

Fast extraction of low-energy QRPA modes

Mikael Frosini, Luis Gonzalez-Miret

CEA-DES Speaker CEA-DAM

Main contributor

ESNT Workshop 21/11/2024

CEA/IRESNE/DER

Outline

- 1. Low-energy QRPA-modes
 - QRPA equation and resolution methods
 - Focus on low-energy modes and applications
- 2. Jacobi-Davidson method for interior eigenvalues equations
 - Jacobi-Davidson in a nutshell
 - Combining JD and FAM : complexity analysis
- 3. Validation and application with Gogny interaction
 - Benchmark and analysis
 - Application in U238 low-lying spectrum
- 4. Conclusion

Low-energy QRPA modes

QRPA equation and resolution methods

Exact resolution $\begin{pmatrix} A & B \\ B^+ & A^* \end{pmatrix} \begin{pmatrix} X_i \\ Y_i \end{pmatrix} = \epsilon_i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X_i \\ Y_i \end{pmatrix}$

 $Mx_i = \epsilon_i Nx_i$

Master QRPA equation

1. Non-symmetric eigenvalue problem

 $NMx_i = \epsilon_i x_i$ 2. Matrix-less Arnoldi resolution

 $O(n^{4})$

Toivanen et al Phys. Rev. C 81 034312 (2010)

- 1. Construction of system $O(n^5)/O(n^8)$
- 2. Resolution of eigenvalue equation $O(n^6)$

Matrix-less product? Alternating between sp and qp basis Only mean-field like contractions

Can exploit compressed format of H

Finite Amplitude Method

1. Matrix-less matrix inversion

 $(M - \omega N)^{-1}$ $30 \cdot O(n^4)$

2. Strength function calculation

 $PSF(EXL, \omega) \sim \Im\{Q^{L^+} \cdot (M - \omega N)^{-1} \cdot Q^L\}$

Focus on low-energy modes and applications

Nuclear Level Densities

Individual mode study

Pygmy resonances M1 spin-flip / scissor modes Low Energy Enhancement

Hilaire et al, Physics Letters B 843, 137989 (2023)

Inertia calculations

TDMF masses LQRPA : very good description Very costly as well

Hinohara et al, Phys. Rev. C **82**, 064313 (2010) Washiyama et al, Phys. Rev. C **109**, L051301 (2024)

Jacobi-Davison method for fast calculation of interior eigenvalues

QRPA equation and resolution methods

 $\mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} + \mathbf{A}_{\mathbf{A}} +$

1. Construction of system $O(n^5)/O(n^8)$

2. Resolution of eigenvalue equation $O(n^6)$

Jacobi-Davidson method

1. Matrix-less matrix product & inverse

 $30 \cdot O(n^4)$

2. Local eigenpair determination

$$n_{iter} \cdot 30 \cdot O(n^4)$$

Davidson et al (1975)

Cubic rate of convergence Efficient determination in isolated region

1. Non-symmetric eigenvalue problem

 $NMx_i = \epsilon_i x_i$

2. Matrix-less Arnoldi resolution

 $0(n^{4})$

Toivanen et al Phys. Rev. C 81 034312 (2010)

Converges extremal eigenvalues fast... Significant storage in basic formulation

Finite Amplitude Method

1. Matrix-less matrix inversion

$$(M - \omega N)^{-1}$$
 $30 \cdot O(n^4)$

2. Strength function calculation

 $PSF(EXL, \omega) \sim \Im\{Q^{L^+} \cdot (M - \omega N)^{-1} \cdot Q^L\}$

Complex integration can extract poles Need prior knowledge of position Requires separated eigenvalues Many iterations required

Jacobi-Davidson in a nutshell

Parenthesis : Rayleigh quotient iteration (RQI)

$$\begin{cases} \omega_i = \frac{x_i^+ M x_i}{x_i^+ N x_i} (\equiv \rho(x_i)) \\ x_{i+1} \propto (M - \omega_i N)^{-1} x_i \end{cases} \end{cases}$$

- Eigenvector magnified when close to eigenvalue
- Local cubic convergence towards ground state
- System solving ⇔ single FAM call

Promising but...

- One eigenvalue at a time
 - Deflation could be implemented
 - □ Still not fully efficient
- □ Instable near true eigenvalue
 - □ System becomes singular (more FAM iterations)
 - Can be stabilized by complex shift

Jacobi Davidson as upgraded RQI

2 steps method to find eigenparis closest to $\boldsymbol{\tau}$

 $\mathcal{U} \equiv (u_1 \cdots u_k)$ search space at iteration k

Solving eigenvalue equation in reduced space: new U $\mathcal{M}c = \omega \mathcal{N}c$ Accept eigenpairs based on $||Mu_i - \omega_i Nu_i|| < \epsilon_{tol}$

Improved RQI : many eigenvalues at once

Subspace expansion (build search space) Defining residuals $r \equiv (M - \rho(u)N)u$ Correction equation (classic JD) to solve $(I - \eta_u Nuu^+)(M - \rho(u)N)(I - \eta_u uu^+N)t = -r$ Easily generalized with deflation Can be solve approximately... or exactly (single FAM call !) \square Tweaked with complex shift for improved stability

Validation and application with Gogny interaction

Validation of the method

M-QRPA Benchmark in sd-shell (M1)

$\mid K$	E (JD) [MeV]	E (SM-QRPA) [MeV] \parallel	
0	10.406418	10.406417	
0	10.949270	10.949270	
0	13.298152	13.298153	
0	14.525524	14.525526	
1	8.898729	8.898731	
1	9.536392	9.536393	
1	11.172634	11.172633	
1	12.586020	12.586019	
1	14.835711	14.835712	
1	15.163259	15.163258	
1	16.503927	16.503927	
-			
$\mid K$	$\mid B_{M1} \text{ (JD) } [\mu_N^2]$	B_{M1} (SM-QRPA) $[\mu_N^2]$	
$\left \begin{array}{c} K \\ 0 \end{array}\right $	B_{M1} (JD) $[\mu_N^2]$ 0.000190	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \end{array}$	
$\left \begin{array}{c} K \\ 0 \\ 0 \end{array} \right $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \end{array}$	
$ \begin{array}{c c} K \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{vmatrix} B_{M1} & (\text{JD}) & [\mu_N^2] \\ 0.000190 \\ 0.096031 \\ 0.000941 \end{vmatrix}$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \\ 0.000941 \end{array}$	
$ \begin{array}{ c c c } K \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \\ \hline 0.000941 \\ 0.334622 \end{array}$	
$ \begin{array}{ c c } K \\ 0 \\ 0 \\ 0 \\ 1 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \\ 0.000941 \\ 0.334622 \\ 0.783673 \end{array}$	Very difficult
$ \begin{array}{ c c c } K \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \\ 0.000941 \\ 0.334622 \\ 0.783673 \\ 0.000334 \end{array}$	Very difficult with
$ \begin{array}{ c c c } K \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \\ 0.000941 \\ 0.334622 \\ 0.783673 \\ 0.000334 \\ 0.028456 \end{array}$	Very difficult with complex integration
$ \begin{array}{ c c c } K \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \\ 0.000941 \\ 0.334622 \\ 0.783673 \\ 0.000334 \\ 0.028456 \\ 0.000212 \end{array}$	Very difficult with complex integration
$ \begin{array}{ c c c } K \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \\ 0.000941 \\ 0.334622 \\ 0.783673 \\ 0.000334 \\ 0.028456 \\ 0.000212 \\ 0.014002 \end{array}$	Very difficult with complex integration
$ \begin{array}{ c c c } K \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} B_{M1} (\text{SM-QRPA}) \left[\mu_N^2 \right] \\ \hline 0.000190 \\ 0.096031 \\ 0.000941 \\ 0.334622 \\ 0.783673 \\ 0.000334 \\ 0.028456 \\ 0.000212 \\ 0.014002 \\ 0.000028 \end{array}$	Very difficult with complex integration

FAM-QRPA Benchmark with chiral Hamiltonian

Perfect agreement with M-QRPA / FAM-QRPA What about performance?

cea

Performance of JD methods

FAM calls can become too involved in dense regions

- Singular system difficult to invert
- Iterative methods break down

Introduction of **small complex shift** to regularize the system Greatly reduces the number of HFB-like iterations No significant impact on number of JD iterations

M1,K=0 strength 2 FAM calls per eigenvalue 20-50 HFB-like contractions per iteration

Comparing to complex integration

- Faster
- More accurate
- Not dependent on observable

D1M interaction

7 CPUh on single core for 10 eigenvalues vs. **5-50k CPUh** for M-QRPA Fully self-consistent calculation (Coulomb exact)

4 Conclusion

Conclusion

- A new resolution algorithm has been proposed to extract interior QRPA modes
 - Combines Arnoldi & QRPA-FAM methods
 - Extract single eigenmode in few FAM calls
- This method is improving on the previously proposed complex integration
 - Better numerical stability
 - Requires less FAM evaluations
 - Does not rely on the previous knowledge of modes position
- Proper benchmark with valence space / chiral interactions
- Application with D1M interaction in realistic calculations

Gonzalez-Miret et al, in preparation

Thanks for your attention

Rémi Bernard Olivier Litaize Gille Noguère Alessandro Pastore Pierre Tamagno Stavros Bofos Clémentine Azam Steve Sainato

Thomas Duguet Vittorio Somà Benjamin Bally

Gianluca Stellin

Jean-Paul Ebran Sophie Péru Stéphane Hilaire Lars Zurek Philippe Da Costa David Durel Luis Gonzalez-Miret

cea

TECHNISCHE UNIVERSITÄT DARMSTADT

Robert Roth Andrea Porro

Heiko Hergert

Kamila Sieja

Alberto Scalesi

T. R. Rodrìguez