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Ab initio no core shell model
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a r t i c l e i n f o a b s t r a c t

by limitations of the Bloch–Horowitz–Brandow perturbative approach to
we have developed the non-perturbative ab initio no core shell model

of solving the properties of nuclei exactly for arbitrary nucleon–nucleon
NN) and NN ) interactions with exact preservation of all

We present the complete ab initio

it since its inception. These highlights include the first ab initio

10B and explain the anomalous long 14 We also obtain the
of In addition to explaining long-standing nuclear structure

ab initio a predictive framework for observables that are
or are not directly measurable. For example, reactions between short-

to fusion research but may
be known from experiment with sufficient precision. We, therefore, discuss, in detail,

of the ab initio to nuclear reactions and sketch a number of promising
amicroscopic

a core. Having a parameter-free approach,
we can construct systems with a core, which will provide an ab initio to heavier
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FIG. 21. Ratio of expectation values of three- ( 3N) and
two-body ( 2N) operators in the NNLOsat and NN+3 (lnl)
Hamiltonians. For the latter, the two-body part of the
centre-of-mass kinetic energy has been subtracted. For the
NN+3 (lnl) interaction, 3N contains original (i.e. SRG-
unevolved) three-body forces while induced three-body op-
erators have been included in 2N. Calculations are per-
formed at the ADC(2) level. Results are shown for

16 20 24 40 nuclei (full symbols), plus 48S and
78Ni (empty symbols).

applied only to specific cases [18 54], but never tested
in a systematic way. In the present work its main
ground-state properties as well as some selected excita-
tion spectra have been studied extensively in light and
medium-mass nuclei. Results in light systems are very
encouraging, with NCSM calculations in overall good

eement with experiment even for spectra that are
known to be particularly sensitive to nuclear forces. To-
tal energies are well reproduced across the whole light
sector of the nuclear chart. In medium-mass nuclei,
present calculations focused on three representative iso-
topic chains. Total binding energies are found to be in
remarkable agreement with experimental values all the
way up to nickel isotopes once ADC(3) correlations are
included, thus correcting for the overbinding generated
with NN+3 (400). ADC(2) calculations of di erential
quantities, where ADC(3) contributions essentially can-
cel out, are also very satisfactory and are able to cap-
ture main trends and magic gaps in two-neutron sepa-
ration energies along all three chains. As evidenced in
Fig. 20, although largely improving on NN+3 (400),
rms charge radii obtained with the NN+3 (lnl) inter-
action still underestimate experiment and do not reach
the quality of NNLOsat. On the other hand this interac-
tion yields an excellent spectroscopy, also where NNLOsat

strives to give even a qualitatively correct account of
experimental data. One-nucleon addition and removal
spectra in neutron-rich calcium are well reproduced. Im-
pressively, the evolution of the energy di erences between
the ground and first excited states along potassium iso-
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FIG. 22. Binding energy per particle for a set of doubly
closed-shell nuclei computed with three di erent NN + 3
interactions and compared to available experimental data.
NNLOsat andNN+3 (lnl) values come from the present work
and refer to ADC(3) calculations. 1 0 (EM) results were
obtained via full-space IM-SRG(2) calculations and originally
published in Ref. [30].

topes follows closely the experimental measurements.

Further insight can be gained by gauging the impor-
tance of 3 operators in the two interactions. In Fig. 21
the ratio of 3 over 2 contributions to the total en-
ergy is displayed for a selection of nuclei as a function of
mass number for NNLOsat and NN+3 (lnl). In the
former, 3 operators are much more relevant, reaching
almost 20% of the 2 contribution in heavier systems.
On the contrary, the ratio stays rather low, around 5%,
for NN+3 (lnl). This has first of all practical conse-
quences, as in the majority of many-body calculations
the treatment of 3 operators is usually not exact, fol-
lowing either a normal-ordered two-body approximation
(see e.g. [27]) or some generalisation of it [70]. Hence a
strong 3 component is in general not desirable. On top
of that, one might worry about the hierarchy of many-
body forces from the standpoint of EFT, and possible
need to include subleading 3 or 4 operators that could
have a sizeable e ect.

Finally, let us compare NN+3 (lnl) and NNLOsat to
an interaction that has been extensively employed in nu-
clear structure studies in the last few years. Usually la-
belled as 1 0 (EM) and first introduced in Ref. [32], it
has proven to yield an accurate reproduction of ground-
state energies (as well as low-energy excitation spectra)
over a wide range of nuclei [30 54 ]. Further-
more, it leads to a satisfactory description of infinite nu-
clear matter properties [11 32 ]. In Fig. 22 bind-
ing energies per particle obtained within in-medium simi-
larity renormalisation group (IM-SRG) calculations with
the 1 0 (EM) interaction [30] are compared, for a
set of closed-shell systems, to the ones computed at the
ADC(3) level withNN+3 (lnl) and NNLOsat. The three
sets of calculations achieve an overall excellent reproduc-
tion of experimental data. While NNLOsat results supe-

FIG. 3. The same as in Fig. for 11B and 12 13C. Basis sizes max=2 8 are displayed. The importance-truncated NCSM [52 53
was used in the max=8 space for carbon isotopes.

-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric -nucleon harmonic oscillator
(HO) states. The basis contains up to max HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2
and 3 interactions [58 62]. Except for =3 4 nuclei,
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FIG. 4. Ground-state energies of -shell and selected
shell nuclei calculated with theNN+3 (lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
indicate uncertainties of the NCSM extrapolation. SRG evo-
lution with =2 fm and HO frequency of =20 MeV were
used.

here and in the following of the paper an SRG evolution
is applied to the NN+3 (400) and NN+3 (lnl) inter-
actions down to a scale of =2 fm . On the contrary,
calculations with NNLOsat are performed with the bare

iltonian.

In Figs. and the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely Li and

Be. The 2 0 and 1 0 states in Li as well as some
of the excited states in Li and Be are broad reso-
nances. Here a more realistic description of Li and Be
would require a better treatment of continuum e ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of Li are unbound with
respect to the emission of an particle and that Li has
only one excited state below the -separation threshold.
Similarly, Be is never bound and even its ground state
in unstable against decay into two The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3 interaction in particular [65].
Here a good description is achieved by NN+3 (lnl), with
only the 1 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of =1 states in 12C, also known to be sensitive to the 3
interaction. On the other hand, the alpha-cluster dom-
inated 0 0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3 (lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3 forces (see, e.g. [65]).

Ground-state energies of H, He, and selected -shell
nuclei from He to 16O are shown in Fig. . The calcu-
lated values (red lines) obtained with theNN+3 (lnl) in-
teraction are compared to experiment (blue lines). Theo-
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Recent advances in nuclear structure theory have led to the availability of several complementary

ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After

successful benchmarks of different approaches, the focus is moving to the development of improved models

of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of

In particular, none of the existing two- plus three-body interactions is capable of satisfactorily

all the observables of interest in medium-mass nuclei.

pose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.

Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and

two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting

potential is labeled NN (lnl). The objective of the present work is to investigate the performance of this

new Hamiltonian across light and medium-mass nuclei.

Methods: excitation spectra are computed using state-of-the-art no-core

and self-consistent Green’s function approaches. Calculations with NN are compared to

two other representative Hamiltonians currently in use, namely NNLOsat and the older NN (400).

Results: Overall, the performance of the novel NN (lnl) interaction is very encouraging. In light nuclei, total

energies are generally in good agreement with experimental data. Known spectra are also well reproduced with

a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way

to nickel isotopes. Except for those involving excitation processes across the 20 gap, which is

overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with

NNLOsat. Although largely improving on NN (400) results, charge radii calculated with NN still

underestimate experimental values, as opposed to the ones computed with NNLOsat

available data on nickel.

Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a

promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being

on 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent

reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well

similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus

allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear

persists and will necessitate novel developments.

DOI: 10.1103/PhysRevC.101.014318

I. INTRODUCTION

In the past decade, advances in many-body approaches and

internucleon interactions have enabled significant progress in

ab initio calculations of nuclear systems. At present, sev-

eral complementary methods to solve the (time-independent)

many-body Schrödinger equation are available, tailored to

navratil@triumf.ca

y.ac.uk

either light systems [ ], medium-mass nuclei [ ], or

extended nuclear matter [ 11]. New developments, which

promise to extend (most of) these methods to higher accuracy

and or heavy nuclei, are being currently proposed [12 13].

Over the past few years, benchmark calculations have

assessment of the systematic errors associated with

both the use of a necessarily finite-dimensional Hilbert space

and the truncation of the many-body expansion at play in each

of the formalisms of interest. In state-of-the-art implemen-

tations, these errors add up to at most 5%, much less than

the uncertainty attributable to the input nuclear Hamiltonian

14 18]. As a result, ab initio calculations have also acquired

the role of diagnostic tools as the focus of the community

2469-9985/2020/101(1)/014318(19) 014318-1 ©2020 American Physical Society
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-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric -nucleon harmonic oscillator
(HO) states. The basis contains up to max HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2
and 3 interactions [58 62]. Except for =3 4 nuclei,
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FIG. 4. Ground-state energies of -shell and selected
shell nuclei calculated with theNN+3 (lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
indicate uncertainties of the NCSM extrapolation. SRG evo-
lution with =2 fm and HO frequency of =20 MeV were
used.

here and in the following of the paper an SRG evolution
is applied to the NN+3 (400) and NN+3 (lnl) inter-
actions down to a scale of =2 fm . On the contrary,
calculations with NNLOsat are performed with the bare

iltonian.

In Figs. and the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely Li and

Be. The 2 0 and 1 0 states in Li as well as some
of the excited states in Li and Be are broad reso-
nances. Here a more realistic description of Li and Be
would require a better treatment of continuum e ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of Li are unbound with
respect to the emission of an particle and that Li has
only one excited state below the -separation threshold.
Similarly, Be is never bound and even its ground state
in unstable against decay into two The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3 interaction in particular [65].
Here a good description is achieved by NN+3 (lnl), with
only the 1 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of =1 states in 12C, also known to be sensitive to the 3
interaction. On the other hand, the alpha-cluster dom-
inated 0 0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3 (lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3 forces (see, e.g. [65]).

Ground-state energies of H, He, and selected -shell
nuclei from He to 16O are shown in Fig. . The calcu-
lated values (red lines) obtained with theNN+3 (lnl) in-
teraction are compared to experiment (blue lines). Theo-
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Recent advances in nuclear structure theory have led to the availability of several complementary

ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After

successful benchmarks of different approaches, the focus is moving to the development of improved models

of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of

In particular, none of the existing two- plus three-body interactions is capable of satisfactorily

all the observables of interest in medium-mass nuclei.

pose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.

Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and

two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting

potential is labeled NN (lnl). The objective of the present work is to investigate the performance of this

new Hamiltonian across light and medium-mass nuclei.

Methods: excitation spectra are computed using state-of-the-art no-core

and self-consistent Green’s function approaches. Calculations with NN are compared to

two other representative Hamiltonians currently in use, namely NNLOsat and the older NN (400).

Results: Overall, the performance of the novel NN (lnl) interaction is very encouraging. In light nuclei, total

energies are generally in good agreement with experimental data. Known spectra are also well reproduced with

a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way

to nickel isotopes. Except for those involving excitation processes across the 20 gap, which is

overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with

NNLOsat. Although largely improving on NN (400) results, charge radii calculated with NN still

underestimate experimental values, as opposed to the ones computed with NNLOsat

available data on nickel.

Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a

promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being

on 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent

reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well

similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus

allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear

persists and will necessitate novel developments.
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extended nuclear matter [ 11]. New developments, which

promise to extend (most of) these methods to higher accuracy

and or heavy nuclei, are being currently proposed [12 13].

Over the past few years, benchmark calculations have

assessment of the systematic errors associated with

both the use of a necessarily finite-dimensional Hilbert space

and the truncation of the many-body expansion at play in each

of the formalisms of interest. In state-of-the-art implemen-

tations, these errors add up to at most 5%, much less than

the uncertainty attributable to the input nuclear Hamiltonian

14 18]. As a result, ab initio calculations have also acquired

the role of diagnostic tools as the focus of the community
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-shell nuclei were performed. In the NCSM, nuclei are
considered to be systems of nonrelativistic point-like
nucleons interacting via realistic two- and three-body in-
teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric -nucleon harmonic oscillator
(HO) states. The basis contains up to max HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
The convergence of the HO expansion can be greatly ac-
celerated by applying an SRG transformation on the 2
and 3 interactions [58 62]. Except for =3 4 nuclei,
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shell nuclei calculated with theNN+3 (lnl) Hamiltonian (red
lines) compared to experiment (blue lines). The error bars
indicate uncertainties of the NCSM extrapolation. SRG evo-
lution with =2 fm and HO frequency of =20 MeV were
used.

here and in the following of the paper an SRG evolution
is applied to the NN+3 (400) and NN+3 (lnl) inter-
actions down to a scale of =2 fm . On the contrary,
calculations with NNLOsat are performed with the bare

iltonian.

In Figs. and the excitation energy spectra of se-
lected Li, Be, B, and C isotopes are displayed. A correct
ordering of low-lying levels is found for all the consid-
ered lithium and beryllium isotopes, namely Li and

Be. The 2 0 and 1 0 states in Li as well as some
of the excited states in Li and Be are broad reso-
nances. Here a more realistic description of Li and Be
would require a better treatment of continuum e ects,
see Refs. [63] and [64], respectively, in this regard. Let
us note that all excited states of Li are unbound with
respect to the emission of an particle and that Li has
only one excited state below the -separation threshold.
Similarly, Be is never bound and even its ground state
in unstable against decay into two The lowest states
in 10B are known to be very sensitive to the details of
nuclear forces, and the 3 interaction in particular [65].
Here a good description is achieved by NN+3 (lnl), with
only the 1 0 state resulting incorrectly placed. The cor-
rect level ordering is also found in 11B, with the spectrum
being overall too compressed as compared to the experi-
mental one. Finally, worth-noting is the correct ordering
of =1 states in 12C, also known to be sensitive to the 3
interaction. On the other hand, the alpha-cluster dom-
inated 0 0 Hoyle state in 12C cannot be reproduced in
the limited NCSM basis employed here [66]. In general,
NN+3 (lnl) yields spectra that are in good agreement
with experiment. Some underestimation of level-splitting
in Li, 11B, and 13C emerges, and could be associated
with a weaker spin-orbit interaction strength. This is
comparable to what has been found with earlier param-
eterisations of chiral 3 forces (see, e.g. [65]).

Ground-state energies of H, He, and selected -shell
nuclei from He to 16O are shown in Fig. . The calcu-
lated values (red lines) obtained with theNN+3 (lnl) in-
teraction are compared to experiment (blue lines). Theo-

##$#!%&$'()*+,-./012+34*$566!7

!#$#"%&$8$290/2:)9)-290/2$;+<=2/*9;

PHYSICAL REVIEW C 101, 014318 (2020)

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

V. Somà,1,* P. Navrátil ,2,† F. Raimondi,3,4,‡ C. Barbieri ,4,§ and T. Duguet1,5,‖

1IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom

KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium

(Received 23 July 2019; revised manuscript received 6 November 2019; published 22 January 2020)

Recent advances in nuclear structure theory have led to the availability of several complementary

ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After

successful benchmarks of different approaches, the focus is moving to the development of improved models

of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of

In particular, none of the existing two- plus three-body interactions is capable of satisfactorily

all the observables of interest in medium-mass nuclei.

pose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.

Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and

two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting

potential is labeled NN (lnl). The objective of the present work is to investigate the performance of this

new Hamiltonian across light and medium-mass nuclei.

Methods: excitation spectra are computed using state-of-the-art no-core

and self-consistent Green’s function approaches. Calculations with NN are compared to

two other representative Hamiltonians currently in use, namely NNLOsat and the older NN (400).

Results: Overall, the performance of the novel NN (lnl) interaction is very encouraging. In light nuclei, total

energies are generally in good agreement with experimental data. Known spectra are also well reproduced with

a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way

to nickel isotopes. Except for those involving excitation processes across the 20 gap, which is

overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with

NNLOsat. Although largely improving on NN (400) results, charge radii calculated with NN still

underestimate experimental values, as opposed to the ones computed with NNLOsat

available data on nickel.

Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a

promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being

on 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent

reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well

similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus

allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear

persists and will necessitate novel developments.
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considered to be systems of nonrelativistic point-like
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teractions. Each nucleon is an active degree of freedom
and the translational invariance of observables, the an-
gular momentum, and the parity of the nucleus are con-
served. The many-body wave function is expanded over
a basis of antisymmetric -nucleon harmonic oscillator
(HO) states. The basis contains up to max HO exci-
tations above the lowest possible Pauli configuration, so
that the the motion of the center of mass is fully de-
coupled and its kinetic energy can be subtracted exactly.
The basis is characterised by an additional parameter
the frequency of the HO well, and may depend on either
Jacobi relative [56] or single-particle coordinates [57].
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Recent advances in nuclear structure theory have led to the availability of several complementary

ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After

successful benchmarks of different approaches, the focus is moving to the development of improved models

of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of

In particular, none of the existing two- plus three-body interactions is capable of satisfactorily

all the observables of interest in medium-mass nuclei.

pose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.

Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and

two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting

potential is labeled NN (lnl). The objective of the present work is to investigate the performance of this

new Hamiltonian across light and medium-mass nuclei.

Methods: excitation spectra are computed using state-of-the-art no-core

and self-consistent Green’s function approaches. Calculations with NN are compared to

two other representative Hamiltonians currently in use, namely NNLOsat and the older NN (400).

Results: Overall, the performance of the novel NN (lnl) interaction is very encouraging. In light nuclei, total

energies are generally in good agreement with experimental data. Known spectra are also well reproduced with

a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way

to nickel isotopes. Except for those involving excitation processes across the 20 gap, which is

overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with

NNLOsat. Although largely improving on NN (400) results, charge radii calculated with NN still

underestimate experimental values, as opposed to the ones computed with NNLOsat

available data on nickel.

Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a

promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being

on 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent

reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well

similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus

allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear

persists and will necessitate novel developments.
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extended nuclear matter [ 11]. New developments, which

promise to extend (most of) these methods to higher accuracy

and or heavy nuclei, are being currently proposed [12 13].

Over the past few years, benchmark calculations have
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both the use of a necessarily finite-dimensional Hilbert space

and the truncation of the many-body expansion at play in each

of the formalisms of interest. In state-of-the-art implemen-

tations, these errors add up to at most 5%, much less than

the uncertainty attributable to the input nuclear Hamiltonian

14 18]. As a result, ab initio calculations have also acquired
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Recent advances in nuclear structure theory have led to the availability of several complementary

ab initio many-body techniques applicable to light and medium-mass nuclei as well as nuclear matter. After

successful benchmarks of different approaches, the focus is moving to the development of improved models

of nuclear Hamiltonians, currently representing the largest source of uncertainty in ab initio calculations of

In particular, none of the existing two- plus three-body interactions is capable of satisfactorily

all the observables of interest in medium-mass nuclei.

pose: A novel parametrization of a Hamiltonian based on chiral effective field theory is introduced.

Specifically, three-nucleon operators at next-to-next-to-leading order are combined with an existing (and

two-body interaction containing terms up to next-to-next-to-next-to-leading order. The resulting

potential is labeled NN (lnl). The objective of the present work is to investigate the performance of this

new Hamiltonian across light and medium-mass nuclei.

Methods: excitation spectra are computed using state-of-the-art no-core

and self-consistent Green’s function approaches. Calculations with NN are compared to

two other representative Hamiltonians currently in use, namely NNLOsat and the older NN (400).

Results: Overall, the performance of the novel NN (lnl) interaction is very encouraging. In light nuclei, total

energies are generally in good agreement with experimental data. Known spectra are also well reproduced with

a few notable exceptions. The good description of ground-state energies carries on to heavier nuclei, all the way

to nickel isotopes. Except for those involving excitation processes across the 20 gap, which is

overestimated by the new interaction, spectra are of very good quality, in general superior to those obtained with

NNLOsat. Although largely improving on NN (400) results, charge radii calculated with NN still

underestimate experimental values, as opposed to the ones computed with NNLOsat

available data on nickel.

Conclusions: The new two- plus three-nucleon Hamiltonian introduced in the present work represents a

promising alternative to existing nuclear interactions. In particular, it has the favorable features of (i) being

on 4 systems, thus complying with the ab initio strategy, (ii) yielding an excellent

reproduction of experimental energies all the way from light to medium-heavy nuclei, and (iii) behaving well

similarity renormalization group transformations, with negligible four-nucleon forces being induced, thus

allowing large-scale calculations up to medium-heavy systems. The problem of the underestimation of nuclear

persists and will necessitate novel developments.
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I. INTRODUCTION

In the past decade, advances in many-body approaches and

internucleon interactions have enabled significant progress in

ab initio calculations of nuclear systems. At present, sev-

eral complementary methods to solve the (time-independent)

many-body Schrödinger equation are available, tailored to
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either light systems [ ], medium-mass nuclei [ ], or

extended nuclear matter [ 11]. New developments, which

promise to extend (most of) these methods to higher accuracy

and or heavy nuclei, are being currently proposed [12 13].

Over the past few years, benchmark calculations have

assessment of the systematic errors associated with

both the use of a necessarily finite-dimensional Hilbert space

and the truncation of the many-body expansion at play in each

of the formalisms of interest. In state-of-the-art implemen-

tations, these errors add up to at most 5%, much less than

the uncertainty attributable to the input nuclear Hamiltonian

14 18]. As a result, ab initio calculations have also acquired

the role of diagnostic tools as the focus of the community
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FIG. 7 (Color online) The toroidal component of current den-
sity produces anapole moment , with magnetic field that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with , with its associated conventional dipolar
magnetic field not shown.

defining the constant NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., (nuclear radius)

, where is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.

, who deduced SM estimates of their values. These
six hadronic PNC parameters are , h , h , where
the subscript ( ) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings ( 10 ) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.

ton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).
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FIG. 1: Potential nuclear spin-dependent parity violation measurement scheme. (Left) Laser cooled triatomic
molecules are prepared in the first bending mode to access the -doublet structure, and are launched upward into an
interaction region to form a molecule fountain. Oscillating electric field drives electric dipole transitions between
states of opposite parity. Magnetic field tunes to degeneracy a particular pair of opposite-parity states to
enhance their interaction via the e ective parity violating Hamiltonian NSD PV. Population transfer from the

initial state to the degenerate opposite-parity state is read out by laser spectroscopy after molecules fall back out of
the interaction region. (Right) Stark interference: State transfer (orange) is parity dependent due to the combined
NSD-PV interactions (wavy line) and electric dipole interaction interfering constructively or destructively depending

on the relative orientations of the electron spin, nuclear spin, and molecule axis.

PVDIS/SoLID, a precision NSD-PV measurement in one
of the systems considered here would represent the first
experimental determination of and

The third contribution, hfs, originates in the nuclear-
spin-independent weak interaction combined with the hy-
perfine interaction [23], and in the single-particle approx-
imation is given by

hfs 10 (5)

with the magnetic moment of the nucleus and
the nuclear weak charge. The hyperfine interaction scales
like , similar to the anapole interaction, but due to
the small numerical prefactor is strongly suppressed.

Equations 2 and 3 estimate and ax respectively in
the single particle (i.e. valence nucleon) limit. This model
ignores nucleon-nucleon interactions (apart from the par-
ity violating e ects), and is an especially rough approxi-
mation for nuclei with partially filled shells. In Section III
we use a more sophisticated no-core shell model (NCSM)
[37] to calculate the anapole moments and ax of the Be,
13C, 14 15N, and 25Mg nuclei.
We should note another NSD-PV e ect produced by

the (tensor-type) interaction between the electrons and
the nuclear weak quadrupole moment. Measurements of
these moments will allow the first determination of the
quadrupole moments of the neutron distribution in nu-

clei and provide a test of the theory of nuclear forces
with applications to nuclei and neutron stars [38–40]. As
with other NSD-PV e ects, the e ect of the nuclear weak
quadruple moment is expected to be enhanced in certain
systems [41].
Eq. (1) can be rewritten for the and elec-

tronic states [15, 24] as

NSD-PV PV /I, (6)

where is the unit vector pointing from the heavier to
the lighter nucleus along the internuclear axis, and
is the e ective spin of the valence electron. In order to
precisely determine the e ective coupling constant from
experiments, the parameter PV needs to be known with
high accuracy. This parameter depends on the electronic
structure and is specific to the given atom or molecule
and to the electronic state. It is defined by the matrix
element between two di erent states [42],

PV (7)

with

(8)

where and are the Pauli matrices and ) is the
nuclear density distribution function, which is assumed
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. and label nucleons and
atomic electrons. e,N and e,N denote axial-vector and vec-
tor currents. (a) -boson exchange between electron axial-
vector and nucleon vector currents ( ); (b) -boson ex-
change between nucleon axial-vector and electron vector cur-
rents ( ); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e ect of the diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a boson. Since the range
of this interaction is 10 fm [
91GeV/c is the mass of the boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

PV
(1) (2)

(32)
where the Fermi constant

17 10 GeV = 2 22 10 14

determines the overall strength of the weak interaction,
the summation is over quark flavors, u, d, s, ...
and are field operators for electrons and quarks respec-
tively, are Dirac matrices, and is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants
(1)

; the constants
(2)

describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

(1) = 2 (1) (1)

(1) (1) + 2
(1)

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle

(1) 4 sin

(1)

(2) (2) (1)

where 26 is the scale factor accounting for the
partially conserved axial vector current and sin

5) (Patrignani et al., 2016). Since sin 4,

the
(1)

contribution dominates PV except for the
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The PV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e ect of -boson exchange
and hyperfine interaction (d). The e ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in PV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di erence between proton and
neutron distributions, we reduce the corresponding part
of PV to an e ective weak Hamiltonian in the electron
sector

(33)

where ) is the nuclear density and is a nuclear
weak charge. The non-relativistic limit of the operator

) is

[2 )( )]

where is the linear momentum operator and are elec-
tron Pauli matrices.
The nuclear weak charge entering the e ective

weak Hamiltonian is

Z C(1) + 2N C(1)

where and are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and ≈ − . This is a “tree-level” [or
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FIG. 1: Potential nuclear spin-dependent parity violation measurement scheme. (Left) Laser cooled triatomic
molecules are prepared in the first bending mode to access the -doublet structure, and are launched upward into an
interaction region to form a molecule fountain. Oscillating electric field drives electric dipole transitions between
states of opposite parity. Magnetic field tunes to degeneracy a particular pair of opposite-parity states to
enhance their interaction via the e ective parity violating Hamiltonian NSD PV. Population transfer from the

initial state to the degenerate opposite-parity state is read out by laser spectroscopy after molecules fall back out of
the interaction region. (Right) Stark interference: State transfer (orange) is parity dependent due to the combined
NSD-PV interactions (wavy line) and electric dipole interaction interfering constructively or destructively depending

on the relative orientations of the electron spin, nuclear spin, and molecule axis.

PVDIS/SoLID, a precision NSD-PV measurement in one
of the systems considered here would represent the first
experimental determination of and

The third contribution, hfs, originates in the nuclear-
spin-independent weak interaction combined with the hy-
perfine interaction [23], and in the single-particle approx-
imation is given by

hfs 10 (5)

with the magnetic moment of the nucleus and
the nuclear weak charge. The hyperfine interaction scales
like , similar to the anapole interaction, but due to
the small numerical prefactor is strongly suppressed.

Equations 2 and 3 estimate and ax respectively in
the single particle (i.e. valence nucleon) limit. This model
ignores nucleon-nucleon interactions (apart from the par-
ity violating e ects), and is an especially rough approxi-
mation for nuclei with partially filled shells. In Section III
we use a more sophisticated no-core shell model (NCSM)
[37] to calculate the anapole moments and ax of the Be,
13C, 14 15N, and 25Mg nuclei.
We should note another NSD-PV e ect produced by

the (tensor-type) interaction between the electrons and
the nuclear weak quadrupole moment. Measurements of
these moments will allow the first determination of the
quadrupole moments of the neutron distribution in nu-

clei and provide a test of the theory of nuclear forces
with applications to nuclei and neutron stars [38–40]. As
with other NSD-PV e ects, the e ect of the nuclear weak
quadruple moment is expected to be enhanced in certain
systems [41].
Eq. (1) can be rewritten for the and elec-

tronic states [15, 24] as

NSD-PV PV /I, (6)

where is the unit vector pointing from the heavier to
the lighter nucleus along the internuclear axis, and
is the e ective spin of the valence electron. In order to
precisely determine the e ective coupling constant from
experiments, the parameter PV needs to be known with
high accuracy. This parameter depends on the electronic
structure and is specific to the given atom or molecule
and to the electronic state. It is defined by the matrix
element between two di erent states [42],

PV (7)

with

(8)

where and are the Pauli matrices and ) is the
nuclear density distribution function, which is assumed
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FIG. 5 (Color online) Major diagrams contributing to the
parity violation in atoms. and label nucleons and
atomic electrons. e,N and e,N denote axial-vector and vec-
tor currents. (a) -boson exchange between electron axial-
vector and nucleon vector currents ( ); (b) -boson ex-
change between nucleon axial-vector and electron vector cur-
rents ( ); (c) Electromagnetic interaction of atomic elec-
trons with the nuclear anapole moment (shown as a blob); (d)
Combined e ect of the diagram (a) and hyperfine inter-
action. The vertical line separates nuclear spin-independent
(a) and spin-dependent (b)–(d) diagrams.

experiments described below show how Laporte’s rule is
violated in atoms and molecules.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a boson. Since the range
of this interaction is 10 fm [
91GeV/c is the mass of the boson], it is essentially
a contact interaction on the scale of atomic distances.
The relevant contact contribution to the SM Hamiltonian
density reads (Marciano, 1995)

PV
(1) (2)

(32)
where the Fermi constant

17 10 GeV = 2 22 10 14

determines the overall strength of the weak interaction,
the summation is over quark flavors, u, d, s, ...
and are field operators for electrons and quarks respec-
tively, are Dirac matrices, and is the Dirac matrix
associated with pseudoscalars.

The coupling of the electron axial-vector currents to
the quark vector currents is parametrized by the con-

stants
(1)

; the constants
(2)

describe the coupling of
the electron vector currents to quark axial-vector cur-
rents. These interactions and constants could be fur-
ther combined into couplings to protons and neutrons of
atomic nuclei (Marciano and Sanda, 1978), e.g.,

(1) = 2 (1) (1)

(1) (1) + 2
(1)

reflecting the quark composition of nucleons. Explicitly

in terms of the Weinberg angle

(1) 4 sin

(1)

(2) (2) (1)

where 26 is the scale factor accounting for the
partially conserved axial vector current and sin

5) (Patrignani et al., 2016). Since sin 4,

the
(1)

contribution dominates PV except for the
atom.
The main diagrams contributing to PNC processes in

atoms are shown in Fig. 5. The PV terms discussed
above are illustrated by diagrams (a) and (b). In addi-
tion, there is also a contribution from the nuclear anapole
moment (c) and a combined e ect of -boson exchange
and hyperfine interaction (d). The e ective weak Hamil-
tonian arising from diagram (a) does not depend on the
nuclear spin, while that from the set of diagrams (b)–(d)
does. We will consider the former in Sec. IV.B and the
latter in Sec. IV.C.

B. Nuclear-spin independent e ects

1. Overview

The dominant contribution to parity violation in atoms
arises from the electron axial-vector – nucleon-vector
term in PV, Fig. 5(a). If we treat the nucleon mo-
tion non-relativistically, average over the nucleon distri-
bution, and neglect the di erence between proton and
neutron distributions, we reduce the corresponding part
of PV to an e ective weak Hamiltonian in the electron
sector

(33)

where ) is the nuclear density and is a nuclear
weak charge. The non-relativistic limit of the operator

) is

[2 )( )]

where is the linear momentum operator and are elec-
tron Pauli matrices.
The nuclear weak charge entering the e ective

weak Hamiltonian is

Z C(1) + 2N C(1)

where and are the numbers of protons and neu-
trons in the nucleus. Electrons predominantly couple
to neutrons and ≈ − . This is a “tree-level” [or
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Parity-violating and time-reversal conserving (PVTC) and parity-violating and

time-reversal-violating (PVTV) forces in nuclei form only a tiny component of the

total interaction between nucleons. The study of these tiny forces can nevertheless

be of extreme interest because they allow one to obtain information on fundamental

symmetries using nuclear systems. The PVTC interaction derives from the weak

interaction between the quarks inside nucleons and nuclei, therefore the study of PVTC

effects opens a window on the quark-quark weak interaction. The PVTV interaction is

sensitive to more exotic interactions at the fundamental level, in particular to strong CP

violation in the Standard Model Lagrangian, or even to exotic phenomena predicted

in various beyond-the-Standard-Model scenarios. The presence of these interactions

can be revealed either by studying various asymmetries in polarized scattering of

nuclear systems, or by measuring the presence of non-vanishing permanent electric

dipole moments of nucleons, nuclei and diamagnetic atoms and molecules. In this

contribution, we review the derivation of the nuclear PVTC and PVTV interactions within

various frameworks. We focus in particular on the application of chiral effective field

theory, which allows for a more strict connection with the fundamental interactions at

the quark level. We investigate PVTC and PVTV effects induced by these potentials on

several few-nucleon observables, such as the longitudinal asymmetries in proton-proton

scattering and the He( H reaction, the radiative neutron-proton capture, and the

electric dipole moments of the deuteron and the trinucleon system.

Keywords: fundamental symmetries in nuclei, nuclear forces, effective field theory, chiral perturbation theory,

few-body systems

1. INTRODUCTION

The interaction between nucleons is at the heart of nuclear physics and has been a subject
of great scientific interest for many decades. The strong nuclear forces have their origin in
the residual interaction between quarks and gluons inside colorless nucleons and are described
by quantum chromodynamics (QCD). The resulting parity-conserving, time-reversal-conserving
(PCTC) nuclear interactions are known to exhibit a complicated pattern, involving a delicate
interplay of strongly state-dependent repulsive and attractive pieces. While the nucleon-nucleon
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1. INTRODUCTION

The interaction between nucleons is at the heart of nuclear physics and has been a subject
of great scientific interest for many decades. The strong nuclear forces have their origin in
the residual interaction between quarks and gluons inside colorless nucleons and are described
by quantum chromodynamics (QCD). The resulting parity-conserving, time-reversal-conserving
(PCTC) nuclear interactions are known to exhibit a complicated pattern, involving a delicate
interplay of strongly state-dependent repulsive and attractive pieces. While the nucleon-nucleon

to have a Gaussian shape. PV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine the PV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR

CALCULATIONS

In the NCSM, nuclei are considered to be systems of
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric -nucleon
harmonic oscillator (HO) states. The basis contains up
to max HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,
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which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term

gs gs
PNC
NN gs (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

=1

(11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by
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with

gs I I
(1)
s, gs I I (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant
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NN gs

Here, (II10 II)=I/ + 1).
We have also performed NCSM calculations for the

matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax≃ −
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where the weak-interaction constants
(2)
n,p were intro-

duced in Sec. IV.A and

= ( + 1 2)( 1) +1

is the relativistic angular quantum number for the un-
paired nucleon in a state with orbital angular momen-
tum . Notice that this contribution is substantially
suppressed compared to the diagram 5(a) because

(2)
/C(1) (1 4 sin

and only the unpaired nucleon contributes to Fig. 5(b)
whereas all nucleons coherently contribute to Fig. 5(a).

The NAM coe cient parameterizes the nuclear
anapole moment (NAM) contribution to atomic parity
violation. It is illustrated in Fig. 5(c) and discussed
in Sec. IV.C.2. Parity violation in the nucleus leads
to toroidal currents that in turn generate a parity-odd,
time-reversal-even (P-odd, T-even) moment, known as
the nuclear anapole moment, that couples electromag-
netically to atomic electrons. The nuclear shell model
expression for the anapole moment (Flambaum et al.

NAM = 1 15 10
+ 1)

(38)

depends on the atomic number , the magnetic moment
of the unpaired nucleon expressed in units of the

nuclear magneton, and the weak coupling constant
Their values are 8, ≈ − 9, 5, and

≈ −1.
The combined action of the hyperfine interaction and

the spin-independent -exchange interaction from nu-
cleon vector ( ) currents leads to the third nuclear-
spin dependent parity violating e ect, Fig. 5(d). This
contribution is quantified by a parameter hf . An an-
alytical approximation for hf was derived by Flam-
baum and Khriplovich (1985b) and values of hf were
determined for various cases of experimental interest by
Bouchiat and Piketty (1991) and Johnson et al. (2003).
Johnson et al. (2003) also tabulated the values of hf

for microwave transitions between ground-state hyper-
fine levels in atoms of potential experimental interest.

Recently, Flambaum (2016) pointed out a novel nu-
clear spin-dependent e ect: the quadrupole moment of
the neutron distribution leads to a tensor weak interac-
tion that mixes opposite parity states in atoms with total
angular momentum di erence 2. This e ect should be
carefully investigated in future work to see if it influences
determination of the anapole moments from APV mea-
surements. The e ect is of interest on its own as a probe
of the neutron distributions in nuclei (Flambaum et al.

. The atom or molecule should contain a nucleus
with I > 2, and there is an enhancement for heavy and
deformed nuclei.

An outstanding question is the relative importance
of the nuclear spin-dependent contributions. The hf

coe cient can be carefully evaluated and it is usually
suppressed compared to NAM and axial. Generically,
because of the scaling, the anapole contribution
dominates for heavier nuclei. For lighter nuclei, the
axial contribution is more important and APV experi-

ments can be a sensitive probe of
(2)
n,p electroweak pa-

rameters, providing a window on the interactions
that are typically studied with deep inelastic scatter-
ing (PVDIS-Collaboration, 2014). The boundary be-
tween the axial- and anapole-dominated regimes depends
on quantum numbers of the valence and type of the va-

lence nucleon (DeMille et al., 2008a). Values of
(2)
n,p can

set constraints on exotic new physics such as leptopho-
bic bosons (Buckley and Ramsey-Musolf, 2012), while

s probe hadronic PNC.

2. Nuclear anapole moments as a probe of hadronic parity

violation

The traditional multipolar expansion of electromag-
netic potentials generated by a finite distribution of cur-
rents and charges leads to the identification of mag-
netic (MJ) and electric (EJ) multipolar moments (Jack-
son, 1999). Non-vanishing nuclear multipolar moments
(charge E0, magnetic-dipole M1, electric-quadrupole E2,
. . . ) respect parity and time reversal, i.e. they are P-even
and T-even, and describe multipolar fields outside the fi-
nite distribution. Weak interactions inside the nucleus
lead to additional P-odd moments (Gray et al., 2010);
the leading moment is referred to as the anapole mo-
ment. Zel’dovich and Vaks were the first to point out
the possibility of such a moment (Zel’dovich, 1958).

The anapole moment of a current density distribu-
tion ) is defined as

a = −π

∫
d3r r2 j(r), (39)

with magnetic vector potential ), leading to
the electromagnetic coupling of electrons to the nuclear
anapole moment, ( ). A classical analog of the
anapole moment is a Tokamak-like configuration shown
in Fig. 7. The inner and outer parts of the toroidal cur-
rents are weighted di erently by in Eq. (39), leading
to a nonvanishing value of the anapole moment. Mi-
croscopically, a nuclear anapole moment can be related
to a chiral distribution of nuclear magnetization caused
by parity-violating nuclear forces (Bouchiat and Piketty,

. Due to the Wigner-Eckart theorem, the NAM
(just as the nuclear magnetic moment) is proportional to
the nuclear spin so that

NAM

to have a Gaussian shape. PV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine the PV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR

CALCULATIONS

In the NCSM, nuclei are considered to be systems of
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric -nucleon
harmonic oscillator (HO) states. The basis contains up
to max HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

gs gs (9)

gs

PNC
NN gs

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term

gs gs
PNC
NN gs (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

âs =
πe

m

A
∑

i=1

µi(ri × σi) (11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by

(12)

with

gs I I
(1)
s, gs I I (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant

mc

II10 II

+ 1
(14)

gs ||
=1

(ˆ (1)||

gs

PNC
NN gs

Here, (II10 II)=I/ + 1).
We have also performed NCSM calculations for the

matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax≃ −
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FIG. 7 (Color online) The toroidal component of current den-
sity produces anapole moment , with magnetic field that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with , with its associated conventional dipolar
magnetic field not shown.

defining the constant NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., (nuclear radius)

, where is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.

, who deduced SM estimates of their values. These
six hadronic PNC parameters are , h , h , where
the subscript ( ) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings ( 10 ) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.

ton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).
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is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.
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was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
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der denoted NN N LO + 3N(lnl). For a more e cient
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formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator
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which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and
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The relationship between and is given by
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where the weak-interaction constants
(2)
n,p were intro-

duced in Sec. IV.A and

= ( + 1 2)( 1) +1

is the relativistic angular quantum number for the un-
paired nucleon in a state with orbital angular momen-
tum . Notice that this contribution is substantially
suppressed compared to the diagram 5(a) because

(2)
/C(1) (1 4 sin

and only the unpaired nucleon contributes to Fig. 5(b)
whereas all nucleons coherently contribute to Fig. 5(a).

The NAM coe cient parameterizes the nuclear
anapole moment (NAM) contribution to atomic parity
violation. It is illustrated in Fig. 5(c) and discussed
in Sec. IV.C.2. Parity violation in the nucleus leads
to toroidal currents that in turn generate a parity-odd,
time-reversal-even (P-odd, T-even) moment, known as
the nuclear anapole moment, that couples electromag-
netically to atomic electrons. The nuclear shell model
expression for the anapole moment (Flambaum et al.

NAM = 1 15 10
+ 1)

(38)

depends on the atomic number , the magnetic moment
of the unpaired nucleon expressed in units of the

nuclear magneton, and the weak coupling constant
Their values are 8, ≈ − 9, 5, and

≈ −1.
The combined action of the hyperfine interaction and

the spin-independent -exchange interaction from nu-
cleon vector ( ) currents leads to the third nuclear-
spin dependent parity violating e ect, Fig. 5(d). This
contribution is quantified by a parameter hf . An an-
alytical approximation for hf was derived by Flam-
baum and Khriplovich (1985b) and values of hf were
determined for various cases of experimental interest by
Bouchiat and Piketty (1991) and Johnson et al. (2003).
Johnson et al. (2003) also tabulated the values of hf

for microwave transitions between ground-state hyper-
fine levels in atoms of potential experimental interest.

Recently, Flambaum (2016) pointed out a novel nu-
clear spin-dependent e ect: the quadrupole moment of
the neutron distribution leads to a tensor weak interac-
tion that mixes opposite parity states in atoms with total
angular momentum di erence 2. This e ect should be
carefully investigated in future work to see if it influences
determination of the anapole moments from APV mea-
surements. The e ect is of interest on its own as a probe
of the neutron distributions in nuclei (Flambaum et al.

. The atom or molecule should contain a nucleus
with I > 2, and there is an enhancement for heavy and
deformed nuclei.

An outstanding question is the relative importance
of the nuclear spin-dependent contributions. The hf

coe cient can be carefully evaluated and it is usually
suppressed compared to NAM and axial. Generically,
because of the scaling, the anapole contribution
dominates for heavier nuclei. For lighter nuclei, the
axial contribution is more important and APV experi-

ments can be a sensitive probe of
(2)
n,p electroweak pa-

rameters, providing a window on the interactions
that are typically studied with deep inelastic scatter-
ing (PVDIS-Collaboration, 2014). The boundary be-
tween the axial- and anapole-dominated regimes depends
on quantum numbers of the valence and type of the va-

lence nucleon (DeMille et al., 2008a). Values of
(2)
n,p can

set constraints on exotic new physics such as leptopho-
bic bosons (Buckley and Ramsey-Musolf, 2012), while

s probe hadronic PNC.

2. Nuclear anapole moments as a probe of hadronic parity

violation

The traditional multipolar expansion of electromag-
netic potentials generated by a finite distribution of cur-
rents and charges leads to the identification of mag-
netic (MJ) and electric (EJ) multipolar moments (Jack-
son, 1999). Non-vanishing nuclear multipolar moments
(charge E0, magnetic-dipole M1, electric-quadrupole E2,
. . . ) respect parity and time reversal, i.e. they are P-even
and T-even, and describe multipolar fields outside the fi-
nite distribution. Weak interactions inside the nucleus
lead to additional P-odd moments (Gray et al., 2010);
the leading moment is referred to as the anapole mo-
ment. Zel’dovich and Vaks were the first to point out
the possibility of such a moment (Zel’dovich, 1958).

The anapole moment of a current density distribu-
tion ) is defined as

a = −π

∫
d3r r2 j(r), (39)

with magnetic vector potential ), leading to
the electromagnetic coupling of electrons to the nuclear
anapole moment, ( ). A classical analog of the
anapole moment is a Tokamak-like configuration shown
in Fig. 7. The inner and outer parts of the toroidal cur-
rents are weighted di erently by in Eq. (39), leading
to a nonvanishing value of the anapole moment. Mi-
croscopically, a nuclear anapole moment can be related
to a chiral distribution of nuclear magnetization caused
by parity-violating nuclear forces (Bouchiat and Piketty,

. Due to the Wigner-Eckart theorem, the NAM
(just as the nuclear magnetic moment) is proportional to
the nuclear spin so that

NAM
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FIG. 7 (Color online) The toroidal component of current den-
sity produces anapole moment , with magnetic field that
is entirely confined inside the “doughnut”. The azimuthal
component of current density generates magnetic dipole mo-
ment aligned with , with its associated conventional dipolar
magnetic field not shown.

defining the constant NAM in Eq. (36). Atomic electrons
interact with NAM only inside the nucleus, as is appar-
ent from the classical analog, since the magnetic field is
entirely confined inside the “doughnut”. Another impor-
tant observation is that the NAM is proportional to the
area of the toroidal winding, i.e., (nuclear radius)

, where is the atomic number, illustrating the
trend in Eq. (38).

Microscopically, the nuclear anapole arises due to
nucleon-nucleon interaction, mediated by meson ex-
change, where one of the nucleon-meson vertexes is
strong and another is weak and P-violating. Thus,
determination of anapole moments from atomic parity
violation provides an important window into hadronic
PNC (Haxton and Wieman, 2001). The innards of
the anapole bubble in Fig. 5(c) are shown in Fig. 7
of the review by Haxton and Wieman (2001). The
nuclear-physics approach is to characterize weak meson-
nucleon couplings in terms of parameters of Desplan-
ques, Donoghue and Holstein (DDH) (Desplanques et al.

, who deduced SM estimates of their values. These
six hadronic PNC parameters are , h , h , where
the subscript ( ) indicates meson type and the su-
perscript stands for isoscalar (0), isovector (1), or isoten-
sor (2). We refer the reader to Haxton and Wieman
(2001) for a detailed review of nuclear structure cal-
culations of NAMs within the DDH parameterization.
The e ective field theory parameterizations of hadronic
PNC, an alternative to DDH, are also discussed (Ramsey-
Musolf and Page, 2006), although NAM analysis in this
framework remains to be carried out. It should be
pointed out that a more recent review (Haxton and Hol-
stein, 2013) omits the Cs result. These authors explain
the omission by the fact that the accuracy of the con-
straints on the nucleon-nucleon PNC interaction derived

FIG. 8 (Color online) Constraints on combinations of par-
ity violating meson couplings ( 10 ) derived from Cs anapole
moment (yellow band) and nuclear experiments. Bands have
a width of one standard deviation. Best value predicted by
the DDH analysis is also shown. This figure combines Cs
NAM band from Haxton and Wieman (2001) with more re-
cent nuclear-physics constraints figure from Haxton and Hol-
stein (2013).

from the NAM experiments is somewhat di cult to as-
sess due to complex nuclear polarizability issues.

The derived bounds (Haxton and Wieman, 2001; Hax-
ton and Holstein, 2013) on PNC meson couplings are
shown in Fig. 8. The 133Cs APV result is shown in addi-
tion to constraints from scattering of polarized protons on
unpolarized proton and He targets and emission of cir-
cularly polarized photons from 18F and 19F nuclei. The
area colored red lies at the intersection of nuclear ex-
perimental bands. There is some tension with the Cs
anapole moment result, although the Cs result is consis-
tent with “reasonable ranges” of the DDH parameters.

ton and Wieman (2001) point out that additional
APV experiments with unpaired-neutron nuclei would
produce a band perpendicular to the Cs band (the 133Cs
anapole moment is primarily due to a valence proton).
This provides strong motivation for the ongoing exper-
iments to measure nuclear-spin-dependent APV e ects
in nuclei with unpaired neutrons such as 171Yb (Leefer
et al., 2014), 212Fr (Aubin et al., 2013), and 137Ba (De-
Mille et al., 2008a).
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curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.
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formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,
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which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator
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which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by
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the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,
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which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term
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PNC
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

=1
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which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by
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gs I I
(1)
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Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant
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II10 II

+ 1
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gs ||
√
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(ˆ (1)||
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Egs − Ej

〈ψj I
−π|V PNC

NN |ψgs I
π〉

Here, (II10 II)=I/
√

+ 1).
We have also performed NCSM calculations for the

matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax≃ −

Low lying states of opposite parity 
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[20]. An advantage of this method is in the possibility
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which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
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from Ref. [51]. In NCSM, when the gs is calculated
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— Bring matrix to tri-diagonal form (v1, v2 … orthonormal, H  Hermitian)

—  nth iteration computes 2nth moment

— Eigenvalues converge to extreme (largest in magnitude) values

— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)
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We use the relativistic coupled cluster approach to de-
termine the PV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.
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In the NCSM, nuclei are considered to be systems of
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric -nucleon
harmonic oscillator (HO) states. The basis contains up
to max HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,
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which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator
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which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by
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with

gs I I
(1)
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Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant
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matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax≃ −
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— Bring matrix to tri-diagonal form (v1, v2 … orthonormal, H  Hermitian)

—  nth iteration computes 2nth moment

— Eigenvalues converge to extreme (largest in magnitude) values

— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)

to have a Gaussian shape. PV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine the PV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.
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of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric -nucleon
harmonic oscillator (HO) states. The basis contains up
to max HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,
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the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of
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[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.
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— Bring matrix to tri-diagonal form (v1, v2 … orthonormal, H  Hermitian)

—  nth iteration computes 2nth moment

— Eigenvalues converge to extreme (largest in magnitude) values

— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)

to have a Gaussian shape. PV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine the PV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.
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to max HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,
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which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term
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To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator
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which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by
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Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
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— Eigenvalues converge to extreme (largest in magnitude) values

— ~ 150-200 iterations needed for 10 eigenvalues (even for 109 states)
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termine the PV coupling constants of the BeNC, BeCN,
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accuracy; these results are presented in Section IV. This
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Figure 1. The polarization contribution to He EDM (in fm)
due to the -exchange PTV NN interaction (5). Dependence
on the NCSM basis size characterized by max for two HO

quencies is shown. Chiral N LO PTC NN interaction from
Ref. [35] was used.

with the electric dipole moment operator projected in the
-direction.

To compute matrix elements of the PTV
NN interaction

(5) and solve the equation (6), we adapted codes used for
calculations of anapole moments of light nuclei reported
in Ref. [48]. To benchmark our codes, we calculated the
EDM of He using PTC chiral N LO NN interaction [35]
without any renormalization as He EDM results for this
interaction together with the PTV interaction (5) were
published in Ref. [17]. The NCSM basis convergence for
the polarization contribution to He EDM is shown in
Fig. 1 and our (1) and (pol) results are summarized
in Table I. The (pol)

max convergence is quite satis-
factory while that of (1) is still faster. In Fig. 1, the
odd max values correspond to the unnatural states in
Eq. (4), i.e., the largest space for the ground-state was

max=16. While our (1) results agree with those re-
ported in Ref. [17] (Table 1, the EFT NN column in
that paper), the present (pol) results are smaller by a
factor of 1 2 compared to Ref. [17] (Table 2, the EFT
NN columns in that paper). It should be noted that the
same 1 2 discrepancy was reported in Ref. [20] for the
isoscalar and isovector terms, while a discrepancy of 1
was found for the isotensor terms. Similarly, a factor
of 1 2 di erence was found in Ref. [25] although for all
the terms. Our results are then consistent with those of
Ref. [25]. The NCSM was applied in Ref. [17] (and also in

11
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Figure 2. The polarization contribution to Li and Be EDM
(in fm) due to the isovector -exchange PTV NN interac-
tion (5). Dependence on the NCSM basis size characterized
by max is shown. SRG-evolved chiral NN+3N(lnl) PTC in-
teraction from Ref. [34] was used. The HO frequency =20
MeV was used.

Ref. [19]). However, the Jacobi-coordinate HO basis was
employed as opposed to the SD HO basis used here, i.e.,
di erent codes were utilized. We plan to reexamine the
codes used in Ref. [17] to investigate the issue further.
Basis-size convergence of the polarization contribu-

tions to the EDM for -shell nuclei is also quite reasonable
and comparable to that of the anapole moments [48]. In
Fig. 2, we show the max convergence of the isovector
-exchange contribution for Li and Be as a representa-

tive example. Again, the the odd max values correspond
to the unnatural-parity states in Eq. (4). The largest
spaces that we were able to reach for Li were max=11,
while for Be max=9. For 10 11B, our calculations have
been performed up to max=7. For 13C, 14 15N we also
reached max=7 basis space. However, we applied the
importance truncation [50, 51] at max=7 for these iso-
topes. The 19F is on the borderline of NCSM applica-
bility. Only calculations up to max=5 were performed
although without any importance truncation. The
scheme dimension was 189 million in this case.

Our (1) and (pol) results for all considered nuclei are
shown in Table I. In Fig. 3, we display all the calculated
polarization contributions to the EDMs of the -shell sta-
ble nuclei and 19F. We can evaluate the uncertainties of
our results due to the basis size convergence at about

(20% for 19F). The other sources of uncertainty are
renormalization and incompleteness of the transition op-
erators and the uncertainties due to the description of the
nuclear PTC and PTV forces. A rough estimate of the
accuracy of our calculations can be obtained by a com-
parison of the calculated and experimental magnetic mo-
ments shown in the last two columns of Table I. For 19F,
we obtain in addition the magnetic moment +3.73
for the 5 excited state that can be compared to the
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To compute matrix elements of the PTV
NN interaction
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Eq. (4), i.e., the largest space for the ground-state was

max=16. While our (1) results agree with those re-
ported in Ref. [17] (Table 1, the EFT NN column in
that paper), the present (pol) results are smaller by a
factor of 1 2 compared to Ref. [17] (Table 2, the EFT
NN columns in that paper). It should be noted that the
same 1 2 discrepancy was reported in Ref. [20] for the
isoscalar and isovector terms, while a discrepancy of 1
was found for the isotensor terms. Similarly, a factor
of 1 2 di erence was found in Ref. [25] although for all
the terms. Our results are then consistent with those of
Ref. [25]. The NCSM was applied in Ref. [17] (and also in

1 3 5 7 9 11
N

max

0

0.005

0.01

0.015

0.02

0.025

D
(p

o
l)
/G -

1 π
 [
e
 f

m
]

6
Li

9
Be

Figure 2. The polarization contribution to Li and Be EDM
(in fm) due to the isovector -exchange PTV NN interac-
tion (5). Dependence on the NCSM basis size characterized
by max is shown. SRG-evolved chiral NN+3N(lnl) PTC in-
teraction from Ref. [34] was used. The HO frequency =20
MeV was used.

Ref. [19]). However, the Jacobi-coordinate HO basis was
employed as opposed to the SD HO basis used here, i.e.,
di erent codes were utilized. We plan to reexamine the
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spaces that we were able to reach for Li were max=11,
while for Be max=9. For 10 11B, our calculations have
been performed up to max=7. For 13C, 14 15N we also
reached max=7 basis space. However, we applied the
importance truncation [50, 51] at max=7 for these iso-
topes. The 19F is on the borderline of NCSM applica-
bility. Only calculations up to max=5 were performed
although without any importance truncation. The
scheme dimension was 189 million in this case.
Our (1) and (pol) results for all considered nuclei are
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our results due to the basis size convergence at about

(20% for 19F). The other sources of uncertainty are
renormalization and incompleteness of the transition op-
erators and the uncertainties due to the description of the
nuclear PTC and PTV forces. A rough estimate of the
accuracy of our calculations can be obtained by a com-
parison of the calculated and experimental magnetic mo-
ments shown in the last two columns of Table I. For 19F,
we obtain in addition the magnetic moment +3.73
for the 5 excited state that can be compared to the
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to have a Gaussian shape. PV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine the PV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR

CALCULATIONS

In the NCSM, nuclei are considered to be systems of
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric -nucleon
harmonic oscillator (HO) states. The basis contains up
to max HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

|ψgs I〉 = |ψgs I
π〉+

∑

j

|ψj I
−π〉 (9)

× 1

Egs − Ej

〈ψj I
−π|V PNC

NN |ψgs I
π〉

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term

gs gs
PNC
NN gs (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

=1

(11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by

(12)

with

gs I I
(1)
s, gs I I (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant

mc

II10 II

+ 1
(14)

gs ||
=1

(ˆ (1)||

gs

PNC
NN gs

Here, (II10 II)=I/ + 1).
We have also performed NCSM calculations for the

matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax≃ −

1

Egs − EjE
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to have a Gaussian shape. PV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine the PV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR

CALCULATIONS

In the NCSM, nuclei are considered to be systems of
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric -nucleon
harmonic oscillator (HO) states. The basis contains up
to max HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

|ψgs I〉 = |ψgs I
π〉+

∑

j

|ψj I
−π〉 (9)

× 1

Egs − Ej

〈ψj I
−π|V PNC

NN |ψgs I
π〉

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term

gs gs
PNC
NN gs (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

=1

(11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by

(12)

with

gs I I
(1)
s, gs I I (13)

Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant
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II10 II

+ 1
(14)

gs ||
=1

(ˆ (1)||
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PNC
NN gs

Here, (II10 II)=I/ + 1).
We have also performed NCSM calculations for the

matrix elements of the spin operators that serve as in-
put for the calculation of the coupling constant ax≃ −
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to have a Gaussian shape. PV can not be measured
and has to be provided from sophisticated molecular cal-
culations.

We use the relativistic coupled cluster approach to de-
termine the PV coupling constants of the BeNC, BeCN,
MgNC, and MgCN molecules with the highest possible
accuracy; these results are presented in Section IV. This
approach is considered to be the most powerful and ac-
curate method for computational investigation of atomic
and molecular properties. In the context of the NSD-PV
is was previously applied to RaF [42], HgH [43], and BaF
[20]. An advantage of this method is in the possibility
of setting uncertainty estimates on the obtained results,
which we also do in the present work. To the best of
our knowledge, no prior numerical investigations of the
sensitivity of the above systems to the NSD-PV e ects
are available.

III. NO-CORE SHELL MODEL NUCLEAR

CALCULATIONS

In the NCSM, nuclei are considered to be systems of
nonrelativistic point-like nucleons interacting via realis-
tic two- and three-body interactions. Each nucleon is an
active degree of freedom and the translational invariance
of observables, the angular momentum, and the parity
of the nucleus are conserved. The many-body wave func-
tion is expanded over a basis of antisymmetric -nucleon
harmonic oscillator (HO) states. The basis contains up
to max HO excitations above the lowest possible Pauli
configuration and depends on an additional parameter
the frequency of the HO well.

The only input for the present NCSM calculations
was the Hamiltonian from Ref. [44] consisting of chiral
nucleon-nucleon (NN) interaction obtained at the fourth
order of chiral perturbation expansion (N LO) [45] and
chiral three-nucleon (3N) interaction at the N LO or-
der denoted NN N LO + 3N(lnl). For a more e cient
convergence, the Hamiltonian was renormalized by the
Similarity-Renormalization-Group (SRG) unitary trans-
formation [46, 47] with the evolution parameter SRG=2
fm . For Be, the largest basis space we were able
to reach was max=9, while for the other p-shell nu-
clei we calculated up to max=7 using the importance
truncation [48, 49] for max=7. The 25Mg is on the bor-
derline of NCSM applicability. Only calculations up to

max=3 were performed using importance truncation for

max=3. The m-scheme dimensions of the largest basis
spaces were of the order of 10 . The HO frequency of

=20 MeV, optimised in Ref. [44] was used.

The natural (i.e., ground-state) parity eigenstates are
obtained in the even max spaces while the unnatural
parity eigenstates in the odd max spaces. The parity
non-conserving (PNC) NN interaction admixes the un-

natural parity states in the ground state,

|ψgs I〉 = |ψgs I
π〉+

∑

j

|ψj I
−π〉 (9)

× 1

Egs − Ej

〈ψj I
−π|V PNC

NN |ψgs I
π〉

which then gives rise to the anapole moment. We used
the Desplanques, Donoghue and Holstein (DDH) PNC
NN interaction of Ref. [50] with their recommended pa-
rameter values except for the =2 10 taken
from Ref. [51]. In NCSM, when the gs is calculated
in max space, the corresponding unnatural parity states
appearing in Eq. (9) are obtained in max+1 space. It is
not neccessary to compute many excited unnatural par-
ity states as Eq. (9) suggests. Rather, the wave function

gs is obtained by solving the Schrödinger equation
with an inhomogeneous term

gs gs
PNC
NN gs (10)

To invert this equation, we apply the Lanczos algo-
rithm [52–54].
In the presented calculations, we use the spin part of

the anapole operator

=1

(11)

which gives the dominant contribution to the anapole
moment [55]. In Eq. (11), is the nucleon mass and

is the nucleon magnetic moment in units of nuclear
magneton, i.e., (1 2+ z,i) + (1 z,i).
The relationship between and is given by

(12)

with
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Using Eqs. (9), (11), (12), and (13) we calculate the
anapole moment similarly to Ref. [56] and find for the
dimensionless coupling constant
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p,z +0 n,z . The spin operator matrix elements
are defined as

〈sν,z〉≡〈ψgs I
πIz=I|ŝν,z|ψgs I

πIz=I〉, (15)

with p, n

Our results for the anapole moment coupling constants
and ax in Be, 13C, 14 15N and 25Mg are summarised

in Table I. Overall, the basis size convergence of the re-
sults is quite reasonable, as shown in Fig. 2 presenting
dependence of of Be on the NCSM basis size charac-
terised by max. We can thus evaluate the uncertainties
due to the basis size convergence at about 10% (25% for
25Mg). The other sources of uncertainty are renormaliza-
tion and incompleteness of the transition operators and
uncertainties due to the description of nuclear and the
parity non-conserving forces.

In Table I, we also present NCSM results for magnetic
moments, where we can compare our results with exper-
imental values. Overall, we find a qualitative agreement
with experiment with some underestimation of absolute
values. This is not surprising, as the present calculations
included only the one-body M1 operator. It is well estab-
lished that two-body currents contribute non-negligibly
to M1 matrix elements in light nuclei [57]. While the
dominant sources of uncertainty are di erent for the cal-
culated dipole moments and the NSD-PV parameters, we
can still use the deviation of the former from experiment
as a rough estimate of the accuracy of the calculations of
the latter.

Table I also contains the single particle model esti-
mates of the di erent contributions to NSD parity violat-
ing constant ax hfs obtained using equations
(2-5) for nuclei in molecules considered in the present
work. Note that the 14N nucleus contains a valence pro-
ton and a valence neutron, both in the orbital with

= 1. The nuclear magnetic moment =0.404 is
given, to a good accuracy, by the sum of the magnetic mo-
ments of 13C (with valence neutron) and 15N (with
valence proton). Therefore, we took the sum of the
valence proton and neutron contributions for the other
constants.

The NCSM results are higher in absolute values
than the single particle model ones by a factor of 2–3,
except for 14N. The largest di erences are found in the
mid-shell nuclei Be, 13C and 25Mg, for which the single-
particle model has limited applicability. The 14N anapole
moment is proportional to the sum of the 15N and 13

anapole moments that have opposite signs and conse-
quently it is particularly sensitive to the PNC

NN parametri-
sation and the other computational details.

The NCSM ax results are close to the single-particle
model for 13C and 15N while they di er more substan-
tially for the mid-shell Be and 25Mg. For 14N, the ax

as p,z〉≃〈 n,z

The results obtained within the single particle model
predict that the boson exchange constant ax domi-
nates for the light nuclei containing a valence neutron,
that is 25Mg, 13C, and Be are significantly more sensi-

Be 13 14 15 25Mg

expt -1.177 0.702 0.404 -0.283 -0.855

NCSM calculations

-1.05 0.44 0.37 -0.25 -0.50

0.016 -0.028 0.036 0.088 0.035

p,z 0.009 -0.049 -0.183 -0.148 0.06

n,z 0.360 -0.141 -0.1815 0.004 0.30

ax 0.035 -0.019 0.0002 0.015 0.024

0.050 -0.046 0.037 0.103 0.057

Single particle model calculations

V. p. n n n p p n
V. o.

-2 1 1 1 -3

0.007 -0.007 0.035 0.044 0.014

ax 0.050 -0.017 0.0 0.017 0.050

hfs -0.001 0.001 0.0006 -0.0004 -0.002

0.056 -0.023 0.036 0.060 0.062

TABLE I: Magnetic moments (in ), anapole
moment coupling constants, spin operator matrix
elements, and ax coupling constants for Be, 13C,

14 15N and 25Mg obtained within NCSM. The results
obtained using the single particle model are also shown,
along with the valence particle (V.p.) and the valence

orbital (V.o) for each nucleus.
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max

NCSM 

SP model

Be

FIG. 2: Dependence of the anapole moment coupling
constant for Be on the size of the NCSM basis

characterized by max. The dashed line represents
obtained in the single-particle model.

tive to ax, while in the 14N and 15N nuclei the anapole
moment e ect dominates. However, a di erent picture
emerges from the NCSM calculations: ax still domi-
nates in Be, while 14N and 15N are more sensitive to
the anapole moments, and 25Mg and 13C have roughly
the same sensitivities to the two e ects. Furthermore,
within the single particle model, the total NSD-PV ef-
fect is roughly equivalent in Be, 15N, 25Mg, while the

possible to measure NSD-PV e ects in all three nuclei of
these molecules, which would allow the various underly-
ing parity violating e ects to be deconvolved.

Light triatomic molecules are especially attractive can-
didates for precision measurements of NSD-PV. Proper
interpretation of an NSD-PV measurement relies on
accurate molecular and nuclear structure parameters.
High-accuracy theoretical determination of the molecu-
lar properties becomes more computationally tractable
for lighter systems, and, even more importantly, nuclear
calculations are significantly more accurate and more re-
liable than in heavy elements. Here, we perform rig-
orous, high accuracy calculations of the molecular and
nuclear parameters required to interpret NSD-PV mea-
surements in molecules composed of light elements Be,
C, N, and Mg. We find that the parameters characteriz-
ing the molecule-specific sensitivity are in line with those
of isoelectronic diatomic molecules [19, 20], as well as
prior semiemprical estimates [18, 21]. However, our ab

initio nuclear calculations find the nuclear anapole mo-
ment interactions to be much stronger (typically 2 to 3
times larger) than predicted by a standard single-particle
model [7, 8, 22, 23], while NSD-PV e ects attributed
to boson exchange are typically reduced. This high-
lights the necessity of including many-body e ects for
correctly interpreting NSD-PV measurements, even in
light nuclear systems. Moreover, the Be and Mg cyanide
and isocyanide molecules considered here have favorable
laser cooling and trapping properties which are essential
to enabling high-sensitivity measurements through long
interaction time.

II. THEORY

The NSD-PV interaction with the atomic or molecular
electrons can be defined by the following e ective Hamil-
tonian [8, 24],

NSD-PV (1)

where is the Fermi weak interaction coupling con-
stant. The Dirac matrices are defined in the usual
way, is the nuclear spin, and ) is the nuclear den-
sity distribution function normalized to 1.

In a given nucleus, various underlying electroweak in-
teractions contribute to the total NSD-PV e ect:

ax hfs. In this section, we proceed by consider-
ing each of these three terms in turn, then explore how
to evaluate Eq. (1) in a molecular system.

The e ective coupling constant describes the
strength of the nuclear anapole moment interaction. In
a simple valence nucleon model, takes the following
form [8, 24],

10 + 1

15 10
+ 1

(2)

where is the fine structure constant, is
the proton mass, 2 fm is the scale of the nuclear
radius, =2.8 for proton, =-1.9 for neutron) is
the nucleon magnetic moment in nuclear magnetons,
is the mass number, and = ( + 1 2)( 1) +1

with being the orbital angular momentum of the ex-
ternal unpaired nucleon. The anapole contribution also
depends on the poorly-known dimensionless constants

p, n), which characterize the nucleon-nucleus weak
potential. In Refs. [8, 25] these constants were expressed
in terms of the meson exchange model, and in Ref. [26]
the results based on di erent calculations of the meson-
nucleon interactions are presented. Using the most recent
experimental data [27], the authors of Ref. [26] obtained

= 3 8 and = 0 6. In the following, we
will use central points = 3 4 and = 0 9 for the nu-
merical estimates. We note that this updated estimate
of has opposite sign compared to the one used in ear-
lier molecule NSD-PV considerations [18, 28]. One of the
aims of the measurements of NSD-PV e ects is to extract
the accurate values of these constants.
The nuclear anapole moment of 133Cs was confirmed

at a 7 significance level by Wood et al., with the value
of [5]. A more accurate theorecti-
cal treatment performed after the experiment obtained
a similar value [25]. Further NSD-PV measurements in
Cs with improved accuracy have been proposed [29, 30],
and additional experiments have been designed to mea-
sure the anapole moment in other atoms with unpaired
nucleons, such as 137Ba (using the BaF molecule) [15],
163Dy [31], 171Yb [32], and 212Fr [33].

The second contribution, ax, is associated with the
exchange interaction between the electron vector and the
nucleon axial-vector currents ( ) [9]; the magnitude
of ax within the nuclear shell model is defined as [7]

ax
+ 1

(3)

where represents the coupling and takes the
value ≡ − 2p for proton and ≡ − 2n for neutron
[34]. Here, and are given by

C2p = −C2n = gA(1− 4 sin2 θW )/2 ≃ 0.05, (4)

with 26 being a scale factor accounting for the
partially conserved axial vector current, and sin

5) [35].
The PVDIS experiment [10] combined with the Cs

PV measurement [5] provides the best determination
to date of the linear combination 2 and

standing for the up and the down quarks, respec-
tively) with a 50% uncertainty, with substantial improve-
ment expected from the upcoming SoLID experiment
[11]; the orthogonal quadrature is currently known with
several times less precision. Measurements of NSD-PV
in light molecule systems are highly complimentary to
the on-going scattering-based measurements. Because
Be and 25Mg possess an unpaired neutron, measure-
ments of NSD-PV in these nuclei are primarily sensi-
tive to ≃ − + 0 [36]. Combined with

κax ≃ −2C2p〈sp,z〉 − 2C2n〈sn,z〉 ≃ −0.1〈sp,z〉+ 0.1〈sn,z〉
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