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!Framework in a nutshell

effective chiral Lagrangian ℒeff(π, N )

— S-matrix (ππ, πN, ππN, …)

approximate chiral SU(2)   SU(2)  symmetry of QCDL × R

— nuclear forces and currents
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finite-volume methods

effective chiral Lagrangian ℒ (π

approximate chiral SU(2)2)  SU(2)2)L × R

Standard Model (EFT)

proton nuclei neutron stars

Hadron/nuclear structure and dynamics

EFT

Schwinger-Dyson , large-Nc, …

EFT (ChPT): Q ∈ {Mπ /Λb, | ⃗p | /Λb}

TOPT, MUT, S-matching

(finite-cutoff) chiral EFT
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and

pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles

refer to the vertices of dimension 0, 1, 2, 3 and 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of , where refers

to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the

derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can

be easily and efficiently resummed by solving the LS integral equation (or its generalizations in

the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs

which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the

essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of

all possible irreducible contributions to the scattering amplitude can be viewed as the interaction

part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach

outlined above is straightforwardly generalizable to reactions involving external sources and allows

one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-

clear force at a given order by looking at Feynman rules for the chiral Lagrangian and applying

Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of

visualization of the corresponding contributions and do not have the meaning of Feynman graphs.

In particular, one needs to separate out the irreducible pieces in order to avoid double counting.

Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),

the resulting contributions are either reducible or suppressed by one power of [25]. As an

immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of

many-body forces [26], the feature, that has always been assumed but could be justified only in the

context of chiral EFT.
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If we now divide the contact LECs obtained in the fit by their expected sizes in

, we consequently should obtain values of unit magnitude. Fig. 7 shows the absolute values of the

at N LO in these natural units for all considered values of the cutoff = 650 . As

be seen, all LECs are indeed of natural size with in magnitude.

is especially true for the softest cutoff = 400 , for which also most of the other-

to be slightly larger than at higher values of the cutoff. This indicates that at = 400 w,

f artifacts start to increase, leading to a lower effective breakdown scale compared to the other

values for the at N LO to be of

a perfectly natural size. Therefore, even though we have emphasized their importance in describing some

1 description of the database, their actual

expectations from naive dimensional analysis (i.e. Weinberg) power counting,

is no need to promote them to a lower order.

In addition to the absolute of the central values, Fig. 7 also shows the statistical uncertainties of the

as determined from the covariance matrix of the fit (expressed in their natural units). When

to al relative errors tend to increase. This is in accordance with the

of higher-order contributions as predicted by power counting. One also notices

vector partial waves, because these parameters are mainly
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the resulting contributions to the amplitude are enhanced by powers of , where refers

to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the

derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can

be easily and efficiently resummed by solving the LS integral equation (or its generalizations in

the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs

which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the

essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of

all possible irreducible contributions to the scattering amplitude can be viewed as the interaction

part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach

outlined above is straightforwardly generalizable to reactions involving external sources and allows

one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-

clear force at a given order by looking at Feynman rules for the chiral Lagrangian and applying

Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of

visualization of the corresponding contributions and do not have the meaning of Feynman graphs.

In particular, one needs to separate out the irreducible pieces in order to avoid double counting.

Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),

the resulting contributions are either reducible or suppressed by one power of [25]. As an

immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of

many-body forces [26], the feature, that has always been assumed but could be justified only in the

context of chiral EFT.
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Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
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Symmetry-preserving regularization (in progress…)
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visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
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Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
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consistently with the SCS NN potentials. The need to

perform regularization of the 3 F in coordinate space

was found to introduce significant computational over-
head for its numerical implementation, which was one

of the motivations to reformulate the SCS regulariza-

tion scheme to momentum space [83]. Notice that par-

tial wave decomposition of a general 3 F can be car-

ried out in an automated way by numerically perform-

ing the required angular integrations as described in

Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3 F at N LO depends

on the LECs and that need to be determined

from few-nucleon data. It is customary to fix the lin-

ear combination of these LECs to reproduce the

binding energy, which determines as a function of
. To fix the second LECs, di erent observables have

been proposed in the literature including the Nd dou-

blet scattering length [8, 16], H beta decay [141], He

binding energy [142], charge radii of the = 3 4 nu-

clei and properties of few- and many-nucleon systems

[143, 144, 145]. Clearly, to allow for the most stringent

test of the nuclear Hamiltonian, the LECs should ide-

ally be fixed from 3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-

tering length as well as the Nd total and di erential
cross sections at the energies of lab = 70, 108 and

MeV have been considered. Taking into account

both the experimental errors and the EFT truncation

uncertainty, the strongest constraint on was found

to result from the requirement to reproduce the proton-

deuteron (pd) di erential cross section minimum using

the data from Ref. [146]. The resulting Hamiltonian was

then used to calculateNd elastic scattering observables,

ground state energies and selected excitation energies of

-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3 F was found to significantly improve

the description of experimental data. A detailed analy-

sis of elastic Nd scattering and breakup using the same
iltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of

Ref. [83] along with the consistently regularized N LO

Fs, utilizing Bayesian methods for quantifying EFT

truncation errors and extending the range of consid-

ered observables. In Fig. 5, we show selected results for

Nd elastic scattering observables at lab = 135 MeV,

which may serve as representative examples. Given that
the LECs and are fixed from the H binding

energy and the di erential cross section minimum at

lab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]

are mostly in agreement with the calculations (within
errors), but the N LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di erential cross section,
deuteron vector analyzing power and deuteron tensor ana-
lyzing powers xz and xx in elastic neutron-deuteron scat-
tering at lab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N LO results at the 1 confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2 -intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N LO , supplemented with the N LO 3 F (with the
appropriately re-adjusted LECs and ). In all calcula-
tions, the cuto is chosen to be = 450 MeV.

moderate energy appears to be rather large. The de-

scription of Nd data at N LO is qualitatively similar

to the one for proton-proton scattering as a compara-

ble energy, shown in Fig. 2. Based on the results in the

NN system, it is expected that taking into account the
F up through N LO would allow one to achieve a

precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data

reported in Refs. [83, 85].

It is interesting to explore the impact of corrections

to the NN force beyond N LO. To this aim, a set of cal-

culations based on the SMS NN potentials up through

LO , supplemented with the N LO 3 F, has been

performed in Ref. [149]. In all cases, the LECs and

have been fixed following the standard LENPIC fit-

ting protocol described above. For the considered Nd

scattering observables, the inclusion of corrections to

the NN force beyond N LO changes the central N LO

predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and

dotted lines di er by N LO terms, and it is comfort-
ing to see that the di erences between these lines are
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consistently with the SCS NN potentials. The need to

perform regularization of the 3 F in coordinate space

was found to introduce significant computational over-
head for its numerical implementation, which was one

of the motivations to reformulate the SCS regulariza-

tion scheme to momentum space [83]. Notice that par-

tial wave decomposition of a general 3 F can be car-

ried out in an automated way by numerically perform-

ing the required angular integrations as described in

Refs. [139, 140], see also Ref. [26].
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on the LECs and that need to be determined
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binding energy, which determines as a function of

. To fix the second LECs, di erent observables have

been proposed in the literature including the Nd dou-

blet scattering length [8, 16], H beta decay [141], He
binding energy [142], charge radii of the = 3 4 nu-

clei and properties of few- and many-nucleon systems

[143, 144, 145]. Clearly, to allow for the most stringent

test of the nuclear Hamiltonian, the LECs should ide-

ally be fixed from 3 observables. In Ref. [138], a

variety of observables including the Nd doublet scat-

tering length as well as the Nd total and di erential
cross sections at the energies of lab = 70, 108 and
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both the experimental errors and the EFT truncation

uncertainty, the strongest constraint on was found

to result from the requirement to reproduce the proton-

deuteron (pd) di erential cross section minimum using

the data from Ref. [146]. The resulting Hamiltonian was

then used to calculateNd elastic scattering observables,

ground state energies and selected excitation energies of

-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3 F was found to significantly improve

the description of experimental data. A detailed analy-

sis of elastic Nd scattering and breakup using the same
iltonian is presented in Ref. [147].
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Ref. [83] along with the consistently regularized N LO
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truncation errors and extending the range of consid-

ered observables. In Fig. 5, we show selected results for

Nd elastic scattering observables at lab = 135 MeV,

which may serve as representative examples. Given that

the LECs and are fixed from the H binding

energy and the di erential cross section minimum at

lab = 70 MeV, the shown results are to be regarded
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are mostly in agreement with the calculations (within
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Fig. 5 ChEFT predictions for the di erential cross section,
deuteron vector analyzing power and deuteron tensor ana-
lyzing powers xz and xx in elastic neutron-deuteron scat-
tering at lab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N LO results at the 1 confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2 -intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N LO , supplemented with the N LO 3 F (with the
appropriately re-adjusted LECs and ). In all calcula-
tions, the cuto is chosen to be = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N LO is qualitatively similar

to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the

F up through N LO would allow one to achieve a

precise description of Nd scattering data, comparable

to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections

to the NN force beyond N LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through

LO , supplemented with the N LO 3 F, has been
performed in Ref. [149]. In all cases, the LECs and

have been fixed following the standard LENPIC fit-

ting protocol described above. For the considered Nd

scattering observables, the inclusion of corrections to

the NN force beyond N LO changes the central N LO

predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and

dotted lines di er by N LO terms, and it is comfort-
ing to see that the di erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3 F in coordinate space

was found to introduce significant computational over-

head for its numerical implementation, which was one

of the motivations to reformulate the SCS regulariza-

tion scheme to momentum space [83]. Notice that par-

tial wave decomposition of a general 3 F can be car-

ried out in an automated way by numerically perform-

ing the required angular integrations as described in

Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3 F at N LO depends

on the LECs and that need to be determined

from few-nucleon data. It is customary to fix the lin-

ear combination of these LECs to reproduce the

binding energy, which determines as a function of

. To fix the second LECs, di erent observables have

been proposed in the literature including the Nd dou-

blet scattering length [8, 16], H beta decay [141], He

binding energy [142], charge radii of the = 3 4 nu-

clei and properties of few- and many-nucleon systems

[143, 144, 145]. Clearly, to allow for the most stringent

test of the nuclear Hamiltonian, the LECs should ide-

ally be fixed from 3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-

tering length as well as the Nd total and di erential

cross sections at the energies of lab = 70, 108 and

MeV have been considered. Taking into account

both the experimental errors and the EFT truncation

uncertainty, the strongest constraint on was found

to result from the requirement to reproduce the proton-

deuteron (pd) di erential cross section minimum using

the data from Ref. [146]. The resulting Hamiltonian was

then used to calculateNd elastic scattering observables,

ground state energies and selected excitation energies of

-shell nuclei up to 12C. For almost all considered nu-

clei, adding the 3 F was found to significantly improve

the description of experimental data. A detailed analy-

sis of elastic Nd scattering and breakup using the same

iltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by

employing the high-precision SMS NN interactions of

Ref. [83] along with the consistently regularized N LO

Fs, utilizing Bayesian methods for quantifying EFT

truncation errors and extending the range of consid-

ered observables. In Fig. 5, we show selected results for

Nd elastic scattering observables at lab = 135 MeV,

which may serve as representative examples. Given that

the LECs and are fixed from the H binding

energy and the di erential cross section minimum at

lab = 70 MeV, the shown results are to be regarded

as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N LO truncation uncertainty at this
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consistently with the SCS NN potentials. The need to

perform regularization of the 3 F in coordinate space

was found to introduce significant computational over-

head for its numerical implementation, which was one

of the motivations to reformulate the SCS regulariza-

tion scheme to momentum space [83]. Notice that par-

tial wave decomposition of a general 3 F can be car-

ried out in an automated way by numerically perform-

ing the required angular integrations as described in

Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3 F at N LO depends
on the LECs and that need to be determined

from few-nucleon data. It is customary to fix the lin-

ear combination of these LECs to reproduce the

binding energy, which determines as a function of

. To fix the second LECs, di erent observables have

been proposed in the literature including the Nd dou-

blet scattering length [8, 16], H beta decay [141], He

binding energy [142], charge radii of the = 3 4 nu-

clei and properties of few- and many-nucleon systems

[143, 144, 145]. Clearly, to allow for the most stringent

test of the nuclear Hamiltonian, the LECs should ide-

ally be fixed from 3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-

tering length as well as the Nd total and di erential
cross sections at the energies of lab = 70, 108 and

MeV have been considered. Taking into account

both the experimental errors and the EFT truncation

uncertainty, the strongest constraint on was found

to result from the requirement to reproduce the proton-

deuteron (pd) di erential cross section minimum using

the data from Ref. [146]. The resulting Hamiltonian was

then used to calculateNd elastic scattering observables,

ground state energies and selected excitation energies of

-shell nuclei up to 12C. For almost all considered nu-

clei, adding the 3 F was found to significantly improve

the description of experimental data. A detailed analy-

sis of elastic Nd scattering and breakup using the same

iltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of

Ref. [83] along with the consistently regularized N LO

Fs, utilizing Bayesian methods for quantifying EFT

truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for

Nd elastic scattering observables at lab = 135 MeV,

which may serve as representative examples. Given that
the LECs and are fixed from the H binding

energy and the di erential cross section minimum at

lab = 70 MeV, the shown results are to be regarded

as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within

errors), but the N LO truncation uncertainty at this
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deuteron vector analyzing power and deuteron tensor ana-
lyzing powers xz and xx in elastic neutron-deuteron scat-
tering at lab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N LO results at the 1 confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2 -intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N LO , supplemented with the N LO 3 F (with the
appropriately re-adjusted LECs and ). In all calcula-
tions, the cuto is chosen to be = 450 MeV.

moderate energy appears to be rather large. The de-

scription of Nd data at N LO is qualitatively similar

to the one for proton-proton scattering as a compara-

ble energy, shown in Fig. 2. Based on the results in the

NN system, it is expected that taking into account the

F up through N LO would allow one to achieve a
precise description of Nd scattering data, comparable

to that of the neutron-proton and proton-proton data

reported in Refs. [83, 85].

It is interesting to explore the impact of corrections

to the NN force beyond N LO. To this aim, a set of cal-

culations based on the SMS NN potentials up through

LO , supplemented with the N LO 3 F, has been

performed in Ref. [149]. In all cases, the LECs and

have been fixed following the standard LENPIC fit-

ting protocol described above. For the considered Nd

scattering observables, the inclusion of corrections to

the NN force beyond N LO changes the central N LO

predictions, shown by the dashed lines in Fig. 5, to the

dotted lines. The results visualized by the dashed and

dotted lines di er by N LO terms, and it is comfort-

ing to see that the di erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3 F in coordinate space

was found to introduce significant computational over-
head for its numerical implementation, which was one

of the motivations to reformulate the SCS regulariza-

tion scheme to momentum space [83]. Notice that par-

tial wave decomposition of a general 3 F can be car-

ried out in an automated way by numerically perform-

ing the required angular integrations as described in

Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3 F at N LO depends

on the LECs and that need to be determined

from few-nucleon data. It is customary to fix the lin-

ear combination of these LECs to reproduce the

binding energy, which determines as a function of
. To fix the second LECs, di erent observables have

been proposed in the literature including the Nd dou-

blet scattering length [8, 16], H beta decay [141], He
binding energy [142], charge radii of the = 3 4 nu-

clei and properties of few- and many-nucleon systems

[143, 144, 145]. Clearly, to allow for the most stringent

test of the nuclear Hamiltonian, the LECs should ide-

ally be fixed from 3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-

tering length as well as the Nd total and di erential

cross sections at the energies of lab = 70, 108 and
MeV have been considered. Taking into account

both the experimental errors and the EFT truncation

uncertainty, the strongest constraint on was found

to result from the requirement to reproduce the proton-

deuteron (pd) di erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was

then used to calculateNd elastic scattering observables,

ground state energies and selected excitation energies of

-shell nuclei up to 12C. For almost all considered nu-

clei, adding the 3 F was found to significantly improve

the description of experimental data. A detailed analy-

sis of elastic Nd scattering and breakup using the same

iltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by

employing the high-precision SMS NN interactions of

Ref. [83] along with the consistently regularized N LO
Fs, utilizing Bayesian methods for quantifying EFT

truncation errors and extending the range of consid-

ered observables. In Fig. 5, we show selected results for

Nd elastic scattering observables at lab = 135 MeV,

which may serve as representative examples. Given that
the LECs and are fixed from the H binding

energy and the di erential cross section minimum at

lab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within

errors), but the N LO truncation uncertainty at this
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bands show the NLO and N LO results at the 1 confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2 -intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N LO , supplemented with the N LO 3 F (with the
appropriately re-adjusted LECs and ). In all calcula-
tions, the cuto is chosen to be = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N LO is qualitatively similar

to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the

F up through N LO would allow one to achieve a
precise description of Nd scattering data, comparable

to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections

to the NN force beyond N LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through

LO , supplemented with the N LO 3 F, has been

performed in Ref. [149]. In all cases, the LECs and
have been fixed following the standard LENPIC fit-

ting protocol described above. For the considered Nd

scattering observables, the inclusion of corrections to

the NN force beyond N LO changes the central N LO

predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and

dotted lines di er by N LO terms, and it is comfort-

ing to see that the di erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3 F in coordinate space

was found to introduce significant computational over-
head for its numerical implementation, which was one

of the motivations to reformulate the SCS regulariza-

tion scheme to momentum space [83]. Notice that par-

tial wave decomposition of a general 3 F can be car-

ried out in an automated way by numerically perform-

ing the required angular integrations as described in

Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3 F at N LO depends

on the LECs and that need to be determined

from few-nucleon data. It is customary to fix the lin-

ear combination of these LECs to reproduce the

binding energy, which determines as a function of
. To fix the second LECs, di erent observables have

been proposed in the literature including the Nd dou-

blet scattering length [8, 16], H beta decay [141], He
binding energy [142], charge radii of the = 3 4 nu-

clei and properties of few- and many-nucleon systems

[143, 144, 145]. Clearly, to allow for the most stringent

test of the nuclear Hamiltonian, the LECs should ide-

ally be fixed from 3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-

tering length as well as the Nd total and di erential

cross sections at the energies of lab = 70, 108 and
MeV have been considered. Taking into account

both the experimental errors and the EFT truncation

uncertainty, the strongest constraint on was found

to result from the requirement to reproduce the proton-

deuteron (pd) di erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was

then used to calculateNd elastic scattering observables,

ground state energies and selected excitation energies of

-shell nuclei up to 12C. For almost all considered nu-

clei, adding the 3 F was found to significantly improve

the description of experimental data. A detailed analy-

sis of elastic Nd scattering and breakup using the same

iltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by

employing the high-precision SMS NN interactions of

Ref. [83] along with the consistently regularized N LO
Fs, utilizing Bayesian methods for quantifying EFT

truncation errors and extending the range of consid-

ered observables. In Fig. 5, we show selected results for

Nd elastic scattering observables at lab = 135 MeV,

which may serve as representative examples. Given that
the LECs and are fixed from the H binding

energy and the di erential cross section minimum at

lab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within

errors), but the N LO truncation uncertainty at this
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bands show the NLO and N LO results at the 1 confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2 -intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N LO , supplemented with the N LO 3 F (with the
appropriately re-adjusted LECs and ). In all calcula-
tions, the cuto is chosen to be = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N LO is qualitatively similar

to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the

F up through N LO would allow one to achieve a
precise description of Nd scattering data, comparable

to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections

to the NN force beyond N LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through

LO , supplemented with the N LO 3 F, has been

performed in Ref. [149]. In all cases, the LECs and
have been fixed following the standard LENPIC fit-

ting protocol described above. For the considered Nd

scattering observables, the inclusion of corrections to

the NN force beyond N LO changes the central N LO

predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and

dotted lines di er by N LO terms, and it is comfort-

ing to see that the di erences between these lines are
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consistently with the SCS NN potentials. The need to

perform regularization of the 3 F in coordinate space

was found to introduce significant computational over-
head for its numerical implementation, which was one

of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3 F can be car-

ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3 F at N LO depends
on the LECs and that need to be determined

from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the
binding energy, which determines as a function of

. To fix the second LECs, di erent observables have

been proposed in the literature including the Nd dou-
blet scattering length [8, 16], H beta decay [141], He

binding energy [142], charge radii of the = 3 4 nu-

clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-

ally be fixed from 3 observables. In Ref. [138], a

variety of observables including the Nd doublet scat-

tering length as well as the Nd total and di erential
cross sections at the energies of lab = 70, 108 and

MeV have been considered. Taking into account
both the experimental errors and the EFT truncation

uncertainty, the strongest constraint on was found

to result from the requirement to reproduce the proton-
deuteron (pd) di erential cross section minimum using

the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,

ground state energies and selected excitation energies of

-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3 F was found to significantly improve

the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same

iltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by

employing the high-precision SMS NN interactions of

Ref. [83] along with the consistently regularized N LO

Fs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for

Nd elastic scattering observables at lab = 135 MeV,
which may serve as representative examples. Given that

the LECs and are fixed from the H binding

energy and the di erential cross section minimum at

lab = 70 MeV, the shown results are to be regarded

as predictions. The experimental data from Ref. [146]

are mostly in agreement with the calculations (within

errors), but the N LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di erential cross section,
deuteron vector analyzing power and deuteron tensor ana-
lyzing powers xz and xx in elastic neutron-deuteron scat-
tering at lab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N LO results at the 1 confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2 -intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N LO , supplemented with the N LO 3 F (with the
appropriately re-adjusted LECs and ). In all calcula-
tions, the cuto is chosen to be = 450 MeV.

moderate energy appears to be rather large. The de-

scription of Nd data at N LO is qualitatively similar

to the one for proton-proton scattering as a compara-

ble energy, shown in Fig. 2. Based on the results in the

NN system, it is expected that taking into account the

F up through N LO would allow one to achieve a

precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data

reported in Refs. [83, 85].

It is interesting to explore the impact of corrections

to the NN force beyond N LO. To this aim, a set of cal-

culations based on the SMS NN potentials up through
LO , supplemented with the N LO 3 F, has been

performed in Ref. [149]. In all cases, the LECs and

have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd

scattering observables, the inclusion of corrections to

the NN force beyond N LO changes the central N LO
predictions, shown by the dashed lines in Fig. 5, to the

dotted lines. The results visualized by the dashed and

dotted lines di er by N LO terms, and it is comfort-
ing to see that the di erences between these lines are
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consistently with the SCS NN potentials. The need to

perform regularization of the 3 F in coordinate space

was found to introduce significant computational over-
head for its numerical implementation, which was one

of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3 F can be car-

ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3 F at N LO depends
on the LECs and that need to be determined

from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the
binding energy, which determines as a function of

. To fix the second LECs, di erent observables have

been proposed in the literature including the Nd dou-
blet scattering length [8, 16], H beta decay [141], He

binding energy [142], charge radii of the = 3 4 nu-

clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-

ally be fixed from 3 observables. In Ref. [138], a

variety of observables including the Nd doublet scat-

tering length as well as the Nd total and di erential
cross sections at the energies of lab = 70, 108 and

MeV have been considered. Taking into account
both the experimental errors and the EFT truncation

uncertainty, the strongest constraint on was found

to result from the requirement to reproduce the proton-
deuteron (pd) di erential cross section minimum using

the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,

ground state energies and selected excitation energies of

-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3 F was found to significantly improve

the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same

iltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by

employing the high-precision SMS NN interactions of

Ref. [83] along with the consistently regularized N LO

Fs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for

Nd elastic scattering observables at lab = 135 MeV,
which may serve as representative examples. Given that

the LECs and are fixed from the H binding

energy and the di erential cross section minimum at

lab = 70 MeV, the shown results are to be regarded

as predictions. The experimental data from Ref. [146]

are mostly in agreement with the calculations (within

errors), but the N LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di erential cross section,
deuteron vector analyzing power and deuteron tensor ana-
lyzing powers xz and xx in elastic neutron-deuteron scat-
tering at lab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N LO results at the 1 confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2 -intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N LO , supplemented with the N LO 3 F (with the
appropriately re-adjusted LECs and ). In all calcula-
tions, the cuto is chosen to be = 450 MeV.

moderate energy appears to be rather large. The de-

scription of Nd data at N LO is qualitatively similar

to the one for proton-proton scattering as a compara-

ble energy, shown in Fig. 2. Based on the results in the

NN system, it is expected that taking into account the

F up through N LO would allow one to achieve a

precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data

reported in Refs. [83, 85].

It is interesting to explore the impact of corrections

to the NN force beyond N LO. To this aim, a set of cal-

culations based on the SMS NN potentials up through
LO , supplemented with the N LO 3 F, has been

performed in Ref. [149]. In all cases, the LECs and

have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd

scattering observables, the inclusion of corrections to

the NN force beyond N LO changes the central N LO
predictions, shown by the dashed lines in Fig. 5, to the

dotted lines. The results visualized by the dashed and

dotted lines di er by N LO terms, and it is comfort-
ing to see that the di erences between these lines are
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Fig. 136 ground state energies of selected p-shell

nuclei at NLO and N LO using the chiral EFT NN potentials from

1712] together with the consistently regularized 3NF for

450 MeV. Black error bars indicate the uncertainties from the employed

many-body method, while shaded bars refer to the EFT truncation errors

(not shown for incomplete N LO calculations based on the NN force

only). Figure adapted from Ref. [1755

Beyond the two-nucleon system, the results are presently

limited to the N LO accuracy level due to the lack of con-

regularized many-body interactions and exchange

starting from N As discussed in Refs. [1680

1724 1742], using dimensional regularization in the deriva-

tion of nuclear interactions in combination with a cutoff reg-

ularization of the Schrödinger equation leads, in general, to

violations of chiral symmetry. This issue affects all loop con-

tributions to the 3NF and exchange current operators, which

therefore need to be re-derived using symmetry-preserving

cutoff regularization.

At the N LO level, the results for three-nucleon scatter-

ing observables [1745 1755 1757] and the spectra of light-

and medium-mass nuclei [1755 1757 1764] are mostly con-

experimental data within errors; see also Refs.

1765 1766] for review articles. As a representative example,

we show in Fig. 136 the calculated ground state energies of

p-shell nuclei from Ref. [1755].

ChEFT interactions and associated currents have been vig-

orously utilized in the past 10 years to study both static and

dynamical electroweak properties of nuclei, including elec-

tromagnetic form factors [852 1747 1768], electromagnetic

moments [1768 1770], electroweak decays [1771 1772],

and low-energy reactions such as electroweak captures[1773

1774]. ChEFT currents were first used in calculations of

nuclei with 3 in Ref. [1775] where they are used to

study magnetic moments and electromagnetic transitions in

Fig. 137 in nuclear magnetons for 9 nuclei

from Ref. [1767]. Black stars indicate the experimental values while

blue dots (red diamonds) represent Green’s Function Monte Carlo cal-

culations which include the LO one-body currents (one-body plus two-

body currents at N3LO) from ChEFT. For more details and references

to the experimental data see [1767

10 systems. Two-body currents were found to improve

the agreement between experimental data and theoretical

calculations. For example, a long standing under-prediction

1776] of the measured C magnetic moment by less sophisti-

cated theoretical calculations is explained by the 40% cor-

rection generated by two-body electromagnetic currents in

1775]. This enhancement can be appreciated in Fig. 137

by comparing blue dots (representing calculations based on

the single nucleon paradigm) and red diamonds (representing

calculations with two-body electromagnetic currents).

Axial currents are tested primarily in beta decays and

electron capture processes for which data are readily avail-

able and known for the most part with great accuracy. The

long-standing problem of the systematic over-prediction of

Gamow–Teller beta decay matrix elements [1778] in sim-

plified nuclear calculations, also known as the ‘ prob-

lem’, has been recently addressed by several groups [1772

1777 1779]. The authors of Refs. [1772 1777] calculated the

Gamow–Teller matrix elements in A = 6–10 nuclei account-

ing systematically for many-body effects in nuclear inter-

actions and coupling to the axial current, both derived in

ChEFT. The agreement of the calculations with the data is

excellent for 6 and 7 systems, with two-body cur-

rents providing a small ( 2%) contribution to the matrix

elements. Decays in the 8 and 10 systems, instead,

require further developments of the nuclear wave functions

1777 1779]. The ‘ -problem’ can be resolved in light

nuclei largely by correlation effects in the nuclear wave func-

tions. A summary of these calculations is reported in Fig. 138

Similar results for these light nuclei obtained using the No-

core shell model are reported in Ref. [1779].

LENPIC

Selected p-shell nuclei



PVTC and PVTV interactions



Hadronic DoFSM DoF

DDH [ , N, vector mesons][[[[[[ ,,,π

EFT [ , N, ( )]EEEEEEEEEEEEEEEEEEEχ [[[[[ ,,,,π (( )))))))))))))))))Δ
EFT [N]EEEEEEEEEEEEEπEEEEEEEEEEEEEEEEEEEEEEE

100 GeV

1 GeV

PVTC SM(EFT)
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Lattice QCD



NDA:  h1
π ∼ GFFπΛχ ∼ 10−6

DDH:            (best value)h1
π = 4.56 × 10−7

  (recommended range)h1
π = (0 − 11.4) × 10−7

LQCD:        ( )  Wasem ’12h1
π = (1.1 ± 0.5) × 10−7

Mπ = 390

  ( )  Petschlies et al. ’24h1
π = (8.08 ± 0.98) × 10−7

Mπ = 260

The PVTC chiral Lagrangian
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— nucleon-nucleon Lagrangian:

L
(0)
πN =

h1
π√
2
N †[π × τ ]3N + . . . , (1)

L
(1)
πN = − h0

V

2Fπ

N †
τ · π̇N − h1

V

Fπ

N †N π̇3 − 2h2
V

Fπ

Iab N
†τaN π̇b

− h1
A

F 2
π

N †#σN · [π × #∇π]3 +
h2
A

F 2
π

Iab N
†#σ ·

(

[π × #∇π]aτ b + (#∇πa) [π × τ ]b
)

N + . . . , (2)

(0)
. . . , (3)

(1)

a,b

ab

a,b=1

ab . . . , (4)

PV TV 64
ναβ

αβ −→ PV TV qi (5)

hadr
PV TV

abc ναβ
αβ (¯ q eF + ¯ CE

ud
) +

ud

ud ud
(6)

, l

) (

— pion-nucleon Lagrangian:

I = diag(−1,−1,+2)

(0)
. . . , (1)

(1)
ab

#σ ab #σ + ( ) [ . . . ,(2)

(1)
NN ∇ × #σ #σ ∇ × #στ · · #στ

ab #στ ∇ × #στ #σ ab ∇ × #στ #στ
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ναβ
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PV TV
qi (5)
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PV TV
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(¯ q eF + ¯ CE

ud
) +

ud

ud ud
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NDA:  hV,A ∼ GFF2
π ∼ 10−7

NDA:  Ci ∼ GFFπΛχ ∼ 10−6

Kaplan, Savage ’93; Kaplan, Savage, Springer ’99; 

Zhu et al., ’05; Girlanda et al.’08; de Vries et al. ’14; 

Viviani et al. ’14



PVTV in the SM

Standard Model (dimension-4): 
How to measure ∣

ij
∣

ij parametrizes the flavor-changing weak interaction:

ui

dj

W+

So if we find a process with this interaction,

it’s rate will be proportional to ij

But we need that W to decay:

if it decays to quarks, we complicate issues by a factor of kl

(and then some . . . decay constants, form factors, . . . )

since the lepton charged current is flavor diagonal,
decay to leptons is clean
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The CKM Matrix

The weak charged current is

CC (1 (1

with

0 0
and

0 0
, V

multiplying out, we get

(1
ij

ij (1

lepton interactions are flavor diagonal

quark interactations are not:

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




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3 mixing angles

+1 complex phase δCP

Baluni ’79;  Crewther et al.’79 

The strong CP problem:     (bounds on the neutron EDM…)θ̄ ≲ 10−10

Both SM mechanisms are insufficient to explain the observed matter-antimatter 

asymmetry of the Universe  Gavela et al., Huet et al.

θL
θ
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εµναβ Ga
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θ
PV TV =

mumd

mu +md

q̄iγ5q (1)

hadr
PV TV

abc ναβ
αβ (¯ q eF + ¯ CE

ud
) +

ud

ud ud
(2)

, l

) (

= 1 + ππ . . .

= 1 + φφ . . .

, U RU
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+ 8 · G δ∂ · G δ∂ ]](x, ) + 2 ](x, · G ](x, ](x,

· G ](x, 'σ ](x, · G ](x, ) +

θ̄



PVTV beyond the SM

Beyond Standard Model physics: 

— Dominant effects are expected to be induced by dimension-6 operators
Khriplovich, Lamoreaux; Pospelov, Ritz; Dekens, de Vries; Engel, Ramsey-Musolf, van Kolck, …

Tree-level matching onto the hadronic scale μ = 1"GeV
de Vries et al.’13;  Jenkins et al. ’18;  Mereghetti ’18

— Most relevant operators:
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Lu
β
R d̄

β
Ld

α
R)

}

−4GF√
2

{

Ξ
(ud)
1 d̄Lγ
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Scaling of the W. coefficients: C̃G, c̃(q)
γ,g, Σ(ud)

1,2
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∼ [
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2
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PVTV chiral Lagrangian

L
(0)
π = M∆̄ π3

π · π + . . . (1)

= diag( +2)

(0)
. . . , (2)

(1)
ab

#σ ab #σ + ( ) [ . . . , (3)

(1)
NN ∇× #σ #σ ∇× #σ · · #σ

ab #στ ∇× #στ #σ ab ∇× #στ #στ

(0)
. . . , (4)

(1)

a,b

ab

a,b=1

ab . . . , (5)

PV TV 64
ναβ

αβ −→ PV TV qi (6)

hadr
PV TV

abc ναβ
αβ (¯ q eF + ¯ CE

ud
) +

ud

ud ud
(7)

(0) . . . (1)

(0)
= ¯ + ¯ + ¯ ) + . . . (2)

L
(1)
NN =

1

Λ2
χFπ

[

C̄1
$∇ · (N †$σN)N †N + C̄2

$∇ · (N †$στN) ·N †
τN

+ C̄3
$∇ · (N †$στ 3N)N †N + C̄4

$∇ · (N †$σN)N †τ 3N + C̄5 Iab
$∇ · (N †$στaN)N †τ bN

]

(3)

= diag( +2)

(0)
. . . , (4)

(1)
ab

$σ ab $σ + ( ) [ . . . , (5)

(1)
NN ∇× $σ $σ ∇× $σ · · $σ

ab $στ ∇× $στ $σ ab ∇× $στ $στ

(0)
. . . , (6)

(1)

a,b

ab

a,b=1

ab . . . , (7)

PV TV 64
ναβ

αβ −→ PV TV qi (8)

Mereghetti, Hockings, van Kolck, de Vries, Timmermans, Bsaisou, Hanhart, Liebig, Meißner, Minossi, Nogga, Wirzba, …
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de Vries et al. PV and TV Interactions

TABLE 1 | Scaling of the LECs in the chiral Lagrangian in dependence of the microscopic CP violation sources.

(4πǫmπ ) θ̄ (4πǫmπ )ǫv c̃
(u,d)
g (4πǫmπ ) ǫv c̃

(u,d)
γ 4πǫvC̃G ǫv4

(ud)
1,2 /(4π ) ǫv6

(ud)
1,2 /(4π )

1̄ ǫmπ
ǫmπ

– εǫ2mπ
1 ǫmπ

ḡ0 1 1 – ǫmπ
εǫmπ

ǫmπ

ḡ1 εǫmπ
1 – εǫmπ

1 εǫmπ

ḡ2 ε2ǫ2mπ
εǫmπ

– ε2ǫ2mπ
εǫmπ

ε2ǫ2mπ

d̄0,1fπ e ǫχ e ǫχ e ǫχ e ǫχ e ǫχ e ǫχ

C̄1,2 1 1 – 1 εǫmπ
1

C̄3,4 εǫmπ
1 – εǫmπ

1 εǫmπ

C̄5 ε2ǫ2mπ
εǫmπ

– ε2ǫ2mπ
εǫmπ

ε2ǫ2mπ

We introduced the counting parameters . With , we introduced two different parameters to explicitly track insertions of the light

quark masses from the QCD Lagrangian. is the isospin breaking parameter . The scaling of the LECs induced by dimension-six sources assume

a Peccei-Quinn mechanism. A “ ” implies the interaction is only induced at higher order than considered here. The parameters , and are the LECs entering the contact

PVTV potential, respectively of isoscalar, isovector, and isotensor type.

Numerically, , but we define two di erent parameters to
track the dependence of the LECs on the quark masses. To assess
the size of the contribution of di erent CP violating sources to
the nucleon and nuclear EDMs, the scaling of the LECs inTable 1
can be combinedwith a naive estimate of these observables. As we
will discuss in detail in sections 3.2.2 and 6.5, the nucleon EDM
receives tree level contributions from 0,1 and loop contributions
by and , leading to

. . . , (36)

where is the electric charge and the coe cients of the loops

0,1 will be given explicitly in section 3.2.2. The additional
suppression of is due to the fact that this coupling only involves
neutral pions, which do not interact with a single photon at LO.
Nuclear EDMs, on the other hand, receive tree level contributions
from the single nucleon EDM, and from pion-nucleon and
nucleon-nucleon couplings,

.(37)

The coe cients ,0,1,2 and 1,...,5 depend on the nucleus
under consideration, and in section 6.5 we will present result
for their calculation in chiral EFT for the deuteron, H and He.
By power counting, they are expected to be (1) (measured in
units of fm in the case of the dimensionful ,0,1,2 and 1,...,5),
barring isospin selection rules, which for example suppress the
contributions of the isoscalar operators and 1,2 in nuclei with

, such as the deuteron [142 143
The reader should be aware that the dimensionless Wilson

coe cients of the dimension-six operators,
ud
1,2

and
ud
1,2 also come with intrinsic suppression factors. These

arise from the typical loop and chiral factors that appear in

and 1,2 contribute to the deuteron EDM in conjunction with isospin breaking

in the strong interaction, or via the spin-orbit coupling of the photon to the

nucleons [143]. Both contributions are beyond the accuracy we work at in

this paper.

BSM models. For example, quark and gluon dipole operators
are typically induced at the one-loop level, and the quark EDM
and chromo-EDM coe cients come with explicit factors of the
quark mass (already included in Equation 7). This implies tha

one can expect {˜ } = (4 ), where
. Of course this is just an estimate and certainly models

exist where these operators appear only at the two- or higher-
loop level. On the other hand, the four-quark operators and

can be induced at tree level, so that } = ). Once the
matching coe cients are calculated in a givenmodel,Table 1 and
Equations (36)-(37) allow identification of the dominant low-
energy operator and to get a rough idea of the EDM constraints.

Table 1 highlights the feature that the chiral and isospin
properties of the quark-level CP-violating sources induce very
specific hierarchies between di erent low-energy couplings.
These hierarchies in turn imply di erent relations between
the EDMs of the nucleon, deuteron, and three-nucleon
systems, which, if observed, would allow disentanglement of
the various CP-violating sources. From Table 1, we see that

chiral-symmetry-breaking sources, such as , and 1,2
induce relatively large PVTV pion-nucleon couplings. These
couplings appear in the table with entry 1, indicating no furthe
suppression. In particular, the isoscalar term and isovector

predominantly induce, respectively, and , while a
qCEDM would yield both couplings with similar strengths. The
consequence is that for these sources light nuclear EDMs are
enhanced with respect to the nucleon EDM. For these chiral-
symmetry-breaking sources, the contact nucleon interactions
proportional to are suppressed in the chiral expansion because

these operators involve an explicit derivative. The suppressio

can be explicitly seen combining the scaling in Table 1 with the

explicit factor of in Equations (33) and (37).
Chiral invariant sources such as the Weinberg operator

and the four-quark operators 1,2 , on the other hand,

require additional chiral-symmetry breaking to generate 0,1, as

indicated by extra powers of . In this case, EDMs of light-

nuclei are expected to be of similar size as the nucleon EDM.

Furthermore, the contact nucleon operators proportional to 1,2

now contribute to the PVTV potential at the same order as 0,1
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Scaling of the LECs:

ϵv ≡
Λ2

χ

v2
∼ 10−5ϵmπ

≡
m2

π

Λ2
χ

∼ 10−2 ϵχ ≡
F2

π

Λ2
χ

=
1

(4π)2
∼ 10−2ϵ ≡

md − mu

md + mu

∼
1

3



PVTC nuclear forces

two-nucleon forces

N2LO  [Q2]

three-nucleon forces

NLO  [Q1]

LO  [Q−1]

Δ = − 1 Δ = 0 Δ = 1 Δ = 0 Δ = 1

h1
π h 0,1,2

V
, h1,2

A
C1,…,5 gA, Fπ

c1,…,4 cD

suppressed for m ≫ Λb

Power counting :  ,   where    [Qn] n = − 4 + 2N + 2L + ∑ ViΔi Δi = di + ni /2 − 2

Zhu, Maekawa, Holstein, Ramsey-Musolf, van Kolck, de Vries, Li, Meißner, Nogga, EE, Kaiser, Gnech, Viviani, Baroni, Girlanda, Kievsky, Marcucci, Schiavilla, …



PVTV nuclear forces

two-nucleon forces

N2LO  [Q1]

three-nucleon forces

NLO  [Q0]

LO  [Q−1]

Δ = − 2 Δ = − 1 Δ = 1 Δ = 0 Δ = 1

g0,1,2 C̄1,…,5 gA, Fπ
c1,…,4

Power counting :  ,   where    [Qn] n = − 4 + 2N + 2L + ∑ ViΔi Δi = di + ni /2 − 2

Maekawa, Mereghetti, de Vries, van Kolck, Bsaisou, Hanhart, Liebig, Meißner, Minossi, Nogga, Wirzba, …
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Selected results



PV longitudinal asymmetry in  ⃗np → dγ

Aγ(θ) =
dσ+(θ)− dσ

−
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−
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= aγ cos θ (1)
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) =
) +

cos (1)

aγ = (−3.0± 1.4± 0.2) · 10−8 (2)

(0) . . . (3)

(0)
= ¯ + ¯ + ¯ ) + . . . (4)

(1)
NN %σ %σ

%στ %σ ab %στ (5)

= diag( +2)

(0)
. . . , (6)

(1)
ab

%σ ab %σ + ( ) [ . . . , (7)

(1)
NN ∇× %σ %σ ∇× %σ · · %σ

ab %στ ∇× %στ %σ ab ∇× %στ %στ

(0)
. . . , (8)

(1)

a,b

ab

a,b=1

ab . . . , (9)

Data from Oak Ridge:

Blyth et al. [NPDGamma Collab.], PRL 121 (18)

Insensitive to short-range interactions [Desplanques’75,’80, McKellar ’75, Schiavilla et al.’04]    good probe of ⇒ h1
π

NLO calculation (including 2-body PC and PV currents):  aγ = (−0.11 ± 0.05) h1
π ⇒ h1

π = (2.7 ± 1.8) × 10−7

de Vries, Li, Meißner, Nogga, EE, Kaiser, PLB 747 (15)

PV   scattering⃗pp

de Vries et al. PV and TV Interactions

TABLE 4 | Values of and angle ranges for the three measurements of the pp

longitudinal analyzing power [215 217 218].

E (MeV) Az (10
−7) (θ1, θ2)

13.6 −0.97± 0.20 (20◦, 78◦)

45 −1.53± 0.21 (23◦, 52◦)

221 +0.84± 0.34 (5◦, 90◦)

TABLE 5 | Values of the coefficients
pp

calculated with the EFT N LO PVTC

potential described in section 3.4 and the N LO PCTC potential derived in Entem

et al. [18] at three energies corresponding to the experimental data points.

[MeV] pp (NLO) pp (N LO) pp (TOT) pp pp

13.6 0.289 0.160 0.449 0.044 0.215

45 0.595 0.355 0.950 0.084 0.475

221 0.281 0.187 0.468 0.036 0.251

The PVTC potential has been regularized as in Equation (86) adopting the valu

MeV for the cutoff parameter. The PCTC potential has been regularized with the same

value of the cutoff parameter. For the coefficient a
pp

we give separately the contributions

of the NLO and N LO terms only and then their sum, see Equation (139).

where the first two terms are NLO contributions and the third
term enters at N LO. We have defined
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and
pp pp pp

are numerical coe cients independent of
the LEC values (but depending on the energy). The values of the

coe cients
pp pp
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pp

calculated with the EFT N LO
PVTC potential described in section 3.4 and the N LO PCTC
potential derived in Entem et al. [18] are reported in Table 5. The
only coe cient which receives contributions from both the NLO

and N LO potentials is
pp

. In the table, we report separately the
two contributions and also the total contribution, given simply as
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(TOT)

pp
(NLO)
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(N LO) ,
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(N LO)

pp
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The value of
pp

(N LO) has been obtained assuming a value

3.56 GeV 219]. This correction to
pp

is of the order
of 50% with respect to the NLO value, somewhat larger than
expected. This is related by the unnaturally large value of th
NN LEC appearing in the PCTC Lagrangian (13). This value

has been obtained from the Roy-Steiner analysis of scattering
data at N LO performed in Hoferichter et al. [219].

Unfortunately, of the performed measurements, the two at
the lowest energy do not give independent information. In fact,
the observable at low energy scales as , since its energy
dependence in this energy range is driven solely by that of the
S-wave (strong interaction) phase shift [220]. Because of this

FIGURE 5 | Region of and values for which 2 for the

longitudinal asymmetry. The calculation is based on the coefficients
pp pp

and
pp

reported in Table 5 assuming the value 2.7 10

scaling, it is not possible to fit from these data all three LECs

, and at the same time. If we fix the value 2.7 10 from
the central value as extracted from the np observable, see
Equation (132), then we can perform a analysis of the three
data points listed in Table 4 in order to fix the values of and

. Note that this value of was obtained from the np
calculation performed in de Vries et al. [173] using a di erent

PCTC potential than that one used compute the
pp

coe cients.
However, since the np experiment depends mainly on
the peripheral regions of the process, the value of is not
very sensitive to the PCTC interaction (see also the calculations
reported in [221]).

First of all, if we restrict ourselves to an NLO analysis, usin
2.7 10 we would obtain (49 2) 10 . If we

take into account also the N LO LEC, we report in Figure 5 the

and values for which 2, which form an elliptic region.
As can be seen, there appears to be a strong correlation between

and and the range of allowed values of the LECs is rather large
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Note that the ellipse is rather narrow and almost coincides with a
straight line. See also de Vries et al. [46], Viviani et al. [42] for a
similar analysis performed at NLO for the LECs and only.

The previous discussion did not take into account the large
uncertainty of the coupling constant after the fit of the
radiative capture asymmetry. InTable 6, we report representative

values of and giving the minimum value of corresponding
to range of values for as given in Equation (132). In the
fourth column we report values for if we neglect the N LO

contributions (setting 0). We conclude that the combination
of the pp and np asymmetries allows for a rough extraction
of the LO and NLO LECs and , but is insu cient to also

pinpoint the N LO LEC . The uncertainty of the extractions
of and is dominated by theoretical and experimental
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TABLE 4 | Values of and angle ranges for the three measurements of the pp

longitudinal analyzing power [215 217 218].

MeV (10 ) (

13.6 0.97 0.20 (20 , 78

45 1.53 0.21 (23 , 52

221 0.84 0.34 (5 , 90

TABLE 5 | Values of the coefficients
pp

calculated with the EFT N LO PVTC

potential described in section 3.4 and the N LO PCTC potential derived in Entem

et al. [18] at three energies corresponding to the experimental data points.
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from: de Vries, EE, Girlanda, Gnech, Mereghetti, Viviani, Front. In Phys. 8 (2020)

Unfortunately, the strongly correlated low-energy 

data do not allow to fix all 3 LECs…
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TABLE 7 | Values of the coefficients
nh

entering the He( H longitudinal asymmetry calculated for the EFT NLO PVTC potential described in section 3.4 and the

LO PCTC potential derived in Machleidt and Entem [ ] at vanishing neutron beam energy.

nh (LO) a
(nh)
0 (TOT) a

(nh)
1 a

(nh)
2 a

(nh)
3 a

(nh)
4 a

(nh)
5

0.1178 −0.1444 0.0061 0.0226 −0.0199 −0.0174 −0.0005

The PVTC potential has been regularized as in Equation (86) adopting the value MeV for the cutoff parameter. The PCTC potential has been regularized with the same value

of the cutoff parameter. For a
nh

we give explicitly its cumulative value at LO and at NLO in the first and second column, respectively.

TABLE 8 | Values of the coefficients entering the expression of the spin rotation in units of Rad m calculated for the EFT N LO PVTC potential described in

section 3.4 and the N LO PCTC potential derived in Entem et al. [18] at vanishing neutron beam energy.

np
LO) 1.227

np
0.257

np
1.653

np
NLO) 0.137

np
0.178

np
0.181

np
LO) 0.000

np
0.106

np
1.882

np
TOT ) 1.364

np
0.000

np
0.000

np
0.949

np
4.456

The PVTC potential has been regularized as in Equation (86) adopting the value MeV for the cutoff parameter. The PCTC potential has been regularized with the same value

of the cutoff parameter. For a
np

we give explicitly the contribution of the different orders, the sum of the three contributions is given in fourth row.

TABLE 9 | The same as in Table 8 but for the spin rotation and using the

EFT NLO PVTC potential and the N LO PCTC potential derived in Machleidt and

Entem [ ].

nd
2.179

nd
0.010

nd
0.160

nd
0.191

nd
0.064

nd
0.000

PCTC is the electric dipole operator derived from the current

PCTC given in Equation (87), after using the long wavelength
approximation and the continuity equation [227], explicitly

PCTC , (145)

where 0 is the electric unit charge, ) and are the
component of the isospin and the position of the i-th particle.
This operator implicitly takes into account also the main part
of the two-body PCTC currents. The PVTV contribution comes
from the PVTV current at LO given in Equation (96) and it reads

PVTV , (146)

where and are the EDM of proton and neutron, respectively
and is the spin operator which act on the i-th particle.
As discussed in section 3.5.1 and in de Vries et al. [143] and
Bsaisou et al. [73] the PVTV should also include contributions
from transition currents at N LO. These are not considered in
this review.

The EDM of an nucleus can be expressed as

PVTV PCTC

PVTV e dPCTC , (147)

where ) is defined to be the even-parity (odd-parity)
component of the wave function. In general, due to the smallness
of the LECs, the EDM depends linearly on the PVTV LECs

PVTV (148)

PCTC = ¯ + ¯ + ¯

, (149)

where the for 0, 1, 2, for 1, . . . , 5, , and
are coe cients independent on the LEC values (all coe cients
except and have the unit of a length). For the deuteron,

PVTV is dominated by one-body components, proportional
to the neutron and proton EDM. The coe cients and
multiplying the intrinsic neutron and proton EDM, as already
pointed out first in Yamanaka and Hiyama [228] and then in
Bsaisou et al. [66], are given by,

, (150)

where is the percentage of D-wave present in the deuteron
wave function. PCTC, in the case of the deuteron, receives
contribution only from the LECs , and . The
coe cients calculated with the EFT N LO PVTV potential
described in section 3.5 and the N LO PCTC potential derived
in Entem et al. [18] are reported in Table 10. The cuto for
both the PCTC and PVTV potentials has been chosen to be

500 MeV. The coe cients , and agree well
with the power counting expectation in Equation (37). The
slight suppression of compared with the naive estimate

1 is in very good agreement with the perturbative pion
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PV longitudinal asymmetry in  ⃗n He → p H3 3

Recent data from Oak Ridge:    Gericke et al. [n3He Collab.] PRL 125 (2020)az = (1.58 ± 0.97 (stat) + 0.24 (sys)) × 10−8

NLO calculation  Viviani et al., PRC 89 (2014):   az = h1
πa(nh)

0
+ C1a

(nh)
1

+ C2a(nh)
2

+ C3a(nh)
3

+ C4a(nh)
4

+ C5a(nh)

5



35

2H 3H 3He

an 0.939 −0.033 0.908
ap 0.939 0.909 −0.033
a0 [fm] — −0.053 0.054
a1 [fm] 0.200 0.158 0.158
a2 [fm] — −0.119 0.119
A1 [fm] — 0.006 −0.006
A2 [fm] — −0.010 0.010
A3 [fm] 0.013 −0.008 −0.008
A4 [fm] −0.013 0.013 0.013
A5 [fm] — −0.022 0.022
a∆ [fm] −0.304 −0.343 −0.339

Class-I — — — — Eq. (3.5) Eq. (3.9)
Class-II — — — — Eq. (3.13) Eq. (3.15)
Class-III — — — — Eq. (3.21) Eq. (3.26)
Class-IV — — — — Eq. (3.38) Eq. (3.41)
Class-V — — — — Eq. (3.46) Eq. (3.48)
Class-VI — — — — Eq. (3.53) Eq. (3.55)
Class-VII — Eq. (3.64) Eq. (3.66) — — —
Class-VIII Eqs. (3.75,3.82) — — — Eq. (3.97) Eq. (3.98)
Class-IX Eqs. (3.102 ,3.106) Eqs. (3.114,3.112) Eqs. (3.115,3.113) Eqs. (3.104,3.109) Eq. (3.123) Eq. (3.122)

The expression has a di erent form but was verified to be identical to the one from Refs. [11–13].
We have corrected the result of Ref. [12].
Only coordinate-space results have been calculated.

TABLE I. Summary of the obtained results for the N LO 3 -exchange potentials using the SMM. Unless explicitly stated
otherwise, a single expression quoted refers to the result for the corresponding spectral function. The potentials in momentum
and coordinate spaces can be calculated using Eqs. (2.14), (2.17). Whenever two equations are quoted, the second one gives
the expression for the potential in coordinate space.

V. SUMMARY AND CONCLUSIONS

The main results of our work can be summarized as follows:

We have rederived the 3 -exchange nucleon-nucleon potential using the S-matrix method as done by Kaiser in
Refs. [11–13]. We provide a detailed description of the relevant computational techniques such as the Cutkosky
cutting rules for deriving the corresponding spectral functions and the Wick-rotation approach for directly
calculating the potentials in coordinate space. We also discuss the reduction of tensor integrals and provide
details for solving the relevant integrals. Last but not least, we provide important intermediate steps and
expressions when deriving the 3 -exchange potentials in order to facilitate reproducibility of these results. The
summary of the obtained expressions for the N LO potentials is provided in Table I. We have succeeded to
verify all results of

Refs. [11–13] and have corrected the result of Ref. [12] for the class-V isovector tensor potential.

The main motivation of this study was a concern that the existing expressions for the 3 -exchange NN potential
worked out in Refs. [11–13] are not o -shell consistent with the nuclear forces and current operators derived in
Refs. [9, 10, 19, 20, 22, 23, 25, 26, 39–43, 48, 73, 74] using the method of unitary transformation. Such scheme-
dependence of nuclear interactions is well known for, e.g., the nonstatic 2 -exchange contributions [23, 63, 64],
but for the 3 -exchange, it is expected to a ect even the static terms. Specifically, scheme-dependent results
for the 3 -exchange NN potential can be expected for class-IV, VI, VIII and IX contributions which include
reducible-like diagrams. We have used the method of unitary transformation to derive these contributions.
While the expressions for the class-IV diagrams turn out to be identical in both the SMM and MUT, we indeed
found di erent results (and even additional non-vanishing potentials) for the class-VI, VIII and IX diagrams.
Our results for the leading 3 -exchange potential, calculated using the method of unitary transformation, are

Experimental searches for EDMs Chupp, Fierlinger, Ramsey-Musolf, Singth, RMP 91 (2019)

— neutron & nuclear: PSI, TRIUMF, SNS@ORNL, ILL, COSY, LANL, …

(image from Wikipedia)

— experiments with muons, atoms, ions, molecules, …

Electric dipole moments of light nuclei

Theory de Vries et al., PRC 84 (2011); Bsaisou et al., EPJA 49 (2013), JHEP 03 (2015); Yamanaka, Hiyama, PRC 91 (2015)
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Chiral EFT and the Δ(1232) isobar
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The small-scale (ε) expansion [Th. Hemmert et al. ’98]

The strategy:  Re-sum -contributions from  by including !(1232) in  and counting 

                         while   (no coupled channels)

1/Δn p ∼ Δ ℒeff

Δ ∼ Mπ = 3(ϵ) mNΔ = 3(1)

Chiral expansion: … … …

3(q2) 3(q3) 3(q4) 3(q4)

ci di ci
ei

Potential concern: slow(er) convergence of χEFT due to  being twice as large as ?  Δ/Λb Mπ /Λb

The Appelquist-Carrazone decoupling Theorem: Effects of heavy particles go into local terms in 

an EFT, either in renormalizable or in non-renormalizable suppressed by powers of the heavy mass 

Small-scale expansion:

3(ϵ3)3(ϵ)

enforce decoupling through  
finite subtractions 



NN force in the small-scale expansion

Kaiser, Gerstendorfer, Weise ’98

Krebs, EE, Meißner ’07

Nuclear EFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and

pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles

refer to the vertices of dimension 0, 1, 2, 3 and 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of , where refers

to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the

derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can

be easily and efficiently resummed by solving the LS integral equation (or its generalizations in

the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs

which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the

essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of

all possible irreducible contributions to the scattering amplitude can be viewed as the interaction

part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach

outlined above is straightforwardly generalizable to reactions involving external sources and allows

one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-

clear force at a given order by looking at Feynman rules for the chiral Lagrangian and applying

Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of

visualization of the corresponding contributions and do not have the meaning of Feynman graphs.

In particular, one needs to separate out the irreducible pieces in order to avoid double counting.

Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),

the resulting contributions are either reducible or suppressed by one power of [25]. As an

immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of

many-body forces [26], the feature, that has always been assumed but could be justified only in the

context of chiral EFT.
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and

pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles

refer to the vertices of dimension 0, 1, 2, 3 and 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of , where refers

to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the

derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can

be easily and efficiently resummed by solving the LS integral equation (or its generalizations in

the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs

which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the

essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of

all possible irreducible contributions to the scattering amplitude can be viewed as the interaction

part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach

outlined above is straightforwardly generalizable to reactions involving external sources and allows

one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-

clear force at a given order by looking at Feynman rules for the chiral Lagrangian and applying

Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of

visualization of the corresponding contributions and do not have the meaning of Feynman graphs.

In particular, one needs to separate out the irreducible pieces in order to avoid double counting.

Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),

the resulting contributions are either reducible or suppressed by one power of [25]. As an

immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of

many-body forces [26], the feature, that has always been assumed but could be justified only in the

context of chiral EFT.
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fundamental Lagrangian under Lorentz, parity, time-reversal,

and chiral symmetry [35 36]. The Lagrangian terms can be

organized as an expansion in powers of , where

GeV specifies the chiral symmetry breaking scale and is

the exchanged pion momentum. Each term is associated to a

low-energy constants (LECs) which are then determined by

fits to experimental data.

The EFT method permits to construct also an effec-

tive TRV Lagrangian treating all possible sources of TRV.

The TRV Lagrangian induced by the term was derived

in Refs. [37 38]. Also BSM terms such as supersymmetry,

scenarios, left-right symmetric model, etc., in-

duce TRV operators at the quark-gluon level which appear at

level of dimension six (see, for example, Ref. [39 The EFT

Lagrangians for these sources were derived in Refs. [38 40

42]. This approach permits not only to determine the TRV

interactions but also to estimate the chiral order of the LECs

and their values as function of the fundamental parameters,

providing a direct connection between the fundamental the-

ories and the nuclear observables [37 38 40]. Note that the

chiral order of the Lagrangian terms, which is determined by

the products of the chiral order of the dynamical part and that

of the LECs, really depends on the particular source of TRV.

Therefore, when the LECs will be determined experimentally

it will be possible to identify the dynamical properties of the

TRV source [42 43].

Starting from the TRV Lagrangian, de Vries et al. 44] and

also Bsaisou et al. 45] derived the chiral potential up to next-

to-next leading order (N2LO), including only nucleon-pion

interaction and contact interactions. In both works also the

electromagnetic currents which play a role at N2LO for the

EDM were derived but only in Ref. [45] they were used to

evaluate the EDM of the deuteron. In Ref. [46] the calculation

of the EDM of , and He was performed using only

the one-pion-exchange part of the TRV potential coupled with

phenomenological potential for the parity-conserving (PC)

part of the interaction.

Subsequent works showed the presence in the TRV La-

grangian of a three-pion term [38], which was included in

the calculation for the first time by Bsaisou et al. 47]. This

term generates at next-to-leading order (NLO) also a TRV

three-body force, whose contribution to the and He EDM

was found to be smaller than expected by the chiral counting.

The calculation reported in Ref. [47] was also the first to use

a complete chiral approach including the TRV potential up to

NLO and the PC potential up to N2LO.

The aim of this work is twofold: first, the construction of

a TRV potential up to N2LO considering all possible TRV

interaction terms in the EFT without making any assumption

for the chiral order of the LECs. In this way all possible

sources of TRV can be studied just setting the LECs to their

estimated values and turning on and off the various terms in

the Lagrangian. The second is the study of the EDM of

, and He and the effect of the N2LO TRV potential on it.

Moreover, we perform a careful comparison with the results

of Ref. [47]. For example, in our calculation the contribution

of the TRV three-body force is found to be considerably larger

than reported in Ref. [47]. We want to underline that this

calculation cannot be considered as a full N2LO calculation

since we are not including TRV exchange currents. Only by

adding these we can provide a suitable framework for the

future determination of the LECs.

Finally, it is worthwhile to mention that there exists a

different approach to the derivation of the TRV nuclear forces

based on meson-exchange model [19]. This model includes

pion and vector-meson exchange with 10 unknown meson

constants. Such a theory, which has a wider energy range of

validity but is less systematic and with no direct connection

with the fundamental Lagrangian, has been used to study the

EDM of light nuclei [19 48 50] and the neutron spin rotation

20] and 19 22] scattering.

The present paper is organized as follows. In Sec. II we

will present the TRV chiral Lagrangian up to order relevant

for the calculation of the TRV potential, while in Sec. III we

derive the TRV potential at N2LO. In Sec. IV, we report the

results obtained for the EDM of , and He using the

N2LO potential. Finally, in Sec. we present our conclusions

and perspectives. The technical details relative to the contri-

butions of the various diagrams and of the derivation of the

potential in configuration space are given in Appendices

and . Moreover, in Appendix we will give some details of

the calculation of the trinucleon wave-function negative-parity

component and about the convergence of the TRV three-body

force contribution.

II. THE TRV LAGRANGIAN

CP-violation terms in the fundamental Lagrangian induce

TRV NN and NNN potentials. These potentials can be

constructed starting from a pion-nucleon effective Lagrangian

which includes, in principle, an infinite set of terms which

violates the chiral symmetry as the fundamental (quark-level)

Lagrangian. The effective Lagrangian can be ordered by a

power counting scheme which permits to select the most

important interactions. In the literature the chiral order of the

TRV Lagrangian is determined by considering the estimated

order of the LECs [37 38 40] which, however, is source

dependent.

In this section we present only the TRV Lagrangian terms

which can give some contribution to TRV NN and NNN

potential up to N2LO in terms of pion field. In order to

remain source independent we consider isoscalar, isovector,

and isotensor terms and we determine the chiral order of

the TRV Lagrangian considering only the dynamical part.

Namely, in the following we will consider all the TRV LECs

to be equally important. To deal with a specific source of TRV,

it will be sufficient to set some of the LECs to be zero, and so

on. At order the TRV pion-nucleon Lagrangian includes

three terms [37 38],

L
πN (0)
TRV = g0ψ Eπ · Eτψ + g1ψπ3ψ + g2ψπ3τ3ψ

where is the pion field and is the nucleon field. Note that

the isotensor term is usually considered of higher order. At

the same order a purely pionic interaction appears [38], which

reads

(0)
TRV
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(0)
TRV τψ ψπ ψπ

where is the pion field and is the nucleon field. Note that

the isotensor term is usually considered of higher order. At

the same order a purely pionic interaction appears [38], which

reads

L
3π (0)
TRV = M13π3π
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Based on work done in collaboration with Lu Meng, Vadim Baru, Arseniy Filin, Ashot Gasparyan

Hamiltonian approach in Plane wave basis: 〉
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Finite volume energy levels: eigenvector problem

) = 0 or

formula is the quantization condition (QC) in partial wave basis

l,l ] = 0

We now get the QC in plane wave (PLW) expansion

eigenvector problem is easier to be solved than a general root-finding problem

Lu Meng (孟 璐 Finite volume NN system using plane wave exansion and eigenvector continuation
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Finite volume energy levels: eigenvector problem

) = 0 or

formula is the quantization condition (QC) in partial wave basis

l,l ] = 0

We now get the QC in plane wave (PLW) expansion

eigenvector problem is easier to be solved than a general root-finding problem

Lu Meng (孟 璐 volume NN system using plane wave exansion and eigenvector continuation
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Lattice QCD studies for few-B systems: : HAL QCD, NPLQCD, PACS, CalLat, BaSc

— truly yy fifififirst-principles approach
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Lüscher’s method:

— — fifinite-volume energies from 2-point correlators

— Signal-to-Noise ratio:                                     Parisi ’84    ∼            exp       [      −       A  (  ((  (  m    B        −
3

     
2

33
  
22
    m    M          ) )  ) t       ]

from: Iritani, LATTICE2018

— An alternative method d [HAL QCD]CD]: : potentials from Nambu-Bethe-Salpeter wave functions 

    (derivative expansion under control? ? see e.g. 1808.062999)

— Situation in the NN sector starts becoming less controversial

2 Hadrons in Lattice QCD (1) Direct Method

temporal correlation ground state energy

g.s. saturation is mandatory!

Plateau of “Effective energy shift”

Finite volume energy shift  
Binding Energy

Lattice QCD for two nucleons
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known matrix (depends on FV energies)
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Lattice QCD studies for few-B systems: : HAL QCD, NPLQCD, PACS, CalLat, BaSc
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FIG. 3. The binding energies of light nuclei obtained with LQCD over a range of pion masses. Dimensionless quantities
are used for each axis in order to minimize the e ects of scale-setting choices when comparing results obtained in di erent
studies. This summary figure shows results that have been extrapolated to infinite volume. Here, blue circles denote NPLQCD
Collaboration results [106, 107, 303], orange triangles show PACS-CS Collaboration results [108, 110], and green squares show
CalLat Collaboration results [113]. For the deuteron channel, the CalLat Collaboration [113] finds a second, shallow, state
below the two nucleon threshold at = 806 MeV. Since this state is consistent with being a possible continuum state, it is
not shown in the figure. The physical point is denoted by the dashed red line and experimental results are denoted by red
stars. The HAL QCD Collaboration predicts that nuclei are unbound in the NN channels using the potential method at the
unphysical quark masses they have studied.

potentials). While infinite-volume extrapolations have been undertaken based on LQCD calculations at a fixed set of
quark masses on a few lattice volumes, continuum extrapolations have not yet been performed.

A summary of the state-of-the-art LQCD calculations of binding energies of light nuclei, AM , for
nuclei with atomic number , is shown in Fig. 3. It is observed, in all studies that find bound states, that the binding
energies of nuclei at larger-than-physical values of the quark masses are larger than those in nature. The HAL QCD
Collaboration, using the potential approach, does not find boundNN systems for any of the larger-than-physical quark
masses that they have studied [119, 290–297, 304, 305]. Besides this tension, discussed further below in Sec. II C 2,
studies performed by di erent collaborations using di erent lattice actions are broadly consistent, with an indication
of a monotonic approach to the physical binding energies for each nucleus. Light hypernuclei for 4 have also
been studied. In particular, LQCD predictions have been made for the binding energy of the -dibaryon (a six-quark
state uuddss [306]), whose existence may have interesting phenomenological consequences [103–105, 111, 307–310].

In addition to the nuclear spectrum and matrix elements, which are the primary focus of this review, LQCD
calculations of nucleon-nucleon, as well as hyperon-nucleon, forces and scattering have developed rapidly, as detailed in
the following subsection. Furthermore, LQCD studies of the gluon structure of light nuclei have been undertaken [143],
albeit as-yet at unphysical values of the quark masses. The goal of these studies is to provide reliable predictions for
how the partonic structure of a nucleon is a ected when bound in a nucleus, a subject that will be investigated with
higher resolution than has been possible so far at the planned Electron-Ion Collider (EIC) [311]. Other interesting
questions, such as the possibility of exotic states of matter in the form of quarkonium-nucleus bound states, have also
been explored in first-principles studies of nuclei using LQCD [312].
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below the two nucleon threshold at = 806 MeV. Since this state is consistent with being a possible continuum state, it is
not shown in the figure. The physical point is denoted by the dashed red line and experimental results are denoted by red
stars. The HAL QCD Collaboration predicts that nuclei are unbound in the NN channels using the potential method at the
unphysical quark masses they have studied.
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nuclei with atomic number , is shown in Fig. 3. It is observed, in all studies that find bound states, that the binding
energies of nuclei at larger-than-physical values of the quark masses are larger than those in nature. The HAL QCD
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of a monotonic approach to the physical binding energies for each nucleus. Light hypernuclei for 4 have also
been studied. In particular, LQCD predictions have been made for the binding energy of the -dibaryon (a six-quark
state uuddss [306]), whose existence may have interesting phenomenological consequences [103–105, 111, 307–310].

In addition to the nuclear spectrum and matrix elements, which are the primary focus of this review, LQCD
calculations of nucleon-nucleon, as well as hyperon-nucleon, forces and scattering have developed rapidly, as detailed in
the following subsection. Furthermore, LQCD studies of the gluon structure of light nuclei have been undertaken [143],
albeit as-yet at unphysical values of the quark masses. The goal of these studies is to provide reliable predictions for
how the partonic structure of a nucleon is a ected when bound in a nucleus, a subject that will be investigated with
higher resolution than has been possible so far at the planned Electron-Ion Collider (EIC) [311]. Other interesting
questions, such as the possibility of exotic states of matter in the form of quarkonium-nucleus bound states, have also
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stars. The HAL QCD Collaboration predicts that nuclei are unbound in the NN channels using the potential method at the
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potentials). While infinite-volume extrapolations have been undertaken based on LQCD calculations at a fixed set of
quark masses on a few lattice volumes, continuum extrapolations have not yet been performed.

A summary of the state-of-the-art LQCD calculations of binding energies of light nuclei, AM , for
nuclei with atomic number , is shown in Fig. 3. It is observed, in all studies that find bound states, that the binding
energies of nuclei at larger-than-physical values of the quark masses are larger than those in nature. The HAL QCD
Collaboration, using the potential approach, does not find boundNN systems for any of the larger-than-physical quark
masses that they have studied [119, 290–297, 304, 305]. Besides this tension, discussed further below in Sec. II C 2,
studies performed by di erent collaborations using di erent lattice actions are broadly consistent, with an indication
of a monotonic approach to the physical binding energies for each nucleus. Light hypernuclei for 4 have also
been studied. In particular, LQCD predictions have been made for the binding energy of the -dibaryon (a six-quark
state uuddss [306]), whose existence may have interesting phenomenological consequences [103–105, 111, 307–310].

In addition to the nuclear spectrum and matrix elements, which are the primary focus of this review, LQCD
calculations of nucleon-nucleon, as well as hyperon-nucleon, forces and scattering have developed rapidly, as detailed in
the following subsection. Furthermore, LQCD studies of the gluon structure of light nuclei have been undertaken [143],
albeit as-yet at unphysical values of the quark masses. The goal of these studies is to provide reliable predictions for
how the partonic structure of a nucleon is a ected when bound in a nucleus, a subject that will be investigated with
higher resolution than has been possible so far at the planned Electron-Ion Collider (EIC) [311]. Other interesting
questions, such as the possibility of exotic states of matter in the form of quarkonium-nucleus bound states, have also
been explored in first-principles studies of nuclei using LQCD [312].
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— HAL QCD sees NO bound states for all —valuesl M —Mπ

— also CalLat t [2009.11825] 5]5] strongly disfavors bound states at t MMMππ ∼∼ 7144 MeV

adapted from: Davoudi et al., Phys. Rept. 900 (2021) 1 

— BaSc: : „Di-nucleons do not form bound states at heavy pion mass“s“, , [2505.05547]
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Finite volume energy spectra as an efficient interface between lattice-QCD and chiral EFT

— infinite-V extrapolations without Lüscher  

— solves the t-channel cut problem  

— partial wave mixing included

Lu Meng, EE, JHEP 10 (21);  Lu Meng, Baru, EE, Filin, Gasparyan, PRD 109 (24);  Lu Meng et al., PRD 111 (2025) 3, 3 
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Two nucleons in a finite box (spin-0 channels)
Lu Meng,  EE, JHEP 10 (2021) 051

As an illustration, consider the Hamiltonian

azawa, 
Tucson-Melbourne, 
Brasil, Urbana IX, Illinois, ...

Phase shifts from FV-energies using EFT 
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Figure 9. Comparison of the synthetic lattice energy levels with negative parity in the box with

= 5 fm and those from the EFT determined by fitting. The marker shapes represent the irreps,

which are the same as those in figure

we include the contact interactions up to NNLO,

(2)
cont

p, p , z) = pp z, V
(4)

cont
p, p , z) = pp z , (5.20)

where and are the LECs. Since the contact interactions introduced above

only contribute to the S- and P-wave channels, the FV partial wave mixing e ects at the

considered EFT order only arise from the OPE interaction.

To fix the LECs and , we employ the determinant residual

method. For the considered toy-model example, we neglect the uncertainties of the syn-

thetic data. First, we perform single-parameter fits by including only the dominant contact

interaction in the corresponding parity channel, i.e. at LO (NLO) for positive- (negative-)

parity states. In the second step, we also take into account the corresponding subdominant

contact terms and perform two-parameter fits to the FV energies. As for the synthetic

data, we only include the ground state energy of each irrep as input. Meanwhile, we ignore

the energy levels of the = (0 2) systems because they are identical to those of the

= (0 0) system in the non-relativistic case. For positive-parity channels, this leaves us

with three and four energy levels for the boxes with = 3 and fm, respectively, up to the
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Figure 6. Phase shifts in the negative-parity channels extracted from the FV energy spectra using

the P-wave Lüscher formula (various symbols) in comparison with the infinite-volume results for

the OPE potential (upper row), the P-wave projected OPE potential (middle row) and the P-

and F-wave projected OPE potential. Solid and dashed lines show the and phase shifts

calculated in the infinite volume. For remaining notations see figure

(4 p, p and wave ) = 3(4 p, p . Clearly, the resulting

potentials do not generate any partial wave mixing e ects when used to compute the FV

energy spectra, so that the single-channel Lüscher approach is expected to become appli-

cable. This is indeed fully consistent with our results, see the second rows in figures

and . For S-wave dominated states, the small deviation disappears after switching o the

interaction in higher partial waves. For states with negative parity, the change is more pro-

nounced. After switching o the interaction in higher partial waves, the P-wave phase shift

is reproduced accurately with the single-channel Lüscher formula except for the smallest

box size (presumably due to exponentially suppressed corrections).

Finally, the lower row in figure shows the e ect of including the F-wave interaction,

i.e. we consider wave ) = 3(4 p, p ) + 7(4 p, p . While

we have not explicitly investigated the impact of even higher partial waves, a comparison

of the upper and lower rows in figure suggests that their mixing e ects may also be

significant at higher energies.
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Figure 10 (upper row) and (lower row) phase shifts extracted by matching the EFT

to the finite-volume spectra for the toy-model example in comparison with the underlying phase

shifts shown by the solid blue lines. Brown dashed-dotted (red dashed) lines show the results from

single-parameter (two-parameter) fits to the FV energies as visualized in figures and . Left and

right panels correspond to the boxes of the size = 3 fm and = 5 fm, respectively. Also shown

by various symbols are the phase shifts extracted from the FV energies using the single-channel

Lüscher formula. The lines near show the phase shifts in the next-higher partial wave for

a given parity quantum number (i.e. in the and channels in the upper and lower row,

respectively). For remaining notations see figure

range. It should be emphasized that our input includes several energy levels dominated

by higher partial wave components such as the ground state in the irrep with = 3

and the ground state in the irrep with = 2. Contrary to the single-channel Lüscher

approach, which in these cases leads to large deviations, our method is insensitive to such

FV partial wave mixing artifacts.

6 Application II: P-wave pion-pion scattering

We now turn to our second application and consider ππ scattering as an example of a

relativistic system. In this exploratory example, we employ a simple phenomenological

model for ππ interaction instead of using EFT. For a formulation of chiral perturbation

theory with resonances see e.g. refs. [61 62].
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volume energy levels: eigenvector problem

) = 0 or

formula is the quantization condition (QC) in partial wave basis

l,l ] = 0

We now get the QC in plane wave (PLW) expansion

vector problem is easier to be solved than a general root-finding problem

Lu Meng (孟 璐 volume NN system using plane wave exansion and eigenvector continuation

h in Plane wave basis:

: polarization vector for = 1

, g

{| form the representation space of corresponding point group

 

 

!"#$%&$'()%*+&,#-
'%+&$.$%+

2"

#
$

volume energy levels: eigenvector problem

) = 0 or

formula is the quantization condition (QC) in partial wave basis

l,l ] = 0

We now get the QC in plane wave (PLW) expansion

vector problem is easier to be solved than a general root-finding problem

Lu Meng (孟 璐 volume NN system using plane wave exansion and eigenvector continuation

Infinite volume

J
H
E
P
1
0
(
2
0
2
1
)
0
5
1

5.3 Phase shifts from FV energies using EFT

In section 5.2, we have shown in detail that partial wave mixing e ects can not be neglected

when calculating FV energies of two interacting nucleons at the physical pion masses. Such

large partial wave mixing e ects are caused by the long-range (pion-exchange) interaction,

and they are responsible for the failure of the single-channel Lüscher approach to extract

phase shifts from FV energy spectra. This will pose a significant challenge for future lattice

QCD calculations in the NN sector close to the physical point. In the lattice QCD commu-

nity, the issue is addressed by including several partial waves in the Lüscher’s quantization

conditions, see e.g. refs. [57 58]. When more than one partial wave is included, there is no

longer a one-to-one mapping between energy levels and phase shifts, and one has to choose

a theoretical framework to parameterize the -matrix. As an alternative to the Lüscher

method, one can benefit from the known model-independent OPE interaction using an

EFT-inspired approach. Specifically, we propose to determine the short-range part of the

NN interaction, parametrized in a systematic way by means of contact interactions, via a

direct matching to lattice QCD FV energy levels. The method is, to some extent, similar

to the low-energy theorems used in refs. [59 60] to restore the energy dependence of the

NN scattering amplitude at unphysical pion masses.

To illustrate the method, we first define a toy model comprising the OPE and the

heavy-meson-exchange potentials to generate synthetic data for the FV energies. Specifi-

cally, we consider

toy = −

(

gA

2Fπ

)2 M2
π

q2 + M2
π

τ1 · τ2 + (ch1 + ch2τ1 · τ2)
1

q2 + m2
h

, (5.16)

where is the OPE potential considered in the previous sections (up to an S-wave contact

interaction). For the various parameters, we choose the numerical values of = 139 MeV,

= 92 MeV and = 1 26. For the heavy-meson-exchange interaction, we introduce

both the isospin-triplet and isospin-singlet potentials with the same meson mass

GeV. Further, and denote the corresponding dimensionless coupling constants.

In order to regularize the UV divergences, we introduce a nonlocal Gaussian cuto

toy toy (5.17)

and choose = 0 45 GeV. The couplings and are adjusted in such a way that the

toy-model interaction mimics the behavior of the NN and phase shifts as shown in

figure . Using the toy model introduced above, we compute the corresponding FV energy

levels, which are regarded as synthetic lattice data, see the right-most symbols in figures

and for a given -value, where the results are only shown for the box with = 5 fm.

Having generated the synthetic data as described before, we are now in the position

to describe our approach for extracting the corresponding phase shifts. To this aim, we

exploit the knowledge of the long-range interaction in the underlying model to construct

the EFT interaction

EFT
(0)

OPE

(0)
cont

(2)
cont

(4)
cont . . . (5.18)
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Figure 9. Comparison of the synthetic lattice energy levels with negative parity in the box with

= 5 fm and those from the EFT determined by fitting. The marker shapes represent the irreps,

which are the same as those in figure

we include the contact interactions up to NNLO,

(2)
cont

p, p , z) = pp z, V
(4)

cont
p, p , z) = pp z , (5.20)

where and are the LECs. Since the contact interactions introduced above

only contribute to the S- and P-wave channels, the FV partial wave mixing e ects at the

considered EFT order only arise from the OPE interaction.

To fix the LECs and , we employ the determinant residual

method. For the considered toy-model example, we neglect the uncertainties of the syn-

thetic data. First, we perform single-parameter fits by including only the dominant contact

interaction in the corresponding parity channel, i.e. at LO (NLO) for positive- (negative-)

parity states. In the second step, we also take into account the corresponding subdominant

contact terms and perform two-parameter fits to the FV energies. As for the synthetic

data, we only include the ground state energy of each irrep as input. Meanwhile, we ignore

the energy levels of the = (0 2) systems because they are identical to those of the

= (0 0) system in the non-relativistic case. For positive-parity channels, this leaves us

with three and four energy levels for the boxes with = 3 and fm, respectively, up to the
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Figure 6. Phase shifts in the negative-parity channels extracted from the FV energy spectra using

the P-wave Lüscher formula (various symbols) in comparison with the infinite-volume results for

the OPE potential (upper row), the P-wave projected OPE potential (middle row) and the P-

and F-wave projected OPE potential. Solid and dashed lines show the and phase shifts

calculated in the infinite volume. For remaining notations see figure

(4 p, p and wave ) = 3(4 p, p . Clearly, the resulting

potentials do not generate any partial wave mixing e ects when used to compute the FV

energy spectra, so that the single-channel Lüscher approach is expected to become appli-

cable. This is indeed fully consistent with our results, see the second rows in figures

and . For S-wave dominated states, the small deviation disappears after switching o the

interaction in higher partial waves. For states with negative parity, the change is more pro-

nounced. After switching o the interaction in higher partial waves, the P-wave phase shift

is reproduced accurately with the single-channel Lüscher formula except for the smallest

box size (presumably due to exponentially suppressed corrections).

Finally, the lower row in figure shows the e ect of including the F-wave interaction,

i.e. we consider wave ) = 3(4 p, p ) + 7(4 p, p . While

we have not explicitly investigated the impact of even higher partial waves, a comparison

of the upper and lower rows in figure suggests that their mixing e ects may also be

significant at higher energies.
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Figure 10 (upper row) and (lower row) phase shifts extracted by matching the EFT

to the finite-volume spectra for the toy-model example in comparison with the underlying phase

shifts shown by the solid blue lines. Brown dashed-dotted (red dashed) lines show the results from

single-parameter (two-parameter) fits to the FV energies as visualized in figures and . Left and

right panels correspond to the boxes of the size = 3 fm and = 5 fm, respectively. Also shown

by various symbols are the phase shifts extracted from the FV energies using the single-channel

Lüscher formula. The lines near show the phase shifts in the next-higher partial wave for

a given parity quantum number (i.e. in the and channels in the upper and lower row,

respectively). For remaining notations see figure

range. It should be emphasized that our input includes several energy levels dominated

by higher partial wave components such as the ground state in the irrep with = 3

and the ground state in the irrep with = 2. Contrary to the single-channel Lüscher

approach, which in these cases leads to large deviations, our method is insensitive to such

FV partial wave mixing artifacts.

6 Application II: P-wave pion-pion scattering

We now turn to our second application and consider ππ scattering as an example of a

relativistic system. In this exploratory example, we employ a simple phenomenological

model for ππ interaction instead of using EFT. For a formulation of chiral perturbation

theory with resonances see e.g. refs. [61 62].
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5.3 Phase shifts from FV energies using EFT

In section 5.2, we have shown in detail that partial wave mixing e ects can not be neglected

when calculating FV energies of two interacting nucleons at the physical pion masses. Such

large partial wave mixing e ects are caused by the long-range (pion-exchange) interaction,

and they are responsible for the failure of the single-channel Lüscher approach to extract

phase shifts from FV energy spectra. This will pose a significant challenge for future lattice

QCD calculations in the NN sector close to the physical point. In the lattice QCD commu-

nity, the issue is addressed by including several partial waves in the Lüscher’s quantization

conditions, see e.g. refs. [57 58]. When more than one partial wave is included, there is no

longer a one-to-one mapping between energy levels and phase shifts, and one has to choose

a theoretical framework to parameterize the -matrix. As an alternative to the Lüscher

method, one can benefit from the known model-independent OPE interaction using an

EFT-inspired approach. Specifically, we propose to determine the short-range part of the

NN interaction, parametrized in a systematic way by means of contact interactions, via a

direct matching to lattice QCD FV energy levels. The method is, to some extent, similar

to the low-energy theorems used in refs. [59 60] to restore the energy dependence of the

NN scattering amplitude at unphysical pion masses.

To illustrate the method, we first define a toy model comprising the OPE and the

heavy-meson-exchange potentials to generate synthetic data for the FV energies. Specifi-

cally, we consider

toy = −

(

gA

2Fπ

)2 M2
π

q2 + M2
π

τ1 · τ2 + (ch1 + ch2τ1 · τ2)
1

q2 + m2
h

, (5.16)

where is the OPE potential considered in the previous sections (up to an S-wave contact

interaction). For the various parameters, we choose the numerical values of = 139 MeV,

= 92 MeV and = 1 26. For the heavy-meson-exchange interaction, we introduce

both the isospin-triplet and isospin-singlet potentials with the same meson mass

GeV. Further, and denote the corresponding dimensionless coupling constants.

In order to regularize the UV divergences, we introduce a nonlocal Gaussian cuto

toy toy (5.17)

and choose = 0 45 GeV. The couplings and are adjusted in such a way that the

toy-model interaction mimics the behavior of the NN and phase shifts as shown in

figure . Using the toy model introduced above, we compute the corresponding FV energy

levels, which are regarded as synthetic lattice data, see the right-most symbols in figures

and for a given -value, where the results are only shown for the box with = 5 fm.

Having generated the synthetic data as described before, we are now in the position

to describe our approach for extracting the corresponding phase shifts. To this aim, we

exploit the knowledge of the long-range interaction in the underlying model to construct

the EFT interaction

EFT
(0)

OPE

(0)
cont

(2)
cont

(4)
cont . . . (5.18)
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where is the OPE potential considered in the previous sections (up to an S-wave contact

interaction). For the various parameters, we choose the numerical values of = 139 MeV,

= 92 MeV and = 1 26. For the heavy-meson-exchange interaction, we introduce

both the isospin-triplet and isospin-singlet potentials with the same meson mass

GeV. Further, and denote the corresponding dimensionless coupling constants.

In order to regularize the UV divergences, we introduce a nonlocal Gaussian cuto
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and choose = 0 45 GeV. The couplings and are adjusted in such a way that the
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figure . Using the toy model introduced above, we compute the corresponding FV energy

levels, which are regarded as synthetic lattice data, see the right-most symbols in figures

and for a given -value, where the results are only shown for the box with = 5 fm.

Having generated the synthetic data as described before, we are now in the position

to describe our approach for extracting the corresponding phase shifts. To this aim, we

exploit the knowledge of the long-range interaction in the underlying model to construct
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method, one can benefit from the known model-independent OPE interaction using an

EFT-inspired approach. Specifically, we propose to determine the short-range part of the

NN interaction, parametrized in a systematic way by means of contact interactions, via a

direct matching to lattice QCD FV energy levels. The method is, to some extent, similar

to the low-energy theorems used in refs. [59 60] to restore the energy dependence of the

NN scattering amplitude at unphysical pion masses.

To illustrate the method, we first define a toy model comprising the OPE and the

heavy-meson-exchange potentials to generate synthetic data for the FV energies. Specifi-

cally, we consider
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where is the OPE potential considered in the previous sections (up to an S-wave contact

interaction). For the various parameters, we choose the numerical values of = 139 MeV,

= 92 MeV and = 1 26. For the heavy-meson-exchange interaction, we introduce

both the isospin-triplet and isospin-singlet potentials with the same meson mass

GeV. Further, and denote the corresponding dimensionless coupling constants.

In order to regularize the UV divergences, we introduce a nonlocal Gaussian cuto

toy toy (5.17)

and choose = 0 45 GeV. The couplings and are adjusted in such a way that the

toy-model interaction mimics the behavior of the NN and phase shifts as shown in

figure . Using the toy model introduced above, we compute the corresponding FV energy

levels, which are regarded as synthetic lattice data, see the right-most symbols in figures

and for a given -value, where the results are only shown for the box with = 5 fm.

Having generated the synthetic data as described before, we are now in the position

to describe our approach for extracting the corresponding phase shifts. To this aim, we

exploit the knowledge of the long-range interaction in the underlying model to construct

the EFT interaction

EFT
(0)

OPE + V
(0)

cont + V
(2)

cont + V
(4)

cont + . . . (5.18)
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!Summary and outlook

Good progress in describing few-nucleon P- and CP-violating observables in 

chiral EFT to N2LO (at this level already ~  LECs…)2 × 10

PVTC LECs estimated from complementary observables, would be great to 

have data on longitudinal asymmetries in n-2H scattering

Thank you for your attention

PVTV LECs have been translated to EDMs of light nuclei — waiting for signals…

Future:

More ab-initio studies of P-violating observables (also beyond few-N systems) 

Symmetry-preserving gradient flow regularization from the PC sector Krebs, EE

More reliable uncertainty quantification see talk by Christian 

Matching to lattice QCD


