their Table A3).
The thermal conductivity in the inner crust is largely set by

impurity scattering. The impurity parameter of the crust is
given by

Q
n

n Z Z
1

, 1
j

j jimp
ion

2åº - á ñ( ) ( )

where nion is the number density of ions, nj is the number
density of the nuclear species with Zj number of protons, and
Zá ñ is the average proton number of the crust composition. The
impurity parameter in the neutron star crust was constrained to
Q 10imp < in MXB1659-29 (Brown & Cumming 2009)
assuming a constant impurity parameter throughout the entire
crust. We show a model of crust cooling in MXB1659-29
with Q 2.5imp = and T 4 10 Kcore

7= ´ , consistent with the fit
from Brown & Cumming (2009), in Figure 1. In this model, the
crust reaches thermal equilibrium with the core by 1000» days
into quiescence, and so predicts a constant temperature at later
times.
We also run two models with a disordered inner crust with

Q 20imp = for 8 10 g cm13 3r > ´ - (and Q 1imp = for
8 10 g cm13 3r < ´ - ) to represent the low conductivity

expected for nuclear pasta, as done in Horowitz et al. (2015);
both models have a neutron star mass M M1.6= , radius
R 11.2 km= , and T 3 10 Kcore

7= ´ . The two models use
different choices of the neutron superfluid critical temperature
profile Tc r( ). The first uses a 1S0 gap that closes in the inner
crust (Gandolfi et al. 2008, hereafter G08), and the second uses
a gap that closes in the core (Schwenk et al. 2003, hereafter

Figure 1. Cooling models for MXB1659-29. The solid gray curve is a model
that uses Q 2.5imp = throughout the entire crust and T 4 10 Kcore

7= ´ . The
solid blue curve is a model withQ 20imp = for 8 10 g cm13 3r > ´ - ,Q 1imp =
for 8 10 g cm13 3r < ´ - , T 3.25 10 Kcore

7= ´ , and using the G08 pairing
gap. The dashed red curve uses the same Qimp as the solid blue curve, but with
the S03 pairing gap. The dotted blue curve is a model with the G08 pairing gap
and Q 1imp = throughout the crust, but without a low thermal conductivity
pasta layer.

6 https://github.com/andrewcumming/crustcool
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MXB 1659-29

[Deibel et al., ApJ 839 (2017)]

[figure by
T. Piro]
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BCS mean field approach with contact interaction

▶ Determine gap ∆ and chemical potential µ from gap and number equations

(ϵk = k2

2m
, Ek =

√
(ϵk − µ)2 +∆2)

∆ = −g

∫ Λ d3k

(2π)3
∆

2Ek
n = 2

∫
d3k

(2π)3

(1
2
− ϵk − µ

2Ek

)
▶ Scattering length for coupling constant g < 0 and cutoff Λ

4πa

m
= g + g

∫ Λ d3k

(2π)3
1

−2ϵk

4πa

m
= +

▶ Express in the gap equation g in terms of a: ∆ = −4πa

m

∫ Λ d3k

(2π)3

( ∆

2Ek
− ∆

2ϵk

)
▶ Coupling constant vanishes for Λ → ∞:

1

g
=

m

4πa
− mΛ

2π2

▶ Hartree field vanishes in this limit: Uσ = gn−σ
Λ→∞−→ 0

▶ In order to get the simplest weak-coupling correction
4πa

m
n↑ n↓ to the GS energy,

resummation of ladder diagrams is necessary



Gap and Tc at unitarity (a → ∞): experiments

▶ Advantage of unitarity: all quantities scale with ϵF =
k2F
2m

▶ Radio frequency (RF) spectroscopy:
measure energy needed to transfer atoms of state
1 = “↑” or 2 = “↓” into a third hyperfine state 3.

▶ Schirotzek et al. PRL 101, 140403 (2008):
two-peak structure if n1 slightly larger than n2
(excess 1 particles have already energy ∼ ∆ while
paired 1 and 2 particles require energy to dissociate the pair)

Gap: ∆/ϵF = 0.44(3)
Hartree shift: U/ϵF = −0.43(3)

▶ Harmonic trap + local-density-approximation (LDA):
range of densities and hence of T/ϵF in one system

▶ Ku et al., Science 335, 563 (2012):
all thermodynamic quantities can be obtained from
high-precision measurements of the density profile

Superfluid transition: Tc/ϵF = 0.167(13)
Bertsch parameter: ξ = µT=0/ϵF = 0.376(4)



Effects beyond BCS theory in the BCS-BEC crossover

(a) Non-condensed pairs

▶ BEC limit: dimers exist at T > Tc but are not condensed

▶ BCS limit: pair formation and condensation take place at the same temperature

▶ Crossover: necessary to include non condensed pairs at T > Tc

[Nozières and Schmitt-Rink (NSR), JLTP 59 (1985)]

▶ BCS theory gives the pair dissociation temperature T ∗ > Tc

(b) Screening of the interaction

▶ Interaction modified by medium
polarisation
(similar to Debye screening)

▶ In the BCS limit, this effect
reduces Tc by more than 50%
[Gor’kov and Melik-Barkhudarov (1961)]

To explain the experimental Tc in the
unitary limit, one has to include both
effects [Pisani et al., PRB 14528 (2018)]
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Testing nuclear-physics techniques with cold atoms
▶ Quantum Monte-Carlo (QMC):

used in cold atoms and neutron matter
reproduces ξ, ∆, U, . . . in the unitary limit

▶ Let’s try Bogoliubov Many-Body Perturbation
Theory (BMBPT)

▶ Soften the interaction ⇔ finite cutoff Λ

▶ Vlow-k -like s-wave interaction V (q, q′) that
reproduces the phase shifts of the contact
interaction for q < Λ
[MU & S. Ramanan, PRA 103, 063306 (2021)]

▶ Nambu-Gor’kov formalism:

2× 2 self-energy Σ =

(
U ∆
∆ −U

)
▶ Better don’t start from the HFB

(Hartree-Fock-Bogoliubov) ground state but
from a reference state with corrected gap
(counterterms shown as ×)

(1)
mf

αp

k

β β αp

−H

2 2

1
1 1

33
2

3 1 2

(2)
mfαβ

α
p

β

k

β

α

β α

k

k =k +k −p

β αp

−H

3

11

1

3

4

2
3

5

5 4 14

11

2

1

12

2

(2)
mf2

53

2 4 4

3 5

42
11 2

3 5

1

(3)
mf

53
3 5

42
1 22 44 1

53

1

β

kk

α

k

k

β
α

β

α β βα

kk

α

α

βα

β

−Hk

ββ

α β α

k k

kk βα β

α α

k

β αp

(5)

−H

β α
p

(2)

ββ
k k

kk
β βα βα α

αα

k

α
p

(3)

β

pβ α
p

(1)

β α

(4)



BMBPT3 results for ∆ and U [S. Ramanan & MU, in preparation]

▶ Vary cutoff in the range 1.5kF ≤ Λ ≤ 2.5kF : cutoff dependence as indicator for
missing contributions (induced 3-body force, higher orders of BMBPT)
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▶ Weak coupling: ∆ → (4e)−1/3∆BCS ≈ 0.45∆BCS, U → 4πa
m

nσ

▶ At 3rd order, the gap has corrections from many effects: effective mass, Z factor,
quasiparticle interaction in the screening, vertex correction, . . .
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What is “dilute” neutron matter?

▶ Upper layers of the inner crust (close to neutron-drip density ∼ 2.5× 10−4 fm−3)

ngas = 4× 10−5 fm−3 (14% of total nB)

ngas = 4.8× 10−4 fm−3 (54% of total nB)

[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

▶ In spite of its “low” density (still ρ ≳ 1011 g/cm3), the neutron gas is relevant
because it occupies a much larger volume than the clusters

▶ Deeper in the crust: ngas increases up to ∼ n0/2 = 0.08 fm−3



Comparison with ultracold trapped Fermi gases

neutron gas trapped Fermi gas (e.g. 6Li)

n 4× 10−5 . . . 0.08 fm−3 ∼ 1 µm−3

kF = (3π2n)1/3 0.1 . . . 1.3 fm−1 ∼ 1 µm−1

EF = k2
F/2m 0.2 . . . 35 MeV ∼ 1 µK ∼ 10−10 eV

scattering length a −18 fm
adjustable
(Feshbach resonance)

effective range reff 2.5 fm ∼ 1 nm

1/(kFa) −0.5 · · · − 0.07
unitary limit: 0
BCS-BEC crossover: −1 . . . 1

kF reff 0.25 . . . 3 10−3

▶ reff can be neglected in cold atoms but not in neutron matter

▶ the neutron gas is close to the crossover regime but not in the unitary limit



Pairing in neutron matter: results in the literature

▶ Concentrate on s-wave pairing (p-wave pairing expected at higher densities)

[Chamel and Haensel,
Liv. Rev. Relativity
(2008)]

▶ Gap first increases with density (because of density of states, as in cold atoms)
but then it decreases (because of the finite range of the interaction)

▶ Large corrections beyond BCS, but no consensus (status 2008)



Recent progress at low densities

▶ Screening calculation with
low-momentum interaction Vlow-k for
the pairing and Skyrme functionals for
m∗ and the RPA [M.U. and S.Ramanan,

PRC (2020), EPJ ST (2021)]

▶ Zoom on low density: kF ∝ n1/3

▶ Necessary to scale the cutoff with kF
(Λ = 2.5kF , as in cold atoms) to
recover ∆/∆BCS → 0.45 for kFa → 0

▶ ∆/∆BCS ≈ 0.6 at relevant low
densities, in good agreement with
QMC calculations

▶ But inner crust involves densities up
to n ≃ 0.08 fm−3 (kF ≃ 1.3 fm−1)
where large uncertainties persist:
m∗, quasiparticle interaction (Landau
parameters), 3-body force, . . .
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Critical temperature including screening and
non-condensed pairs

▶ In the BCS-BEC crossover:

Tc < T ∗

Tc = pair condensation temp.
T ∗ = pair dissociation temp.

▶ Nozières-Schmitt-Rink (NSR)
theory [JLTP 59 (1985)]:
compute density including
non-condensed pairs

▶ NSR approach for neutron
matter [S. Ramanan and MU, PRC

88 (2013); PRC 101 (2020)]
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▶ Unlike the unitary Fermi gas, in neutron matter, the screening effect is much
stronger than the NSR effect

▶ The BCS relation Tc = 0.57∆(T = 0) remains a good approximation



Description of dilute neutron matter with BMBPT

▶ Goal: eliminate uncertainties due
to different Skyrme functionals

▶ E/N in units of EFG/N = 3
5
EF

▶ Notice: E/EFG is far from
ξ = 0.376 of the unitary Fermi gas

▶ Our most recent calculation:
3rd order BMBPT with chiral N4LO
2-body force (2BF), softened with the
similarity renormalization group (SRG)

[Palaniappan et al. PRC 111 (2025)]
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▶ To get right asymptotics at low density, it is again necessary to scale the SRG
cutoff λ with kF (error band: residual cutoff dependence for 1.3 ≤ λ/kF ≤ 2.5)

▶ Even if the bare 3BF is negligible at low density, the SRG induced 3BF is necessary
at λ ≲ 2.5kF to reduce cutoff dependence

▶ To be done: BMBPT corrections to the pairing gap (as in cold atoms)
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Inhomogeneous crust vs. infinite matter calculations

▶ Local-density approximation: ∆LDA(r) = ∆inf.mat.(ρ(r))

▶ Compare with full HFB calculation for inhomogeneous crust
example: “spaghetti phase” [G. Almirante and MU, PRC 110, 065802 (2024)]

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20

ρb = 0.062 fm−3

ρ
(f
m

−
3
)

neutrons, BSk24
SLy4

protons, BSk24
SLy4

x (fm)

0

0.5

1

1.5

2

0 5 10 15 20

∆
n

(M
eV

)

x (fm)

HFB, BSk24
SLy4

LDA, BSk24
SLy4

▶ HFB gap of the neutron gas extends into the cluster (“proximity effect”)

▶ HFB gap shows much less variations than the LDA one

▶ LDA reproduces quite well the HFB gap in the gas



Superfluid fraction (entrainment)

▶ Current in a uniform superfluid (T = 0):

j = n ℏ
2m

∇ϕ where ∆ = |∆|e iϕ

assuming that ϕ varies only on large enough length scales

▶ In a non-uniform system, define superfluid and normal densities nS and nN
in terms of coarse grained quantities j̄ , ϕ̄, n̄ such that:

j̄ = nS
ℏ
2m

∇ϕ̄+ nNvN with nS + nN = n̄

(vN = velocity of the inhomogeneities)

▶ If the system is non-uniform, then nS < n even at T = 0
[A. Leggett, J. Stat. Phys. 93, 927 (1998)]

▶ Some of the particles are “entrained” by the motion of the inhomogeneities

▶ Superfluid fraction nS/n is crucial for glitches (also relevant for cooling):
large Vela glitches require substantial superfluid fraction in the inner crust



Band theory vs. hydrodynamics

▶ Normal band theory
[N. Chamel & P. Haensel, Liv. Rev. Relativity 11 (2008)]

analogous to band theory in solids

valid for weak coupling (∆ → 0)

▶ Superfluid hydrodynamics
[N. Martin & MU, PRC 94 (2016)]

assume also microscopic current j and
microscopic phase ϕ fulfil j = n ℏ

2m
∇ϕ

valid for strong coupling

ξ ∝ kF
πm∆

≪ L

ξ
R

L



Vela glitch puzzle and its solution
▶ Normal band theory predicts much

stronger suppression of superfluid
fraction than superfluid hydrodynamics

▶ With the band theory result, one
would have to include also the core to
explain observed Vela glitches

▶ Full HFB calculation (including bands)
interpolates between these two
extremes [G. Almirante & MU, PRC 110 (2024)]

▶ Reason for failure of normal band
theory: neglect of non-diagonal terms
in the linear response formula
[G. Almirante & MU, arxiv:2503.21635]

(“geometric contribution” in
multiband superconductors)

▶ Superfluid fraction depends on the
value of the gap!
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Conclusions

▶ Superfluidity in cold atoms is directly observable,
∆ and Tc can be measured

▶ Superfluidity has important observational consequences in neutron stars,
but difficult to pin down the values of ∆ or Tc from observations

▶ Common features of ultracold atoms and the inner crust of neutron stars:
▶ Large s-wave scattering length
▶ Strongly correlated (∆ can be comparable with EF )
▶ Corrections beyond BCS are important (even at weak coupling)

▶ But: neutron matter is not close to a unitary Fermi gas at any density
(finite range, higher partial waves, 3-body force . . . )

▶ Ultracold atoms can serve as a test case for methods to be applied to
neutron-star matter

▶ Inner crust of neutron stars ̸= infinite uniform matter
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