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Abstract

The random phase approximation (RPA) and its variations and extensions are,
without any doubt, the most widely used tools to describe giant resonances within
a microscopic theory. At the start of this chapter, it will be discussed how RPA
comes out naturally, if one seeks a state with a harmonic time dependence in
the space of one particle-one hole excitations on top of the ground state. It
will be also shown that RPA is the simplest approach in which a “collective”
state emerges. These are basic arguments that appear in other textbooks but
are also unavoidable as a starting point for further discussions. In the rest of
the chapter, emphasis will be given to developments that have taken place in
the last decades: alternatives to RPA like the finite-amplitude method (FAM),
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Why should we study nuclear collective states?
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• Test new models – either new energy density functionals 
(EDFs), or chiral Hamiltonians (for their emergent properties)

• Find the nature of elusive/new modes (“pygmy” modes, 
toroidal modes)

• There is still much to understand about GR decay

• “Applications”: the Equation of State (EoS), astrophysics, 
matrix elements for β- or ββ-decay



Outline of this talk

• Linear response theory vs time-dependent approaches

• RPA vs SM

• Giant resonances and their decay (continuum coupling)

• Beyond the linear response: SRPA and (Q)PVC 

• Spin- and spin-isospin modes (and β-decay)

• Drip line nuclei, “pygmies” vs threshold effects

• ”Service” for particle physics, astrophysics

• Novelties, conclusions (mainly apologies for omitted topics)

CEA ENST, 19/11/2024 4



Time-dependent Hartree-Fock or Kohn-Sham
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In the time-dependent case, one can solve the 
evolution equation for the density directly:

h�i = "i�i
<latexit sha1_base64="YAF+p+E45lVcmZq4dml9SNAUFXM=">AAACB3icbZDLSsNAFIYn9VbrLepSkMEiuCqJCLoRim5cVrAXaEKYTE/aoZNJmJkUSujOja/ixoUibn0Fd76N0zYLbf1h4Oc753Dm/GHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKWSTFJo0oQnshMSBZwJaGqmOXRSCSQOObTD4e203h6BVCwRD3qcgh+TvmARo0QbFNjHAy8dsIDha+yNiIRUMW44w3Mc2FWn5syEl41bmCoq1AjsL6+X0CwGoSknSnVdJ9V+TqRmlMOk4mUKUkKHpA9dYwWJQfn57I4JPjWkh6NEmic0ntHfEzmJlRrHoemMiR6oxdoU/lfrZjq68nMm0kyDoPNFUcaxTvA0FNxjEqjmY2MIlcz8FdMBkYRqE13FhOAunrxsWuc116m59xfV+k0RRxkdoRN0hlx0ieroDjVQE1H0iJ7RK3qznqwX6936mLeWrGLmEP2R9fkDefWZDQ==</latexit><latexit sha1_base64="YAF+p+E45lVcmZq4dml9SNAUFXM=">AAACB3icbZDLSsNAFIYn9VbrLepSkMEiuCqJCLoRim5cVrAXaEKYTE/aoZNJmJkUSujOja/ixoUibn0Fd76N0zYLbf1h4Oc753Dm/GHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKWSTFJo0oQnshMSBZwJaGqmOXRSCSQOObTD4e203h6BVCwRD3qcgh+TvmARo0QbFNjHAy8dsIDha+yNiIRUMW44w3Mc2FWn5syEl41bmCoq1AjsL6+X0CwGoSknSnVdJ9V+TqRmlMOk4mUKUkKHpA9dYwWJQfn57I4JPjWkh6NEmic0ntHfEzmJlRrHoemMiR6oxdoU/lfrZjq68nMm0kyDoPNFUcaxTvA0FNxjEqjmY2MIlcz8FdMBkYRqE13FhOAunrxsWuc116m59xfV+k0RRxkdoRN0hlx0ieroDjVQE1H0iJ7RK3qznqwX6936mLeWrGLmEP2R9fkDefWZDQ==</latexit><latexit sha1_base64="YAF+p+E45lVcmZq4dml9SNAUFXM=">AAACB3icbZDLSsNAFIYn9VbrLepSkMEiuCqJCLoRim5cVrAXaEKYTE/aoZNJmJkUSujOja/ixoUibn0Fd76N0zYLbf1h4Oc753Dm/GHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKWSTFJo0oQnshMSBZwJaGqmOXRSCSQOObTD4e203h6BVCwRD3qcgh+TvmARo0QbFNjHAy8dsIDha+yNiIRUMW44w3Mc2FWn5syEl41bmCoq1AjsL6+X0CwGoSknSnVdJ9V+TqRmlMOk4mUKUkKHpA9dYwWJQfn57I4JPjWkh6NEmic0ntHfEzmJlRrHoemMiR6oxdoU/lfrZjq68nMm0kyDoPNFUcaxTvA0FNxjEqjmY2MIlcz8FdMBkYRqE13FhOAunrxsWuc116m59xfV+k0RRxkdoRN0hlx0ieroDjVQE1H0iJ7RK3qznqwX6936mLeWrGLmEP2R9fkDefWZDQ==</latexit><latexit sha1_base64="YAF+p+E45lVcmZq4dml9SNAUFXM=">AAACB3icbZDLSsNAFIYn9VbrLepSkMEiuCqJCLoRim5cVrAXaEKYTE/aoZNJmJkUSujOja/ixoUibn0Fd76N0zYLbf1h4Oc753Dm/GHKmdKO822VVlbX1jfKm5Wt7Z3dPXv/oKWSTFJo0oQnshMSBZwJaGqmOXRSCSQOObTD4e203h6BVCwRD3qcgh+TvmARo0QbFNjHAy8dsIDha+yNiIRUMW44w3Mc2FWn5syEl41bmCoq1AjsL6+X0CwGoSknSnVdJ9V+TqRmlMOk4mUKUkKHpA9dYwWJQfn57I4JPjWkh6NEmic0ntHfEzmJlRrHoemMiR6oxdoU/lfrZjq68nMm0kyDoPNFUcaxTvA0FNxjEqjmY2MIlcz8FdMBkYRqE13FhOAunrxsWuc116m59xfV+k0RRxkdoRN0hlx0ieroDjVQE1H0iJ7RK3qznqwX6936mLeWrGLmEP2R9fkDefWZDQ==</latexit>

h(t) = h+ f(t) [h(t), ⇢(t)] = i~ ⇢̇(t)

⇢(t = 0) 6= ⇢g.s.

⇢(t = �t) = U(t = 0, t = �t)⇢(t = 0) U = e�i�t
~ ·h

From: P. Stevenson (U. Surrey)

This approach allows also studying large-amplitude motion (e.g. reactions).

If the equation for the density is linearized (small amplitude limit or linear 
response): Random Phase Approximation or RPA.



How to derive the RPA equations (I)
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h(t) = h+ f(t) [h(t), ⇢(t)] = i~ ⇢̇(t)

The so-called Random Phase Approximation(*) should be better called 
“linearization of the equation of motion”. We truncate the equation of motion at 
first order. 

<latexit sha1_base64="4e6/HN9OJDJJaPszmd+762jLe2k=">AAACJXicbVDLSsNAFJ34rPUVdelmsAiVQklEqguFohuXFewDmlgmk0kzdPJgZiKU0J9x46+4cWERwZW/4qSJoK13GO7hnHOZuceJGRXSMD61peWV1bX10kZ5c2t7Z1ff2++IKOGYtHHEIt5zkCCMhqQtqWSkF3OCAoeRrjO6yfTuI+GCRuG9HMfEDtAwpB7FSCpqoF9a3I/gFczaQ1o1TiY1yyVMooyw4M/xlcXPdViDuQP6A71i1I1ZwUVgFqACimoN9KnlRjgJSCgxQ0L0TSOWdoq4pJiRSdlKBIkRHqEh6SsYooAIO51tOYHHinGhF3F1Qwln7O+JFAVCjANHOQMkfTGvZeR/Wj+R3oWd0jBOJAlx/pCXMCgjmEUGXcoJlmysAMKcqr9C7COOsFTBllUI5vzKi6BzWjcb9cbdWaV5XcRRAofgCFSBCc5BE9yCFmgDDJ7AC3gDU+1Ze9XetY/cuqQVMwfgT2lf3+Kjocs=</latexit>

⇢ = ⇢(0) + �⇢ h = h(0) + �h
(*) The name comes from plasma physics, cf. eikr…

In the Random Phase Approximation, the linearized equation of motion is 
written on a p-h basis and becomes a matrix equation.

+ =

<latexit sha1_base64="fZSh/0CM9Uyo/gp3X3zrRUtRCEs="></latexit>

|ni =
X

ph

Xph|ph�1i � Yph|hp�1i Pairing → 
QRPA 



Matrix RPA and Finite Amplitude Method (FAM)
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<latexit sha1_base64="4e6/HN9OJDJJaPszmd+762jLe2k=">AAACJXicbVDLSsNAFJ34rPUVdelmsAiVQklEqguFohuXFewDmlgmk0kzdPJgZiKU0J9x46+4cWERwZW/4qSJoK13GO7hnHOZuceJGRXSMD61peWV1bX10kZ5c2t7Z1ff2++IKOGYtHHEIt5zkCCMhqQtqWSkF3OCAoeRrjO6yfTuI+GCRuG9HMfEDtAwpB7FSCpqoF9a3I/gFczaQ1o1TiY1yyVMooyw4M/xlcXPdViDuQP6A71i1I1ZwUVgFqACimoN9KnlRjgJSCgxQ0L0TSOWdoq4pJiRSdlKBIkRHqEh6SsYooAIO51tOYHHinGhF3F1Qwln7O+JFAVCjANHOQMkfTGvZeR/Wj+R3oWd0jBOJAlx/pCXMCgjmEUGXcoJlmysAMKcqr9C7COOsFTBllUI5vzKi6BzWjcb9cbdWaV5XcRRAofgCFSBCc5BE9yCFmgDDJ7AC3gDU+1Ze9XetY/cuqQVMwfgT2lf3+Kjocs=</latexit>

⇢ = ⇢(0) + �⇢ h = h(0) + �h
<latexit sha1_base64="EIamLq5ZnJY1MQRwvmhkSIOV9Sc=">AAACKXicbVBNSwMxEM36bf2qevQSLIIiLrsi6kUoevGoYFXo1pJNp20w2SzJrFCW/Tte/CteFBT16h8xrQU/Hwy8vDdDZl6cSmExCF69kdGx8YnJqenSzOzc/EJ5cenc6sxwqHEttbmMmQUpEqihQAmXqQGmYgkX8fVR37+4AWOFTs6wl0JDsU4i2oIzdFKzXI1aIJFFpqvpAf16rEc3wKnZyCOjKBRX+ZaItIIOo1jQTTqQuz73i2a5EvjBAPQvCYekQoY4aZYfo5bmmYIEuWTW1sMgxUbODAouoShFmYWU8WvWgbqjCVNgG/ng0oKuOaVF29q4SpAO1O8TOVPW9lTsOhXDrv3t9cX/vHqG7f1GLpI0Q0j450ftTFLUtB8bbQkDHGXPEcaNcLtS3mWGcXThllwI4e+T/5LzbT/c9XdPdyrVw2EcU2SFrJJ1EpI9UiXH5ITUCCe35J48kWfvznvwXry3z9YRbzizTH7Ae/8A5gilyA==</latexit>

ωε = ωε(ϑr)e→iωt + h.c.

<latexit sha1_base64="Zdb+wfY9ftIYN1KuF84aLCE5m74="></latexit>

⊋ωεϑ(ω) =
[
h(0), εϑ(ω)

]
+

[
εh(ω), ϑ(0)

]
+
[
f, ϑ(0)

]

Small amplitude 
Harmonic approx.

<latexit sha1_base64="o6AXIyuG/71tiGITF2g3myZvo8o="></latexit>

(ωp → ωh → ε)Xph + ϑhph(ε) = →fph(ε)

(ωp → ωh + ε)Yph + ϑhhp(ε) = →fhp(ε)

FAM: the calculation of the two-
body matrix elements is avoided

<latexit sha1_base64="CdXT8coLdIxuO652MYeG2heuKhU=">AAACeXicjVFNSyNBEO0ZP9aNX1GP66E1KCIYZlxx9yKIXjwqGI2kY+jpVDJNenqG7pqFMOQ/7G/z5h/x4sVOHMFPsJqGx6uqV92vokxJi0Fw7/lT0zOzP+Z+VuYXFpeWqyurVzbNjYCGSFVqmhG3oKSGBkpU0MwM8CRScB0NTsf5639grEz1JQ4zaCe8r2VPCo6O6lT/NzsFMwnN4hE9okxx3VdAX6jbYi8cUeYEkLIuKOTMxGlJBJSZSTmjL+fmS7E4+6ZYp1oL6sEk6EcQlqBGyjjvVO9YNxV5AhqF4ta2wiDDdsENSqFgVGG5hYyLAe9Dy0HNE7DtYuLciG45pkt7qXFXI52wrzsKnlg7TCJXmXCM7fvcmPws18qx97ddSJ3lCFo8D+rlimJKx2ugXWlAoBo6wIWR7q1UxNxwgW5ZFWdC+P7LH8HVfj08rB9eHNSOT0o75sgvskl2SEj+kGNyRs5Jgwjy4K17W9629+hv+Dv+7nOp75U9a+RN+L+fAJLxvfg=</latexit>

Xph = →ph→1|ωε|0↑ Yph = →hp→1|ωε|0↑Standard definition of the “forward” 
and “backward” amplitudes:

Matrix formulation<latexit sha1_base64="NPMBiIEQBzU9/bnsM1rd/xOFoIQ=">AAACIHicbZBNS8MwGMdTX+d8q3r0EhyCp9GKbF6EoRePE9wLrGWkabqGJW1JUmGUfhQvfhUvHhTRm34a060D3fxD4Jf/8zwkz99LGJXKsr6MldW19Y3NylZ1e2d3b988OOzKOBWYdHDMYtH3kCSMRqSjqGKknwiCuMdIzxvfFPXeAxGSxtG9miTE5WgU0YBipLQ1NJuOT5hCMIRX0JEph04gEM7mbj4nR4RxDmeXgodmzapbU8FlsEuogVLtofnp+DFOOYkUZkjKgW0lys2QUBQzkledVJIE4TEakYHGCHEi3Wy6YA5PtePDIBb6RApO3d8TGeJSTrinOzlSoVysFeZ/tUGqgks3o1GSKhLh2UNByqCKYZEW9KkgWLGJBoQF1X+FOEQ6IaUzreoQ7MWVl6F7Xrcb9cbdRa11XcZRAcfgBJwBGzRBC9yCNugADB7BM3gFb8aT8WK8Gx+z1hWjnDkCf2R8/wCJyaNE</latexit>

ωh =
∑ ωh

ωε
ωε

G.C. et al., Computer Physics 
Commun. 184, 142 (2013).
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INTERPLAY BETWEEN LOW-LYING ISOSCALAR … PHYSICAL REVIEW C 99, 054314 (2019)
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FIG. 9. The strength function of the IS (a) and IV (b) response
for 132Sn with SAMi-J31 as obtained in TDHF or in RPA calculation,
with Lbox = 20 or 30 fm, respectively. The vertical lines indicate the
energy of the modes selected for the transition density analysis (see
Sec. III E).

E. Transition densities

In addition to the investigation of the dipole strength
discussed so far, the analysis of the transition densities as-
sociated with the different excitation modes of the system
is very instructive since it delivers important information
about the spatial structure related to the dynamics of every
excitation. To undertake this analysis in TDHF and Vlasov
calculations, we need to evaluate the local spatial density
as a function of time. To reduce numerical fluctuations,
we take into account the cylindrical symmetry of the ini-
tial perturbation and, averaging over the azimuthal φ angle,
we extract the density ρq(r, cos θ , t ) and the corresponding
fluctuation δρq(r, cos θ , t ) = ρq(r, cos θ , t ) − ρq(r, t0), where
cos θ = z/r and ρq(r, t0) denotes the ground-state density
profile, which only depends on r. As suggested in Ref. [41],
assuming that the amplitude of the oscillation is weak (lin-
ear response regime), the spherical symmetry of the ground
state and the dipole shape of the excitation operator im-
ply that the transition density can be written, at each time,
as δρq(r, cos θ , t ) = δρq(r, t ) cos θ . Then one can finally ex-
tract the transition density just as a function of the radial
distance r, by averaging over the polar angle the quantity
δρq(r, t ).

It is clear that, both in Vlasov and TDHF calculations, the
perturbation Vext, at t = t0, induces simultaneously all modes
which can be excited by the operator D̂k . Thus the corre-
sponding density oscillations observed along the dynamical
evolution will appear as the result of the combination of the
different excitation modes. To pin down the contribution of a
given mode, of energy E , to the density oscillations, one can

compute the Fourier transform of δρq(r, t ):

δρq(r, E ) ∝
∫ ∞

t0
dt δρq(r, t ) sin

Et
h̄

. (11)

In practice, since the simulation runs only to tmax =
1800 fm/c, the sine function is multiplied by a damping
factor, as in the strength function Sk (E).

We notice that, in RPA calculations, one does not need to
use any auxiliary prescription, since the transition densities
are directly evaluated from the forward and backward am-
plitudes solution of the RPA matrix, associated with a given
energy eigenvalue E [see Eqs. (36) and (37) in Ref. [39]].
Nonetheless, in principle, it could be possible to average the
RPA transition densities in a given energy window.

It is well known that, in symmetric matter, neutrons and
protons oscillate with exactly equal (isoscalar) or opposite
(isovector) amplitudes. In neutron-rich systems, the picture
is more complex; however, one can still identify isoscalarlike
modes, when the two nuclear species oscillate in phase, and
isovectorlike modes, with neutrons and protons oscillating out
of phase. Apart from this information, connected to the mixed
character of each mode, the overall spatial structure of the
transition densities tells us which part of the system (internal
part or surface) is more involved in the oscillation.

In dynamical calculations, dipole excitations are directly
excited by a given (IS or IV) perturbation. Hence IS(IV)-
like oscillations, and corresponding transition densities, are
better identified when an initial IS(IV) perturbation is applied.
Actually, this possibility to directly probe the response of the
system to specific excitations could also help to disentangle
between modes having similar energies but different nature.
However, the modes with a strong IS-IV mixing react to both
(IS and IV) excitations, so the associated transition density
can be extracted from both kinds of calculations.

Here we present the transition densities related to the
modes giving a sizeable contribution to the IS dipole strength
function (Fig. 10) and/or to the IV one (Fig. 11), as obtained
for the system 132Sn in TDHF, Vlasov and RPA calculations.
For the Vlasov calculations, we consider the same modes
identified in Ref. [23]. The energies considered in TDHF and
RPA calculations are indicated by vertical bars in Fig. 9.

As a general feature, it should be noticed that TDHF and
RPA calculations lead to very similar results. The first row
of the two figures displays the structure of what we may call
PDR (full orange bar in Fig. 9), which manifests itself as an
isoscalarlike mode, but with also an isovector contribution.
Indeed, in TDHF and Vlasov calculations, essentially the
same structure is observed when the transition density is
extracted from IS or IV perturbations, though with a reduced
amplitude in the latter case.

The structure obtained in quantal calculations is in agree-
ment with previous results [66] and is qualitatively well re-
produced also by the semiclassical density oscillations, except
for the behavior in the central region which could be related
to the trend observed in the quantal isovector density profiles
(see Fig. 2). One can see that density oscillations involve
deeply the surface region (see the behavior for r between 5
and 9 fm). This is in line with the observation that this mode

054314-11

This comparison between TDHF and 
RPA (using Skyrme EDFs) is taken from:
 
S. Burrello et al., Phys. Rev. C99, 
054314 (2019).
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At the turn of the century, there was a puzzle: relativistic RPA seemed to be 
very different from time-dependent RMF (i.e. Hartree) calculations. 

It turned out that this was an effect of insufficient model space. Not only p-h but 
excitations from the Dirac sea of anti-particles are needed to achieve the 
(mathematical) completeness of the basis.

264 P. Ring et al. / Nuclear Physics A 694 (2001) 249–268

and the minimal sh-energy (js − ji > Emin). With this basis the RPA matrix is calculated
for the same effective interaction that determines the ground state, or the free polarization
functionΦ (0) is calculated in the response function method. Both methods require that the
single-particle continuum is discretized. In order to smooth out the RPA strength function,
the discrete strength distribution is folded by a Lorentzian of width Z . In the response
function method the folding is automatic if a finite value parameter iZ is used in the de-
nominators of Eqs. (42)–(45), instead of the infinitesimal parameter ik. We have verified
that identical results are obtained with both methods.
The large effect of Dirac-sea states on isoscalar strength distributions is illustrated in

Fig. 1, where we display the isoscalar monopole RRPA strength in 116Sn calculated with
the NL3 effective interaction [36] and the width of the Lorentzian is Z = 2 MeV. Recent
experimental data are available for the isoscalar giant monopole resonance in 116Sn [35].
The solid curve represents the full RRPA strength and it displays a pronounced peak
at 16 MeV, in excellent agreement with the measured value of 15.9 MeV [35]. Giant
monopole resonances in spherical nuclei are in best agreement with experimental data,
when calculated with effective Lagrangians with a nuclear matter compression modulus
in the range 250–270 MeV [17,28,29]. The nuclear matter incompressibility of the NL3
effective interaction is 272 MeV.
The long-dashed curve in Fig. 1 corresponds to the to the case with no sh pairs in the

RRPA configuration space. We notice that, without the contribution from Dirac-sea states,
the strength distribution is shifted to lower energy. The position of the peak is shifted from
≈ 16 MeV to below 10MeV if sh pairs are not included in the RRPA basis. Quantitatively
similar results are also obtained with other effective interactions. In Fig. 1 we have also
separated the contributions of vector and scalar mesons to the sh matrix elements. The
dash–dot–dot (dash–dot) curve corresponds to calculations in which only vector mesons
(scalar mesons) were included in the coupling between the Fermi-sea and Dirac-sea states.
Both interactions were included in the positive-energy particle–hole matrix elements. The
resulting strength distributions nicely illustrate the dominant contribution of the isoscalar

Fig. 1. ISGMR strength distributions in 116Sn calculated with the NL3 effective interaction. The solid
and long-dashed curves are the RRPA strengths with and without the inclusion of Dirac-sea states,
respectively. The dash–dot–dot (dash–dot) curve corresponds to calculations in which only vector
mesons (scalar mesons) are included in the coupling between the Fermi-sea and Dirac-sea states.

Z.Y. Ma et al., NPA 687 (2001) 64c; P. Ring et al., NPA 694 (2001) 249
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Using the RPA wave function, it is straightforward to calculate the strength 
function associated with various operators (backup slide about this).

• Using the RPA (but also other) wave 
functions one can extract inelastic 
cross sections using DWBA or CC

• The RPA+DWBA calculations can 
reasonably reproduce the RCNP 
data at E⍺=240 MeV

• The strengths show quantitative 
differences from those “extracted” by 
the exp. analysis Nuclear Physics A 836 (2010) 11–42

www.elsevier.com/locate/nuclphysa
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Abstract

The energetic beam of (spin and isospin zero) α-particles remains a very efficient probe for the nuclear
isoscalar giant resonances. In the present work, a microscopic folding model study of the isoscalar giant res-
onances in 208Pb induced by inelastic α + 208Pb scattering at Elab = 240 and 386 MeV has been performed
using the (complex) CDM3Y6 interaction and nuclear transition densities given by both the collective model
and Random Phase Approximation (RPA) approach. The fractions of energy weighted sum rule around the
main peaks of the isoscalar monopole, dipole and quadrupole giant resonances were probed in the Distorted
Wave Born Approximation analysis of inelastic α + 208Pb scattering using the double-folded form factors
given by different choices of the nuclear transition densities. The energy distribution of the E0, E1 and E2
strengths given by the multipole decomposition analyses of the (α,α′) data under study are compared with
those predicted by the RPA calculation.
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1. Introduction

Isoscalar giant resonances [1] in medium and heavy nuclei are the pronounced manifestation
of nuclear collective motion and, hence, they carry important information about the dynamics
of the nuclear excitation process and the properties of the nuclear Hamiltonian. Although their
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The first 2þ and 3− states of the doubly magic nucleus 132Sn are populated via safe Coulomb excitation
employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly
efficient MINIBALL array. The 132Sn ions are accelerated to an energy of 5.49 MeV=nucleon and
impinged on a 206Pb target. Deexciting γ rays from the low-lying excited states of the target and the
projectile are recorded in coincidence with scattered particles. The reduced transition strengths are
determined for the transitions 0þg:s: → 2þ1 , 0

þ
g:s: → 3−1 , and 2þ1 → 3−1 in 132Sn. The results on these states

provide crucial information on cross-shell configurations which are determined within large-scale shell-
model and Monte Carlo shell-model calculations as well as from random-phase approximation and
relativistic random-phase approximation. The locally enhanced BðE2; 0þg:s: → 2þ1 Þ strength is consistent
with the microscopic description of the structure of the respective states within all theoretical approaches.
The presented results of experiment and theory can be considered to be the first direct verification of the
sphericity and double magicity of 132Sn.

DOI: 10.1103/PhysRevLett.121.252501

Ten doubly magic atomic nuclei act as cornerstones
along the whole chart of nuclei. Their basic properties like
masses, binding energies, and excited states play an

eminent role for a detailed understanding and theoretical
description of the nuclear system. Tin has a magic number
of protons (Z ¼ 50) and is the heaviest element to have two
isotopes with a magic number of neutrons (100Sn50 and
132Sn82). The latter of these nuclei acts as an essential
benchmark for theoretical approaches extending towards
heavier and more neutron-rich systems. This region of the
nuclear chart plays a critical role in the astrophysical r
process, and understanding its path around 132Sn is

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.
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to the expected behavior of lowest seniority in doubly
magic nuclei. For a microscopic understanding of this
feature, state-of-the-art large-scale shell-model (LSSM)
and Monte Carlo shell-model (MCSM) calculations have
been performed, as well as mean-field calculations utiliz-
ing RPA.
The first LSSM calculations for 132Sn are performed in a

valence space spanned by the 0h11=2, 1f7=2, 0h9=2, 1f5=2,
2p3=2, 2p1=2 orbitals for neutrons and the 0g9=2, 0g7=2,
1d5=2, 1d3=2, 2s1=2 orbitals for protons above a closed 110Zr
core. This model space allows direct inclusion of 0ℏω
quadrupole particle-hole excitations in 132Sn. Details on the
effective interaction are described in Ref. [34]. The LSSM
investigation of 132Sn requires np − nh excitations from the
ν0h11=2and π0g9=2 orbitals to the valence orbitals across
the shell gap to be taken into account. In order to reduce the
huge matrix dimension in the m scheme, a truncation
scheme was adopted allowing up to 7p7h excitations. The
Hamiltonian was diagonalized employing the ANTOINE

shell-model code [35,36]. Effective charges eπ ¼ 1.68e and
eν ¼ 0.41e were used.
A novel MCSM calculation was performed recently in a

unified way along the 100–138Sn isotopic chain [37]. A large
model space consisting of eight single-particle orbitals
for protons and neutrons, i.e., the full sdg harmonic
oscillator shell and the 0h11=2, 1f7=2, and 2p3=2 orbitals,
was used with a fixed Hamiltonian and effective charges
(eπ ¼ 1.25e, eν ¼ 0.75e). Additional information on the
0þg:s:, 2

þ
1 , and 4

þ
1 states as well as E2 excitation probabilities

in 132Sn are deduced employing the same MCSM approach.
Skyrme RPA calculations are performed according to

Ref. [38] (cf. also Ref. [9]). Themodel space is large enough
so that appropriate energy-weighted sum rules are well
fulfilled: All hole states of 132Sn and particle states up to a
maximum energy cutoff of 120 MeV were included,
discretized in a spherical box of 20 fm. RPA is a proper
theory to describe nuclear collective motion. However,
while the results for giant resonances only depend on bulk
properties of the Skyrme force, those for the low-lying
excitations are quite sensitive to the details of the levels
close to the Fermi surface. In this respect, measurements are
instrumental to test the performance of the Skyrme param-
eter sets. Additional values derived from a study based on
relativistic RPA (RRPA) were taken from Ref. [39].

The excitation energy of the 2þ1 state is well reproduced
by most calculations [cf. Fig. 3(a)]. The BðE2; 0þg:s: → 2þ1 Þ
values derived from LSSM, MCSM, and RRPA calcu-
lations compare well with the new experimental value
within the error bars [cf. Fig. 3(b)]. Both SM approaches
corroborate the locally enhanced quadrupole strength in
doubly magic 132Sn. The calculated BðE2Þ values from
LSSM yield 0.028, 0.100, and 0.027 e2b2 for 130;132;134Sn,
respectively, in agreement with experimental data
(cf. Ref. [15] for 130;134Sn). Corresponding values from
MCSM are given in Ref. [37], yielding 0.085 e2b2 for
132Sn. Proton excitations πg−19=2d5=2 across the Z ¼ 50 shell
gap with Δj ¼ Δl ¼ 2 are found to be crucial for the
evolution of E2 strength along the Sn isotopic chain.
According to the LSSM, these proton excitations amount
to a fraction of approximately 14% of the total wave
function of the 2þ1 state in 132Sn, resulting in an occupation
number of 0.21 for the πd5=2 orbital. In neighboring
130;134Sn, the occupation is reduced by a factor of about
3. The MCSM result yields a similar trend for the Sn
isotopes with an average πd5=2 occupation of 0.07 for the
2þ1 state in 132Sn. Although this is not a large number, the
contribution to the total E2 matrix element is approx-
imately 25%. RPA calculations with, e.g., the SkX Skyrme
force, yield an expectation value of 0.19 for the proton
excitations (cf. Ref. [9]). The BðE2Þ value is overestimated
by about 60% [cf. Fig. 3(b)].
Varying structures of the 0þg:s: and 2þ1 states of

130;132;134Sn can be visualized by the T-plot, as shown in
Fig. 4. The MCSM eigenstate is a superposition of Jπ

projected MCSM basis vectors [40]. Each basis vector can

TABLE I. Reduced transition strengths of 132Sn determined in
this work and from previous measurements.

BðEλ; Ii → IfÞ (e2bλ)
Ii → If Eγ (keV) Eλ Present Previous

0þg:s: → 2þ1 4041.2 E2 0.087(19) 0.14(6) [15,16]
0.11(3) [17,18]

0þg:s: → 3−1 4351.9 E3 0.11(4) > 0.0512 [33]
2þ1 → 3−1 310.7 E1 9.1ð31Þ×10−6 >3.97×10−6 [33]

(a) (c)

(b) (d)

FIG. 3. Comparison of the experimental excitation energies
(a,c) and reduced transition probabilities (b,d) of 132Sn indicated
with red lines, with latest LSSM, MCSM, and mean-field
calculations utilizing RPA as well as RRPA (from Ref. [39])
for the 2þ1 (a,b) and for the 3−1 (c,d) state. The gray bands display
the 1σ deviations of the BðEλÞ values. Details are given in
the text.
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be characterized by the quadrupole moments Q0 and Q2,
which is plotted as circle on top of the potential energy
surface (PES) [41,42]. The area of each circle indicates the
overlap probability of the respective MCSM basis vector
with the eigenstate. The PES is obtained by constrained
Hartree-Fock calculations for the same SM Hamiltonian.
Although the PES exhibits a more pronounced spherical
minimum for 132Sn, the circles are spread outward in the
0þg:s: states of 130;132;134Sn shown in Figs. 4(a), 4(c), and 4(e),
indicating quantum fluctuations due to pairing correlations
(cf. Ref. [41]). However, the major basis vectors of
the ground state of 132Sn in Fig. 4(c) are particularly
concentrated towards the spherical limit, indicating the
well-stabilized double magicity. Moreover, the MCSM
calculations provide a high probability of 90% for the
ground state of 132Sn to be in the spherical doubly closed
configuration. This value is significantly larger than the
corresponding values for the doubly magic isotopes
56;68;78Ni yielding only 60%, 53%, 75% [41]. An average
number of 0.08 (0.28) protons and 0.13 (0.22) neutrons are
excited across the Z ¼ 50 and N ¼ 82 shell gaps according
to MSCM (LSSM) calculations. For the 2þ1 states, the T-
plots show a notable shift from the near-spherical region of
132Sn [Fig. 4(d)] towards oblate for 130Sn [Fig. 4(b)] but
towards prolate for 134Sn [Fig. 4(f)].
Similar to the BðE2; 0þg:s: → 2þ1 Þ, an enhanced octupole

transition strength is predicted for the 3−1 state in 132Sn by
theory [11,12]. Because of the computational limits of the
valence space, the SM approaches do not provide infor-
mation on the 3−1 state. The RPA and RRPA calculations
yield BðE3; 0þg:s: → 3−1 Þ values in agreement with the
experimental one within the error bars. However, both
calculations overestimate the Eð3−1 Þ consistently by about
0.8 MeV [cf. Figs. 3(c) and 3(d)].

Finally, the LSSM and MCSM calculate Eð4þ1 Þ ¼ 4.30
and 4.66 MeV, respectively, which is in good agreement
with the experimental value of 4.416 MeV. Compared to
the wave function of the 2þ1 state proton excitations,
πg−19=2d5=2 are significantly reduced for the 4

þ
1 state, yielding

lower average πd5=2 occupation numbers of 0.10 and 0.03
for the LSSM and MCSM calculations, respectively,
resulting in BðE2; 2þ1 → 4þ1 Þ ¼ 0.00107 e2b2 and
0.00219 e2b2. The latter one compares nicely to the known
value of 0.00288(17) e2b2 [33].
In summary, the new HIE-ISOLDE facility enabled a

safe Coulomb-excitation experiment of 132Sn yielding
transition strength values for the first two excited states.
Novel theoretical approaches allowed detailed insights into
the structure of these excitations. For the first time, the
doubly magic nucleus 132Sn was explored by MCSM and
LSSM calculations. The excitation energies of the 2þ1 and
4þ1 states and their BðE2Þ values were well reproduced.
Although a dominant contribution is caused by the 1p1h
neutron excitation across the N ¼ 82 shell gap, the con-
tribution of the πg−19=2d5=2 excitation is crucial to reproduce
the enhanced E2 strength of 132Sn. As the T-plots of the
0þg:s: states of 130;132;134Sn exhibited a strong confinement
towards the spherical limit, the presented results of experi-
ment and theory can be considered to be the first direct
verification of the sphericity and double magicity of 132Sn.
This is not a trivial fact, as the N=Z ratio differs consid-
erably from unity. Moreover, the MCSM calculations
provide a high probability of 90% for the ground state
to be in the doubly closed configuration. For the quadru-
pole excitation, a shape change from oblate to prolate
deformation across the doubly magic configuration was
deduced. The E3 transition strengths were well reproduced
by the RPA and RRPA results. Future perspectives for
experiment and SM theory include challenging measure-
ments of the BðE3Þ transition strengths, also of the
neighboring isotopes, and their calculation by the extension
of the model space. Moreover, numerous experiments at
HIE-ISOLDE will investigate nuclei in the vicinity of 132Sn
relevant to the astrophysical r process [43].

We thank the HIE-ISOLDE team for the professional
support during the experiment. Moreover, we thank M.
Zielińska and P. J. Napiorkowski for their support and
discussion regarding the GOSIA2 analysis. The research
leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation
program under Grant Agreement No. 654002. This work
was supported by the German BMBF under Contract
No. 05P15PKCIA and Verbundprojekt No. 05P2015, in
part by the High Performance Computing Infrastructure
Strategic Program (Grant No. hp150224), in part by MEXT
and Joint Institute for Computational Fundamental Science
and a priority issue (elucidation of the fundamental
laws and evolution of the universe) to be tackled by using
the Post “K” Computer (Grants No. hp160211 and

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. T-plots of the 0þg:s: (a,c,e) and 2þ1 states (b,d,f) of 130Sn
(a,b), 132Sn (c,d), and 130Sn (e,f) show a pronounced potential-
energy minimum for the spherical doubly magic configuration.
Circles on the PES represent shape dynamics of MCSM basis
vectors. See text for details and discussion.
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252501-5In addition, the shell model cannot provide response at high energy (cross sections 
for high-E neutrinos, just to make an example, are doable within RPA and QRPA but 
not SM).
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Giant resonances are NOT 
sharp states but have a 
large width (several MeV)

<latexit sha1_base64="7tPNe7iYRh26daKMD7EHRAyuxFw="></latexit>
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“Brown-Bolsterli – process”

M.N. Harakeh & A. van der Woude, “Giant Resonances” (Oxford, 2001)
P. von Neumann-Cosel, A. Tamii, Eur. Phys. J. A 55, 110 (2019).

If this picture clear in all details? 
We do not have systematic data 
and full understanding (cf. also β-
delayed neutron emission). 

This is a challenge for theory and may not simply call for parameter 
tuning but is related to fundamental questions (many-body theory, open 
quantum systems, the concept of thermalization...).
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Ideally, we should perform calculations in large model spaces (not 
only 1p-1h but 2p-2h, 3p-3h...) and include continuum coupling.

All decay channels are correlated.

Continuum can be included at the level of RPA: continuum-RPA 
exists. This is possible due to Green’s function formalism (there is an 
exact expression for the single-particle propagator in the continuum, 
provided one can define an effective potential).

To describe the “spreading width”: SRPA, PVC are the main 
approaches.

Advantages of SRPA: large model spaces, no approximations; 
Advantages of PVC: more diagrams included, extended to the case 
with pairing.
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G(r, t, r0, t0)
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The Green’s function, represents the probability amplitude 
that a particle is found in r, at time t, after having been 
introduced in r’ at time t’.
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G0(r, t, r0, t0) HF or KS approximation.

Continuum can be 
included
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• The wave function of the vibrational states is enriched by adding 2 particle-2 
hole components on top of the 1 particle-1 hole already present in RPA.

• If one projects on the 1p-1h space, assuming the “complicated” states are not 
interacting, one gets a very manageable equation

• Full calculations by D. Gambacurta et al. go beyond this approximation.

Xph|ph�1i � Yph|hp�1i+X(2)
php0h0 |ph�1p0h0�1i � Y (2)

php0h0 |hp�1hp0
�1i

✓
A+ ⌃(E) B
�B �A� ⌃⇤(�E)

◆
⌃php0h0(E) =

X

↵

hph|V |↵ih↵|V |p0h0i
E � E↵ + i⌘
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✓
A+ ⌃(E) B
�B �A� ⌃⇤(�E)

◆
⌃php0h0(E) =

X

↵

hph|V |↵ih↵|V |p0h0i
E � E↵ + i⌘

The state α is 1p-1h plus one phonon.

The scheme is very effective to produce 
GR widths. It also produces a downward 
shift of the GRs.
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WE HAVE A SCHEME INCLUDING 
PAIRING for all GRs
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In even-even 112-124Sn, the ISGMR centroid 
energy is overestimated by about 1 MeV by 
the same models, which reproduce the 
ISGMR energy well in 208Pb. 

Only models that treat uniform matter 
and the response of finite nuclei on 
equal footing allow extracting K∞

J.P. Blaizot, Phys. Rep. 64, 171 (1980)

EGMR

K∞

There are different sources of model 
dependence in this procedure.

. QRPA → QPVC
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In our work, we have been able, for 
the first time, to analyse in a 
systematic manner the consistency 
between ISGMR energies in different 
nuclei.

We have used many Skyrme EDFs.

With the inclusion of QPVC effects, a 
big improvement is achieved.

Within QPVC, the ISGMR energy in 
208Pb is consistent with 120Sn.

Z.Z. Li, Y.F. Niu, GC, Phys. 
Rev. Lett. 131, 082501 (2023)
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They are induced by 
reactions, like (p,n) or 
(3He,t).

Some transitions may 
be inside the allowed 
β-decay window.

Z+1,N-1 Z,N Z-1,N+1

(n,p)(p,n)

Z N

t−

Z N

−!σ

j> = `+
1

2

j< = `� 1

2

j>

Isobaric Analog State:
n changed into p

Gamow-Teller Resonance:
also spin-flip
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When the RPA “puzzle” of very large half-lives has become apparent, different solutions have been164
proposed. One possibility is to invoke an attractive T = 0 pairing force. This is active when the usual165
T = 1 pairing is non-vanishing, as we discuss in the next Section, and cannot play a role in the nuclei166
that we have discussed so far if they are magic, i.e. they have closed shells. We will come back to the167
role of pairing in the next section. Other authors have emphasized the role of the tensor force in �-decay168
(Minato and Bai (2013)). The tensor force affects strongly both single-particle states (in particular, their169
spin-orbit splittings) and collective spin-flip excitations, as is natural; it is natural that also has an effects on170
�-decay. However, we still do not have a reliable, universal parametrization for the tensor force. A narrow171
interval for the tensor force parameters has been suggested in (Bai et al. (2011)), and new results on the M1172
excitations seem to question this conclusion (Sun et al. (2024)).173

In summary, our results hint that PVC effects are genuine many-body effects that should be included in174
�-decay EDF-based calculations. One can aim at improving the EDFs themselves, either with better fitting175
procedure or also by including tensor terms; but this should be done in addition to, not as an alternative176
to, including many-body effects. This is also the conclusion of the recent work of (Liu et al. (2024)) that177
we shall also comment more in what follows. Last but not least, our conclusion is supported by the SRPA178
calculations of �-decay half-lives that have been reported in (Yang et al. (2023)).179

5 ISOSCALAR PAIRING

While the usual neutron-neutron or proton-proton, T = 1, pairing is rather well-known and gives rise to180
obervable phenomena that can be associated to the superfluid character of part of the nucleons in a nucleus,181
the proton-neutron pairing, and in particular its isoscalar T = 0 component, is still elusive [cf. (Sagawa182
et al. (2016)) for a recent review]. There is no evidence, to date, of a proton-neutron superfluid. However,183
the T = 0 pairing interaction has S = 1 character in the L = 0 channel, and can be active, or even strong,184

With the inclusion of PVC, the RPA peak at 1.5 MeV is
moved even slightly below the experimental ground-state
energy. This state then gives a very large contribution
to 1=T1=2 because of the increased phase-space factor,
although its strength is not changed much by PVC
[Fig. 2(e)], and the half-life is smaller than in experiment.
In the case of 34Si, in RPA one finds three peaks located
atE ¼ −0.86; 3.1, and 4.2MeV. The first one lies below the
experimental ground state and determines the value of
1=T1=2 [Fig. 2(i)]. This peak carries a very small value of
the strength, and therefore the experimental lifetime is
largely overestimated. With inclusion of the PVC, the
strength becomes fragmented [Fig. 2(g)]. One can identify
five peaks at E ¼ −2.2; 1.0; 1.7; 2.6, and 3.1 MeV, contrib-
uting respectively 15%,49%,24%,3%, and 9% of the total
value of 1=T1=2, which becomes much larger than that
in RPA, substantially improving the agreement with the
experimental lifetime. For the nucleus 78Ni, the small
strength at E ¼ 5.6 MeV gives almost all the contribution
to 1=T1=2 in the RPA model [Fig. 2(l)], which under-
estimates the experimental value. With PVC, the state at
E ¼ 5.6 MeV keeps its strength but is shifted to 4.0 MeV
[Fig. 2(j)] so that its contribution to 1=T1=2 becomes about
3.4 times larger [Fig. 2(l)]. The strength distribution above
this peak contributes 22% of the total 1=T1=2.
The resulting calculated lifetimes for these four nuclei

are compared with experiment in Fig. 3. The RPA results
generally markedly overestimate the half-lives for all
nuclei. An exception is represented by the interaction

Skx, in which case one obtains a good agreement with
data at the RPA level; this is associated with the fact that
the properties of 132Sn, 68Ni, and 34Si as well as the single-
particle levels of 132Sn and 34Si have been used to fit the
parameters of this force [43]. The effect of the PVC
decreases the values of T1=2 by large factors compared
to RPA, substantially improving the agreement with exper-
imental data, except for Skx and (partially) for SLy5. With
the inclusion of the PVC effect, the interactions SkM* and
SIII give the best agreement with data. More in detail, in the
case of SkM*, the lifetime is still large in 132Sn and small in
68Ni, in keeping with the errors in the position of the lowest
1þ state (cf. Fig. 2). Theory agrees, instead, very well with
data in the case of 34Si and 78Ni.
In conclusion, we have shown that, starting fromRPA, the

coupling between particles and vibrations causes a signifi-
cant downward shift in the GT strength function of these
four nuclei 132Sn, 68Ni, 34Si, and 78Ni (treated asmagic). The
β-decay half-life is more sensitive to the position of the 1þ

states rather than to the strength, which is not much changed
in going from RPA to RPAþ PVC. This is due to the strong
increase of the decay phase space factor as the energy
decreases. As a consequence, the lifetime is reduced in the
case of RPAþ PVC, and the agreement between theory and
experiment is in general substantially improved. In particu-
lar, the interaction SkM* that had been previously shown
to perform well in magic nuclei as far as the line shape of
the GT resonance is concerned [35] leads to overall good
agreement with β-decay data.
We can expect that including the effect of PVC will also

be helpful in the case of other weak interaction processes,
such as electron capture. PVC is expected to help with the
overestimation of the threshold energy [46]. The study of
open-shell nuclei by including pairing correlations is
envisaged. Then the model can be employed to predict
the half-lives of r-process bottleneck nuclei with N ¼ 82,
which play an important role for the duration of the r
process and, hence, can help to understand the origin of
heavy elements in the universe.
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FIG. 3 (color online). The β-decay half-lives of 132Sn, 68Ni,
34Si, and 78Ni, calculated by RPA and RPAþ PVC approaches,
respectively, in comparison with experimental values [45]. The
arrows denote half-lives longer than 106 s.
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Figure 3. �-decay half-lives in the case of 132Sn, 68Ni, 34Si, and 78Ni. The RPA and RPA+PVC results are
compared with the experimental half-lives, taken from http://www.nndc.bnl.gov. [Figure taken
from (Niu et al. (2015))].
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Energy conservation dictates that the decay is possible when the decay Q-value, Q� , is positive. In the56
case of the decay to the ground-state of the daughter nucleus, the energies carried away by the electron and57
(anti)-neutrino are equal to Q� . If the nucleus decays over an excited state at energy E, the energies carried58
away by the leptons are smaller, and clearly E cannot exceed Q� (in the usual jargon, it lies in the �-decay59
window or Q� window). This explains the integration limits in Eq. (4). There is a further important point,60
though. The phase space factor f is written in Eq. (4) as a function of ! = Q� +mec

2 � E, which is the61
electron kinetic endpoint and is easy to determine experimentally; this function is62

f(!) =

Z !

mec2
dEe peEe (! � Ee)

2
F (Z + 1, Ee), (5)

with the electron energy, momentum and Fermi function denoted as Ee, pE and F , respectively. These63
facts have two important consequences. If, in a theoretical calculation, there is no strength, or very little64
strength, below Q� , then the decay half-life is infinite or largely overestimated. But also the position of65
the final states within the Q� window is very important. If the states have lower energies E, f(!) grows66
significantly and the half-life is, consequently, very sensitive to the values of the final states energies. This67
explains why �-decay is a challenge for nuclear structure models: it calls for high accuracy in calculations68
of the low-lying spectra of the daughter nucleus, because of the “magnifying lens” effect of the phase space69
factor.70
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Q�

Spreading/fragmentation 

Figure 1. (Left panel) Schematic view of the neutron and proton levels, with the possible GT transitions
between occupied neutron levels and unoccupied proton levels, for 132Sn. The figure is inspired by Fig.
8 of (Rubio et al. (2020)). (Right panel) Schematic view of the different approximations to calculate the
B(GT ) distributions. The different GT transitions between occupied and unoccupied levels merge, to a
large extent into the collective GTR (the residual interaction is repulsive in this case, and the GTR lies at
higher energy than the average of the s.p. transitions). QRPA plus QPVC produces a downward shift of the
strength and a significant fragmentation: this increases the likelihood to find a realistic amount of strength
within the Q� window.

In Fig. 1, in the left panel, we show possible GT transitions in the nucleus that we have picked up as an71
example for our general discussion, namely 132Sn. There are many single-particle transitions but, as is72
well known, most of their GT strength will be absorbed by the collective Gamow-Teller resonance (GTR)73
at higher energy, 16.3 MeV in the daughter nucleus 132Sb (in other words, outside the Q� window that74
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While QRPA collects the simple two-
quasiparticle excitation in a main peak, it does 
not account for spread and fragmentation of the 
strength. QPVC remedies to this shortcoming. 

In the case of β-decay, this is particularly 
important because of the phase-space factor.
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One of the few experiments that measured the decay of a resonance to 
different hole states of the A-1 nucleus (in this case 208Bi decaying by proton 
emission) 
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drip-line nuclei very different N/Z ratio, compared to stable nuclei with a given A 

r r r r r r 

V(r) V(r) V(r) 

β stable nuclei proton-drip-line nuclei neutron-drip-line nuclei 

protons protons protons neutrons neutrons neutrons 

Since the Fermi levels for protons and neutrons are very different in drip line nuclei, 
 this binding energy difference of least-bound protons and neutrons will produce  
 interesting phenomena especially in charge-exchange reactions or β decays.  

Weakly-bound one-proton motion in medium-heavy nuclei may not be so different  
 from the well-bound one, due to the high Coulomb barrier. 

3.1.  Spherical case 

If the neutron number increases, 
neutrons occupies higher levels 
– protons become more bound 
due to the dominance of the p-n 
interaction.

If neutrons occupy levels that are close to the continuum and protons are in 
deeply bound levels, the neutron and proton excitations may decouple 
from each other.

Very weakly bound neutrons can have wave functions with long tail that overlap 
with continuum states.

The corresponding transition matrix elements, i.e. the low-lying strength, is 
strongly enhanced.

Threshold effect
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ambiguous; physically the pairing rather than the single-particle potential provides 
the binding. However, the effects of the pairing may be to provide an effective single 
particle binding of the order of magnitude of the two-particle binding, 
E, - 0.2 MeV. Using this value for the single-particle separation energy, we show in 
Fig. 10 the predicted dipole strength calculated from Eq. (7.1). Results are given for 
two values of the spatial cutoff: first with the single-particle wave function db 
constructed on a grid extending to r,ax = 12.5 fm, with a boundary condition that 
c,hh(r,,,) = 0, and then with the boundary extended to rmax = 40 fm. The more 
accurate strength function has a sharp peak just above threshold due to the 
p,,? -+ s~,~ transition to the continuum. The transition p1,2 + d,,, is also significant 
above the threshold region. The strength then falls roughly as l/E over a range of 
a few MeV. The sharp peak is completely absent from the calculation with the 
smaller cutoff radius. This illustrates the difficulty in constructing a realistic model 
of the response; a three-body wave function has to be constructed accurately in a 
domain extending to distances of the order of 40 fm. 

Because the transition strength distribution is difficult to calculate with more 
realistic models, it is useful to define some integral properties of the response that 
can be computed without any knowledge about the final state wave functions. The 
first of these, the energy-weighted sum rule, is particularly convenient because it can 
be evaluated without knowing the wavefunction at all. In our basic model of the 
nucleus as a three-body system composed of two neutrons and an inert core, the 
energy-weighted sum rule reads 

i 
d@EL T) E&29”’ z = ‘= 

0 
- 

dE 4~ A 2m’ (7.2) 

E (MeV) 
FIG. 10. Dipole strength of the valence neutrons in “Li as a function of the excitation energy. Both 

curves are independent particle responses, obtained as described in the text for a radial cutoff at 12.5 fm 
(dashed curve) and at 40 fm (fully drawn curve). 

Threshold effect in the dipole strength of 11Li
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a b s t r a c t

This review aims at giving a critical description of the theoretical researches conducted
on the low-lying dipole states traditionally denoted as Pygmy Dipole Resonances (PDR).
A brief survey of the experimental techniques and recent experimental findings is
presented as an introduction to the main part of the paper. The presence of the PDR
on stable and unstable nuclei with neutron excess is well established in theoretical
and experimental studies. The theoretical approaches are reviewed starting from the
macroscopic collective models to the microscopic mean-field theories. The isospin mixed
nature of the PDR – reproduced by all the microscopic approaches – allows to study
the excitation with isovector and isoscalar probes. To draw a better picture on the
structure of this mode is therefore important to complement the theoretical studies with
detailed investigation on the reaction mechanism. To this mean, this paper gives specific
focus to the description of the cross section calculations. The semiclassical Coupled
Channel equations are shortly reviewed with particular attention to the construction of
the nuclear potential and radial form factors with the microscopic transition densities.
The interplay of Coulomb and nuclear contributions, their dependence on mass, charge
and incident energy are analysed with the help of few selected examples. Most of the
features of the PDR are well described by the theoretical approaches even though few
open question remain to be clarified. Among them a discussion on the collectivity of
the mode, isospin splitting and role of deformation is presented. Most of the theoretical
works and the new experimental findings on the collective properties of the PDR
jeopardise the common picture of this excitation mode as related to the oscillation of the
neutron skin against an inert core The question on the influence of the neutron excess
on other multipolarities is also reviewed.
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Fig. 9. Isovector (upper frame) and isoscalar (lower frame) dipole response obtained in a self-consistent HF + RPA calculation for 208Pb. The strength
function were calculated by convoluting the corresponding reduced transition probability with a Lorenzian of 1 MeV width.
Source: Taken from Ref. [14].

ISGDR, in panel (c) of Fig. 11, are in phase in the bulk and on the surface of the nucleus showing an almost pure isoscalar
mode. This isoscalar dipole mode is a 3h̄! excitation [114]. A different behaviour is found for the transition densities in
panel (a), where the neutron and proton are in phase in the interior of the nucleus while at the surface only the neutron
transition density is different from zero. These behaviour have a consequence on the shape of the isoscalar and isovector
transition densities. The IVGDR has a definite isovector character as can be appreciated in panel (e) while the ISGDR is
clearly an almost pure isoscalar state having the transition density the typical shape of a compressional mode (panel (f)).
On the other hand, the isospin nature of the PDR state is not well definite because both isoscalar and isovector transition
densities contribute. In particular, at the nuclear surface, a similar strength for the isovector and isoscalar component is
predicted due to fact that the contribution come almost entirely from the neutrons. As a consequence, the excitation of
this low-lying dipole mode can also be generated by an isoscalar probe, which in most of the case induce a peripheral
reaction where the contribution of the nuclear surface is predominant. Similar results have been obtained with HF + RPA
calculation with different Skyrme interactions [14,138]

4.2.2. QRPA
The RPA starts from the H–F ground-state wave function where it is assumed a sharp separation between the occupied

and unoccupied levels below and above the Fermi level. This assumption is not satisfied in open-shell nuclei where the
pairing correlation is important and it must be included in the description of the ground-state wave function. This can
be achieved within the Bardeen, Cooper and Schrieffer (BCS) model [123], constructed to determine the ground-state of a
superconductor, where it is assumed that the Fermi surface is diffused meaning that the levels around the Fermi energy
are not completely full or completely empty. Such description is realised using the Bogoliubov transformation

↵
†
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†
k � vka�k (22)
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†
�k + vkak (23)
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There have been strong 
discussions if it really 
exists.

“Resonance” or SPS?

Impact for (n,𝛾)?
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Nuclear matter EOS
Symmetric
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In turn, the symmetry energy can be expanded 
around saturation density.

S(⇢0) ⌘ J
S0(⇢0) ⌘ L/3⇢0
S00(⇢0) ⌘ Ksym/9⇢

2
0

M. Oertel et al., RMP 89, 015007
(2017); B.A. Li et al., Prog. Part.
Nucl. Phys. 99, 29 (2018)
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Neutrons and protons oscillate in opposition of phase.

EIVGR ⇡

s
@2E

@�2
⇡

p
S(⇢) � ⌘ ⇢n � ⇢p

⇢

Promising observables to 
extract the properties of 
the symmetry energy.

Problems:
the nucleus is not a 
homogeneous system, it 
has a shell structure, and 
there is isoscalar/isovector 
mixing.
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A=xu(x, y, z )e
(4)

where x is the unit vector in the x direction. The expres-
sion u(x, y, z ), or u(r, P, z), is the complex scalar function
describing the distribution of the field amplitude which
satisfies the wave equation in the paraxial approximation.
In this approximation the second derivatives of E and B
fields, and the products of first derivatives, are ignored
and Bu /Bz taken to be small compared with ku. The cy-
lindrically symmetric solutions u~&( r, P, z ) which describe
Laguerre-Gaussian beams are given by

IC rV'2
L~ 2r(1+z /z )'~ w(z) w (z)

r —ikr 2zXexp exp exp( i 1g )—w (z) 2(z +z„)
Xexp i(2p+1+1)tan

2Rwhere zz is the Rayleigh range, w(z) is the radius of the
beam, L' is the associated Laguerre polynomial, C is a
constant, and the beam waist is at z=O. The Lorentz
gauge has the advantage of being readily amenable in all
coordinate systems and leads in this case to considerable
symmetry in the x and y directions although the results
are best expressed in cylindrical coordinates.Within this description we have shown that the time
average of the real part of eoEXB, which is the linear
momentum density, is given by

Eo
6o

—(E*XB+EXB*)=iso (u *Vu ——u Vu')2
2

+coke, lu l'z,

while the total angular momentum of the field isJ=eof rX(EXB)dr .
In atomic physics it is normal to expect thatJ=L+S,
where the first term is identified with the orbital angular
momentum L, and the second with the spin S. But there
is doubt as to whether L and S are, in general, separately
physically observable [9] for vector fields.Clearly the linear momentum of a transverse plane
wave, EXB, is in the direction of propagation, z, and
there cannot be a component of angular momentum
rX(EXB} in the same direction [10]. However, the
fields of the laser modes TEM„orTEM I, unlike those
in a coaxial metal waveguide of infinite length, are not
strictly transverse [11]. They have small components in
the direction of propagation, z. A convenient representa-
tion of a linearly polarized laser mode is achieved [12] in
the Lorentz gauge using the vector potential

where r and P are unit vectors and lul = lu(r, P, z}
Here the Bu /Bz term has now been neglected. It may be
seen that the Poynting vector, given by c P, spirals along
the direction of propagation; see Fig. 2. The r com-
ponent relates to the spread of the beam; the P com-
ponent gives rise to orbital angular momentum in the z
direction and the z component relates to the linear
momentum P in the direction of propagation.Calculation of the time averaged angular momentum
density, ear X ( EXB), per unit power yields

—1 lul P+—lul z .

I z 2 r z
M= ———lu

l
r+-co r

(z +z~ )

The radial and azimuthal components are symmetric
about the axis, so that integration over the beam profile
leaves only the z component. The ratio of the Aux of an-
gular momentum to that of energy is L /cP =1/co, while
the ratio of angular momentum to linear momentum is
now L/P=1(A. /2m ). Our conviction that the Laguerre-
Gaussian mode possesses a well-defined orbital angular
momentum has thus been justified.At position (r, P, z) the magnitude of angular momen-
tum density per unit power is given by
M=//co(1+z /r )' lu l, oriented at an angle
0=tan 'z /r to the z axis. Locally we have
M, /P, =l(A, /2m ) where M, is the z component of angu-
lar momentum density and P, that of the linear momen-
tum density. There is, however, also a local radial com-
ponent.
We have so far considered linearly polarized light;

when the vector potential is generalized to arbitrary po-
larization we find

achieve this appealing form we have retained the term
Bu /Bz in the expression for the magnetic field 8, which
could have been ignored.When applied to the Laguerre-Gaussian distribution
given by Eq. (5) for linearly polarized light, the momen-
tum density per unit power is found to ber

, "' , l u I'r+ '
l u I'y +

1 u I'z
c (z~+zz2 ) kr

for a beam of unit amplitude, where z is the unit vector in
the z direction. We may recognize that u*Vu closely
echoes the quantum-mechanical expression for the expec-
tation value of linear momentum of a wave function. To FIG. 2. The spiraling curve represents the Poynting vector of

a linearly polarized Laguerre-Gaussian mode of radius m(z).

Vortex photons
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Use of photons with orbital angular 
momentum can open new avenues for 
the physics of collective states.
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Nuclear collective motion has many different facets. The hydrodynamic, simple 
picture may not be always valid (there are spin- and spin-isospin oscillations, 
surface vs volume oscillations, collective vs non-collective – whatever this 
means...)

The decay is an intriguing feature: direct or statistical?

Many questions have not been addressed: does toroidal motion exist? Do “pair” 
modes exist and can we describe then? Finite-temperature and Brink-Axel 
hypothesis: can we say it is all understood? Is there a unique theory for small- and 
large-amplitude motion? ...

Thank you for listening!
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12 Gianluca Colò

|〈n|F |0〉|2 = N M2. (30)

In the case of the IVGDR, one clearly sees that the term Nv shifts the coherent
eigenvalue from the unperturbed value ε ≈ 41 A−1/3 to the value 80 A−1/3 already
mentioned in Eq. (3). The fact that this is a “giant”, or collective, state is highlighted
by Eq. (30): its probability to be excited by the external field becomes N times larger
than the typical probability M2 of a single-particle state. The situation is depicted
in Fig. 3. In the central panel, the reader can see the hypotetical single-particle, or
unperturbed, strength at energy ε , which is made by several peaks whose height is
M2. In the right panel, the Giant Resonance is displayed: it is made by a single peak
whose height is larger by the factor N. Schematic models have been widely intro-
duced throughout the years to describe collective states, and not only the IVGDR,
starting from the seminal work of Ref. (Brown and Bolsterli (1959)).

Operators and example of calculations

The GRs are excited by external operators that are classified as follows (Harakeh
and van der Woude (2001)). In the non spin-flip case (electric GRs), the operators F
associated with different values of the transferred angular momentum L read

FIS = ∑
i

rL
i YLM(r̂i), (31)

FIV = ∑
i

rL
i YLM(r̂i)τz(i). (32)

In this way, one cleary distinguishes isoscalar (IS) from isovector (IV) modes, that
is, cases in which protons and neutrons oscillate in phase from cases in which
they move against each other. YLM are the usual spherical harmonics and r̂ is, here
and in what follows, a shorthand notation for the polar angles of r. Values of L =
0,1,2,3. . . correspond to monopole, dipole, quadrupole, octupole . . . resonances. It
is important to notice that the radial factor rL must be thought as the limit of the
Bessel function jL(qr) when qr goes to zero (cf. the discussion in the next Section).
When this term becomes meaningless, one must consider the next term in the Taylor
expansion of the Bessel function, that is rL+2. For instance, in the monopole case,
Y00 is a constant that can be neglected and the operator becomes

FISGMR = ∑
i

r2
i , (33)

FIVGMR = ∑
i

r2
i τz(i). (34)

The other case in which the term rL does not act as an excitation operator is the
isoscalar dipole case. rY1M(r̂) can be shown to produce a translation of the whole
nucleus, and also in this case the relevant operator becomes proportional to rL+2,
namely

Theoretical Methods for Giant Resonances 13

FISGDR = ∑
i

r3
i Y1M(r̂i). (35)

The nuclear translation, i.e. the motion of the nuclear centre of mass, should appear
at zero excitation energy in an exact calculation, and should be decoupled from
the physical excitation modes. However, if this decoupling is not exactly realised,
a way to avoid the contamination of the physical ISGDR strength by the spurious
translational strength, consists in employing the modified operator (Van Giai and
Sagawa (1981))

FISGDR = ∑
i

(
r3

i −ηri
)

Y1M(r̂i), (36)

where η = 5
3 〈r

2〉.
In addition to isoscalar and isovector operators, one could be interested in the

electromagnetic excitation processes. In this case, the excitation operators become

Fe.m. = e∑
i

rL
i YLM(r̂i)(1− τz(i)) . (37)

In the dipole case, it is customary to remove the contribution from the centre of
mass, so that the IVGDR electromagnetic operator becomes

FIVGDR =
eN
A

Z

∑
i=1

riY1M(r̂i)−
eZ
A

N

∑
i=1

riY1M(r̂i). (38)

The effective charge for protons (neutrons) turns out to be eN
A
(
− eZ

A
)
. In principle,

this subtraction of the centre of mass should be done for every multipole. However,
for L ≥ 2, the resulting effective charges do not differ significantly from 1 and 0 [see
their expression, e.g. on p. 98 of Ref. (Eisenberg and Greiner (1976))].

In the spin-flip case (magnetic GRs) one can write, in a similar way as in (31)
and (32),

FIS = ∑
i

rL
i [YLM(r̂i)⊗σ(i)]J , (39)

FIV = ∑
i

rL
i [YLM(r̂i)⊗σ(i)]J τz(i). (40)

As already said, Jπ are good quantum numbers; but, as far as the operators are
concerned, L and S can be considered as approximate quantum numbers.

The operators (32) and (40) correspond to transitions within the same nucleus.
There exist charge-exchange GRs, that correspond to the case in which the operator
τz is replaced by τ±. The excited states of a given nucleus are, then, in the neighbour-
ing Z∓1 isotopes: these are states that can be populated by β -decay, if energetically
possible, plus those at higher energy. In what follows, examples of strength func-
tions in the case of the Gamow-Teller Resonance (GTR) will be shown: the GTR
corresponds to the operator (40) in the case L = 0,

FGTR = ∑
i

σµ(i)τ−(i). (41)
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ing Z∓1 isotopes: these are states that can be populated by β -decay, if energetically
possible, plus those at higher energy. In what follows, examples of strength func-
tions in the case of the Gamow-Teller Resonance (GTR) will be shown: the GTR
corresponds to the operator (40) in the case L = 0,

FGTR = ∑
i

σµ(i)τ−(i). (41)
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Schematic 2 x 2 case

208Pb : h11/2 → h9/2  (proton)
i13/2 → i11/2  (neutron)

Magnetic spin-flip 
states (M1) 
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Fig. 3 The schematic TDA model for the IVGDR. In the left panel, the nuclear shells are displayed
in order to emphasise their alternate parity and the fact that one expects the IVGDR to be made
by particle-hole excitations at ≈ 1h̄ω . In the central and right panels, the unperturbed and TDA
strength S(E) are drawn, respectively. See the text for a discussion.

Aph,p′h′ = +δpp′δhh′ (εp − εh)+ 〈ph′|V |hp′〉, (21)
Bph,p′h′ = 〈pp′|V |hh′〉, (22)

where ε are the single-particle energies that have been introduced in (4). The matrix
elements that enter the strength function (1) can be calculated from

〈n|F |0〉= ∑
ph

(
Xph +Yph

)
〈p|F |h〉. (23)

As in the case of QRPA, the reader can find details and formulas written with proper
angular momentum coupling in the general references that have been quoted above.

The B matrix elements, and the associated Y amplitudes are very important to
describe the low-lying excitations like 2+ and 3− in spherical nuclei, but turn out
to be less important for high-energy states like the GRs. Neglecting the B-sector of
the RPA matrix leads to the so-called Tamm-Dancoff approximation or TDA. It will
now be shown how a schematic TDA model accounts for the existence of collective
modes like the IVGDR, in a pedagogical and transparent manner. A spherical RPA
code based on the Skyrme forces has been published in Ref. (Col et al. (2013)).

To this aim, it can be assumed that there are N degenerate p-h excitations at
energy ε . In the case of the IVGDR, which has Jπ = 1−, this corresponds to a large
extent to holes in the highest occupied shell and particles in the lowest unoccupied
shell. Consequently, ε will be ≈ 1h̄ω ≈ 41 A−1/3, as emphasised by the vertical
arrow in the left panel of Fig. 3.

There is one “coherent state”:

Its transition amplitude is enhanced:

Schematic N x N case
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G. C., Theoretical Methods for Giant Resonances,  in:
Handbook of Nuclear Physics, edited by I. Tanihata, H. Toki 

and T. Kajino
(Springer, 2022).
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Equation of motion method

We define a “phonon” as a boson operator made with pairs of fermions

The equation of motion to solve is

Additional requirements are the quasi-boson approximation and the definition 
of the ground-state as “phonon vacuum”
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