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Superfluidity in terrestrial laboratories

» Superfluidity: absence of viscosity at low temperature
(analogous to absence of resistance in superconductors)

> “He (bosons): T. = 2.2 K
[Kapitza (1938)]

> 3He (fermions): T =~ 2.6 mK
[Osheroff et al. (1972)]

» Bose-Einstein condensation in atom traps: T, ~ 100 nK
[Cornell, Wieman, Ketterle (1995)]

[JILA]

» Fermionic superfluid in atom traps: T. ~ 100 nK
[JILA, MIT, Innsbruck, ENS Paris (2004)]

» Since 1950s: indications for Cooper pairing and
superfluidity in atomic nuclei:
» odd-even mass staggering,
» collective excitations,
» reduced moments of inertia. . .

[MIT]



Ultracold atoms

[Heidelberg University]

» 1995: first BEC of trapped bosonic atoms

atom-atom

» Fermions are more difficult to cool interaction

— Fermi superfluid realized only in 2004

» |nteraction between the atoms: R1 nm
R~10°m<&d~1/kp~10"°"m
6
—> contact interaction 10
» Pauli principle: interaction (s wave) only d~1um
between atoms of opposite “spin” (1,J) 10 " "
6L

5} a>0: bound

» Interaction strength is characterized by the ou
state

scattering length a

a<0: no bound

» Feshbach resonance: scattering length a tote

can be tuned experimentally by changing
the magnetic field B

5}

[S. Jochim et al.,
Science 302 (2003)]
A /
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BCS-BEC crossover in ultracold atoms

» Superfluidity in bosonic system: Bose-Einstein condensation (BEC)

» For a > 0, fermionic atoms form dimers
@ @
(molecules made from one 1> and one | atom) ®
» The bosonic dimers condense (BEC) at T < T. ®T:

» Substructure of dimers negligible if @/\
c<d (e, 1/(kra) > 1) d

» For a < 0, two atoms in free space do not have a 4 .
bound state

dae | T

» But in the medium, they can form Cooper pairs

» BCS theory valid if
E>d (ie., 1/(kra) < —1)

» BCS-BEC crossover: continuous transition between these two limits
E~d (-151/(kra) S1)

» Particular case: unitary limit 1/(kra) =0
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Basic properties of neutron stars

» Produced in core-collapse supernova explosions

> Very compact: M ~ 1 —2Mp (2 — 4 x 10*° kg) in a radius of R ~ 10 km
— p > nuclear saturation density

» Rapid rotation (periods range from seconds to milliseconds) Q
> Strong magnetic field B B/
typically 10'2 G, in “magnetars” up to 10** G B

» B not aligned with the rotation axis leads to periodic
e.m. emission (pulsar) and slows down the rotation

» A neutron star has a complex inner structure:

outer crust: Coulomb lattice of neutron rich nuclei
f1—2 km in a degenerate electron gas

inner crust: unbound neutrons form a
neutron gas between the nuclei (clusters)

~10 km outer core: homogeneous n, p,e”, (1~ ) matter

inner core: densities up to a few times po,
new degrees of freedom: hyperons? quark matter?



Structure of the inner crust

» Presence of a gas of unbound neutrons between the nuclei (clusters)
+ almost uniform degenerate electron gas to ensure global charge neutrality

» BCC crystal and “pasta phases”: rods (“spaghetti"), slabs ( “lasagne”)
n =2.5x 10%/fm3 n = 0.05/fm3 n = 0.08/fm3
(4 )i 10t g/cm3) Crystal (0.8 x 10£4g/cm3) "pasta” (1.3 x 10**g/cm3)

Outer Crust
Core

[figure adapted
from W. Newton
et al. (2011)]
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Superfluidity in neutron stars

» Typical temperature of a neutron star: T ~ 10® — 10° K ~ 0.1 — 100 keV

» Compared to nuclear energy scales, this is very low!

A,
» BCS gap equation: A, = — Z Vo o L
o’ 2 (Ep/ — ,LL)2 + Ai/

» Different types of superfluidity may exist in neutron stars:

inner crust:
neutron pairing in s wave (pairs with total spin S = 0),
Te: ~1 MeV — main subject of this talk

outer core:

neutron pairing in p wave (pairs with total spin S = 1)
proton pairing in s wave

quark core (speculative):

“color superconductivity”, T. ~ 10 MeV
[e.g. Alford et al. RMP (2008)]




Pulsar glitches

>

Rotation of a neutron star: very regular,
period increases slowly with time

Glitch = sudden speed-up of the rotation,
followed by a slow relaxation

First glitch observed 1969 in the Vela pulsar,
since then 520 glitches in 180 different
pulsars [R.N. Manchester (2017)]

Widely accepted explanation by Manchester
and ltoh (1975): pinning of quantized
vortices to the clusters in the inner crust

While the normal part of the star is slowing
down (£2,), the superfluid neutrons are
spinning at constant frequency (£2;)

When Qs — Q, becomes too large, the
vortices get unpinned and the superfluid
transfers angular momentum to the normal
part

0-089209300

Period (atomic s)

/ relative change i}
7 ~2x10°6

Feb. March
Date of obscrvation (UT)

[Radhakrishnan and Manchester, Nature 222 (1969)]



Cooling

4
>
»
>

Special case: accreting neutron stars

>
| 4

One day after the supernova, T has already dropped from ~ 10 to ~ 10° K
For about 10° years, v emission (from the core) is the dominant cooling mechanism
For older stars, cooling is dominated by photon emission

Cooper pairing affects cooling through:
» v emission via the PBF (pair breaking and formation) mechanism,
» strongly reduced specific heat

[figure by
T. Piro]

Neutron star with a companion star

Matter falling on the neutron star heats the
surface

Deep crustal heating: nuclear reactions in
deeper layers of the crust

X-ray outbursts take a few weeks or months
(or even years), then cooling during a couple
of years of quiescence

40 MXB 1659-29 E

Particular] . C ring in th 10! 10° 10° 10*
articularly sensitive to Cooper pairing in the time [days]

neutron-star crust [Deibel et al., ApJ 839 (2017)]
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BCS mean field approach with contact interaction

» Determine gap A and chemical potential i from gap and number equations

(k= %5 B = /(e — ) + 27

A 3 3
&k A Pk (1 e—p
A= — P g—— =2 - —
£ (@n)32E " /(271’)3<2 2E, )

» Scattering length for coupling constant g < 0 and cutoff A

4ma NPk 1 4rwa
7—g+g/(zw)3 26 m ot ‘>‘<+><2@

4 NPk A A
» Express in the gap equation g in terms of a: A = _ama d ( )
m (2m)3

2Ec  2e

. . 1 m mA\
> Coupling constant vanishes for A — co: = = — — ——
g 4ma 27

A—o

» Hartree field vanishes in this limit: U, = gn_o — 0

. . . A4rma
> In order to get the simplest weak-coupling correction ——n4 ny to the GS energy,
resummation of ladder diagrams is necessary m



Gap and T, at unitarity (a — 00): experiments

» Advantage of unitarity: all quantities scale with ef =

>

Radio frequency (RF) spectroscopy:
measure energy needed to transfer atoms of state

1= "1 or2= "]" into a third hyperfine state 3.

Schirotzek et al. PRL 101, 140403 (2008):

two-peak structure if n; slightly larger than n
(excess 1 particles have already energy ~ A while
paired 1 and 2 particles require energy to dissociate the pair)

Gap:
Hartree shift:

Harmonic trap + local-density-approximation (LDA):
range of densities and hence of T /ef in one system

AJer = 0.44(3)
U/er = —0.43(3)

Ku et al., Science 335, 563 (2012):

all thermodynamic quantities can be obtained from

high-precision measurements of the density profile

Superfluid transition:
Bertsch parameter:

Te/er = 0.167(13)
f = ﬂTzo/GF = 0.376(4)

2
ke

2m

spectral response / a.u.

Cy/Nkg

o 1 2 3
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Effects beyond BCS theory in the BCS-BEC crossover
(

Non-condensed pairs

a)

» BEC limit: dimers exist at T > T. but are not condensed

» BCS limit: pair formation and condensation take place at the same temperature
>

Crossover: necessary to include non condensed pairs at T > T,
[Nozieres and Schmitt-Rink (NSR), JLTP 59 (1985)]

» BCS theory gives the pair dissociation temperature T* > T,

(b) Screening of the interaction 0.3 i i i i
. - - BCS (mean field) [
» Interaction modified by medium 025 | S
polarisation ~ | *non-condensed /
L . 0.2 | pairs (NSR) R
(similar to Debye screening) w /7
] +screening \\/
> In the BCS limit, this effect = 015 [ peanieorey ]
reduces T. by more than 50% Foo1 s/ i
[Gor’'kov and Melik-Barkhudarov (1961)] . experiment
0.05 [Ku (2012),
. . . Nascimbéne (2010)]
To explain the experimental T. in the 0 . .
unitary limit, one has to include both -3 -2 -1 0 1 2

effects [Pisani et al., PRB 14528 (2018)] 1/kea



Testing nuclear-physics techniques with cold atoms
» Quantum Monte-Carlo (QMC): Q

used in cold atoms and neutron matter
reproduces &, A, U, ...in the unitary limit

> ! i - i a ] —HE)
Let's try Bogoliubov Many-Body Perturbation 2 @ . 3.
Theory (BMBPT)

» Soften the interaction <> finite cutoff A

> Viow-k-like s-wave interaction V(q, q) that
reproduces the phase shifts of the contact
interaction for g < A
[MU & S. Ramanan, PRA 103, 063306 (2021)]

» Nambu-Gor’kov formalism:

u A
2 x 2 self-energy ¥ = (A 7U>

> Better don't start from the HFB
(Hartree-Fock-Bogoliubov) ground state but
from a reference state with corrected gap
(counterterms shown as x) )




BMBPT3 results for A and U [S. Ramanan & MU, in preparation]

> Vary cutoff in the range 1.5kr < A < 2.5kr: cutoff dependence as indicator for
missing contributions (induced 3-body force, higher orders of BMBPT)

0.7 T 0
| HFB
0.6 - === BMBPT2 -0.1 | b
== BMBPT3 —
05 F —— BCS A»w 02
w04k 8- QMC w o
w04 —m— experiment 9ooal
< 03 > L I HFB
02 0.4 I === BMBPT2
=3 BMBPT3
0.1 05 F —— Upeak = 2man/m b
—=— experiment
o 06 i i | | | |
-3 -25 -2 -1.5 -1 -0.5 0 -3 -25 -2 -1.5 -1 -0.5 0
(ke @)t (ke @)t

QMC: [Carlson& Reddy PRL (2005), Gezerlis& Carlson PRC (2008)];
exp: [Schirotzek et al. PRL (2008)]; GMB: [Gor’'kov & Melik-Barkhudarov JETP (1961)]

> Weak coupling: A — (4€)"*3Apcs ~ 0.45Azcs, U— “2n,

» At 3rd order, the gap has corrections from many effects: effective mass, Z factor,
quasiparticle interaction in the screening, vertex correction, ...



BMBPT3 results for A and U [S. Ramanan & MU, in preparation]

> Vary cutoff in the range 1.5kr < A < 2.5kr: cutoff dependence as indicator for
missing contributions (induced 3-body force, higher orders of BMBPT)

1 0
08 - 1 01 F . —
7 % 0.2+
1 osf % "
% — — < oot
@ =l
J 04 i b i | HFB
3 0.4 === BMBPT2
02 IHFB  ----- GMB | =1 BMBPT3
== BMBPT2 —&— QMC 05 F —— Upear = 2man/m b
 S—] gMBPTE} ) >—l—<‘experime‘m ) ) - gxperimeqt ) ) ) )
0 06
-3 25 2 15 -1 05 0 -3 25 2 15 -1 05 0
(o (et

QMC: [Carlson& Reddy PRL (2005), Gezerlis& Carlson PRC (2008)];
exp: [Schirotzek et al. PRL (2008)]; GMB: [Gor’'kov & Melik-Barkhudarov JETP (1961)]

> Weak coupling: A — (4€)"*3Apcs ~ 0.45Azcs, U— “2n,

» At 3rd order, the gap has corrections from many effects: effective mass, Z factor,
quasiparticle interaction in the screening, vertex correction, ...
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What is “dilute” neutron matter?

» Upper layers of the inner crust (close to neutron-drip density ~ 2.5 x 10™* fm~3)

o "% ny + 279 x 10
40
- m Ngas = 4 x 107° fm > (14% of total ng
L L L L

[] o “0 &0 80 100 120
of 3 n, =879 x 10"
C wd *
[ . Ngas = 4.8 x 107* fm 3 (54% of total ng) m
| L 1 1
] 20 ] s M 00

[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

> In spite of its “low” density (still p > 10" g/cm®), the neutron gas is relevant
because it occupies a much larger volume than the clusters

» Deeper in the crust: ng,s increases up to ~ ng/2 = 0.08 fm—3



Comparison with ultracold trapped Fermi gases

neutron gas

trapped Fermi gas (e.g. °Li)

n
ke = (3m2n)Y/3

Er = k%/2m
scattering length a

effective range ref

1/(kea)

K rese

4x1075...0.08 fm~3

0.1...1.3 fm™1
0.2...35 MeV
—18 fm

2.5 fm
—05---—-0.07
0.25...3

~1pm3

~ 1 pm™t

~1 pK ~ 10710 eV

adjustable
(Feshbach resonance)

~1nm

unitary limit: 0
BCS-BEC crossover: —1...1

103

» r. can be neglected in cold atoms but not in neutron matter

» the neutron gas is close to the crossover regime but not in the unitary limit




Pairing in neutron matter: results in the literature

> Concentrate on s-wave pairing (p-wave pairing expected at higher densities)

4 T T T T T T T T T T T T T T [Chamel and Haensel,
Liv. Rev. Relativity
L —— Cao et al, PRC74(2006)064301 (2008)]
+  Fabrocini et al, PRL95(2005)192501 (AFDMC)
S~ —— Fabrocini et al., PRL95(2005)192501 (CBF-v6")
3 \\‘ —— Schulze et al, PLB375(1996)1
,/ b ‘Wambach et al, NPA5S55(1993)128
/:‘ A — Schwenk et al., NPAT13(2003)191
= | *° ,|=- Bcs
= 2+
=
(,
-«
1
~.
0 A T Ny et [t S .
0 002 004 006 008 01 012 0.14 0.16

n [fm_}]

> Gap first increases with density (because of density of states, as in cold atoms)
but then it decreases (because of the finite range of the interaction)

» Large corrections beyond BCS, but no consensus (status 2008)



Recent progress at low densities

» Screening calculation with
low-momentum interaction Viow.x for
the pairing and Skyrme functionals for
m™ and the RPA [M.U. and S.Ramanan,
PRC (2020), EPJ ST (2021)]

> Zoom on low density: kr oc n*/3

» Necessary to scale the cutoff with kg
(A = 2.5kg, as in cold atoms) to
recover A/Apcs — 0.45 for kra — 0

> A/Agcs =~ 0.6 at relevant low
densities, in good agreement with
QMC calculations

» But inner crust involves densities up
to n~0.08fm™3 (kr ~ 1.3fm™1)
where large uncertainties persist:

m”*, quasiparticle interaction (Landau
parameters), 3-body force, ...

A (MeV)

w

Screened

interaction |free-space quasiparticle
interaction interaction
5 >

"/
VI_ VO'rL O + éo +..

| --- sLys

—=a— QMC (Abe 2009)
—8— QMC Gezerlis 2010)
——- BSkI9

BSk20 AN 1
BSk21
—— SLy4

thin lines: bare V) 1
thick lines: + screening




Recent progress at low densities

» Screening calculation with Screened f S
low-momentum interaction Viow.x for interaction %ﬂ:f;@ﬁgfle
the pairing and Skyrme functionals for ] /
m™ and the RPA [M.U. and S.Ramanan, / ’K -

PRC (2020), EPJ ST (2021)] AL . O + aO +

> Zoom on low density: kr o< n'/3 O

» Necessary to scale the cutoff with kg
(A = 2.5kf, as in cold atoms) to 18 "ViouytSLyd RPA |-

OW-|
recover A/Apcs — 0.45 for kra — 0 1.6 - Cao —— |
14 F Gandolfi B

> A/Agcs = 0.6 at relevant low 12k N Gezg})i: N
densities, in good agreement with <§ 1 NG GMB *
QMC calculations N Sl -

< 3 i f ey ]
. . . 0.6 | &8 ¥ e
> But inner crust involves densities up 04>§E [ |
to n~0.08fm™3 (kr ~ 1.3fm™1) 0a | |
where large uncertainties persist: '0 ‘

m”*, quasiparticle interaction (Landau 0 01 02 03 04 05 06 07 08 09
parameters), 3-body force, ... ) ke (fm™)



Critical temperature including screening and
non-condensed pairs

» In the BCS-BEC crossover: 25—
r |— bare T
T < T —- bare+ NSR
21~ |— screened - B
i i —- screened + NSR
T. = pair condensation temp. F T
T* = pair dissociation temp. < 15- SLy4
3]
. . . s
> Nozieres-Schmitt-Rink (NSR) e
theory [JLTP 59 (1985)]: =N
compute density including
non-condensed pairs 051
> NSR approach for neutron 0 T Y N R B [ S NP N
matter [S. Ramanan and MU, PRC 02 04 06 08 1 02 04 06 08 1

. .
88 (2013); PRC 101 (2020)] ke (fm ) ke (fm")

» Unlike the unitary Fermi gas, in neutron matter, the screening effect is much
stronger than the NSR effect

» The BCS relation T. = 0.57A(T = 0) remains a good approximation



Description of dilute neutron matter with BMBPT

>

Goal: eliminate uncertainties due o EBETICN HFBON e
1 1 . , Palaniappan 3
to different Skyrme functionals 09 kTR oK Vidma 2001 o]
QMC (2N, Gezerlis 2010) ©
H H _ 3 AFQMC (2N, Wlazlowski 2014) © i
E/N in units of Erg/N = gEF 08 AFQMC (2N+3N. Wlazlowski 2014)
AFDMC (2N+3N, Gandolfi 2022) &
. . 0.7 AFDMC (2N+3N, Lovato 2022) v 1
Notice: E/Erg is far from 2 MBPT3 (2N, Hebeler 2021) ¢
— 0.376 of th . F . 2 g6l MBPT3 (2N+3N, Hebeler 2021) & |
£E=0. of the unitary Fermi gas X B 4
. 05 -
Our most recent calculation:
3rd order BMBPT with chiral N4LO 04 ¢
2-body force (2BF), softened with the
similarity renormalization group (SRG) 03 0 02 04 06 08 | 12 4
[Palaniappan et al. PRC 111 (2025)] ke [fm™

To get right asymptotics at low density, it is again necessary to scale the SRG
cutoff A with kg (error band: residual cutoff dependence for 1.3 < A\ /kr < 2.5)

Even if the bare 3BF is negligible at low density, the SRG induced 3BF is necessary
at A < 2.5kr to reduce cutoff dependence

To be done: BMBPT corrections to the pairing gap (as in cold atoms)
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Inhomogeneous crust vs. infinite matter calculations

> Local-density approximation: A|pa(r) = Ainf.mat.(p(r))

» Compare with full HFB calculation for inhomogeneous crust
example: “spaghetti phase” [G. Almirante and MU, PRC 110, 065802 (2024)]

. . T
0.1 1 p, =0.062 fm=3 7 2 EIy HFB, BSk24 - - - -
P s S\ Ly4 ”
0.08 - 4 N B \. LDA,BSk24 ----
. ¥ s —~ 15} N SLy4
. y . B S
g 006 -1 2 ) AR S
g neutrons, BSk24 - - - - L Vo Tseloo- -
= 0.04 F " SLy4 104 ) .
protons, BSk24 - - - - 05 N !
0.02 SLy4 4 < ~————— =
0 o L L S 0 L I 1 1
0 5 10 15 20 0 5 10 15 20

> HFB gap of the neutron gas extends into the cluster (“proximity effect”)
» HFB gap shows much less variations than the LDA one

» LDA reproduces quite well the HFB gap in the gas



Superfluid fraction (entrainment)

» Current in a uniform superfluid (T = 0):
j=nlVe  where A=|Ale”
assuming that ¢ varies only on large enough length scales

» In a non-uniform system, define superfluid and normal densities ns and ny

in terms of coarse grained quantities j, ¢, i such that:

JT: nsdi;—l—anN with ns+ny=n
2m

(vw = velocity of the inhomogeneities)

» If the system is non-uniform, then ns < nevenat T =0
[A. Leggett, J. Stat. Phys. 93, 927 (1998)]

» Some of the particles are “entrained” by the motion of the inhomogeneities

» Superfluid fraction ns/n is crucial for glitches (also relevant for cooling):
large Vela glitches require substantial superfluid fraction in the inner crust



Band theory vs. hydrodynamics

» Normal band theory
[N. Chamel & P. Haensel, Liv. Rev. Relativity 11 (2008)]

analogous to band theory in solids
valid for weak coupling (A — 0)

» Superfluid hydrodynamics
[N. Martin & MU, PRC 94 (2016)]

assume also microscopic current j and
microscopic phase ¢ fulfil j = n%V¢

valid for strong coupling

fox X< L

TmA

@0

—_—




Vela glitch puzzle and its solution

» Normal band theory predicts much !

stronger suppression of superfluid 0.8
fraction than superfluid hydrodynamics

———

s.f. hydro .
Chamel

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
ng (fm™®)

pp = 0.030 fm—? : diagonal - - -
. total i

pp = 0.055 fm~3 : diagonal - - -
total

= 06
Ic
» With the band theory result, one ot
. j=i
would have to include also the core to 04
explain observed Vela glitches 02 kL
» Full HFB calculation (including bands) 0
interpolates between these two 0
extremes [G. Almirante & MU, PRC 110 (2024)]
» Reason for failure of normal band 100
theory: neglect of non-diagonal terms 80 -
in the linear response formula .
[G. Almirante & MU, arxiv:2503.21635] b‘\\g 60 r
(“geometric contribution” in T 40
multiband superconductors) 20
» Superfluid fraction depends on the oL

value of the gap!

A (MeV)
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Conclusions

» Superfluidity in cold atoms is directly observable,
A and T, can be measured

» Superfluidity has important observational consequences in neutron stars,
but difficult to pin down the values of A or T, from observations

» Common features of ultracold atoms and the inner crust of neutron stars:

» Large s-wave scattering length
> Strongly correlated (A can be comparable with Er)
» Corrections beyond BCS are important (even at weak coupling)

» But: neutron matter is not close to a unitary Fermi gas at any density
(finite range, higher partial waves, 3-body force ...)

» Ultracold atoms can serve as a test case for methods to be applied to
neutron-star matter

» Inner crust of neutron stars # infinite uniform matter
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