#### Discrete Symmetries in the Cluster Shell Model

- Introduction
- Algebraic Cluster Model (ACM)
- Point group symmetry
- Applications: <sup>12</sup>C and <sup>16</sup>O
- Cluster Shell Model (CSM)
- Double point group symmetry
- Applications: <sup>13</sup>C and <sup>17</sup>O
- Summary and conclusions



## Alpha-Cluster Nuclei



Roelof Bijker, ICN-UNAM

## Recent Theoretical Work

- Alpha-cluster model (Wheeler 1937, Brink 1966, Robson 1978)
- AMD (Kanada-Enyo, PTP, 2007)
- FMD model (Chernykh et al, PRL, 2007)
- BEC-like cluster model (Funaki et al, PRC, 2009)
- Ab initio no-core shell model (Roth et al, PRL, 2011)
- Lattice EFT (Epelbaum et al, PRL, 2011, 2012)
- No-core symplectic model (Dreyfuss et al, PLB, 2013)
- Algebraic Cluster Model (2000, 2002, 2014, 2017)
- and many others
- Recent reviews: Freer & Fynbo, PPNP 78, 1 (2014), Freer, Horiuchi, Kanada-En'yo, Lee & Meissner, RMP 90, 035004 (2018)

# Few-Body Systems

- Integro-differential methods
- Algebraic Cluster Model (ACM)
- For k dof introduce a SGA of U(k+1)
- Two-body systems: U(4) vibron model (diatomic molecules, mesons)
- Three-body systems: U(7) model (baryons, nuclear clusters, molecules)
- Four-body systems: U(10) model
- n-body systems: U(3n-2) model

## ACM for n-Body Systems

3n-3 relative degrees of freedom: Jacobi coordinates

$$\vec{\rho}_k = \frac{1}{\sqrt{k(k+1)}} \left( \sum_{i=1}^k \vec{r}_i - k\vec{r}_{k+1} \right) , \qquad k = 1, 2, \dots, n-1$$

Introduce n-1 dipole bosons and a scalar boson

$$p^\dagger_{k,m} \;,\; s^\dagger \;, \qquad k=1,2,\ldots,n-1$$

Number conserving one- and two-body Hamiltonian

$$H = \epsilon_0 s^{\dagger} \tilde{s} - \epsilon_1 \sum_k b_k^{\dagger} \cdot \tilde{b}_k + u_0 s^{\dagger} s^{\dagger} \tilde{s} \tilde{s}$$
$$-u_1 \sum_k s^{\dagger} b_k^{\dagger} \cdot \tilde{b}_k \tilde{s} + v_0 \sum_k \left[ b_k^{\dagger} \cdot b_k^{\dagger} \tilde{s} \tilde{s} + h.c. \right]$$
$$+ \sum_L \sum_{ijkl} v_{ijkl}^{(L)} \left[ b_l^{\dagger} \times b_j^{\dagger} \right]^{(L)} \cdot \left[ \tilde{b}_k \times \tilde{b}_l \right]^{(L)} ,$$

Mixing between oscillator shells

## **Identical Clusters**

Explicit construction of harmonic oscillator states with good permutation symmetry

Kramer & Moshinsky, NP 82, 241 (1966)



Doable for a small number of quanta

However, ACM includes large number of quanta and mixing between different oscillator shells

## Permutation Symmetry

Solution: generate wave functions of good permutation symmetry numerically by diagonalizing a  $S_n$  invariant H

Permutation symmetry determined by the interchange P(12) and the cyclic permutation P(12...n)

$$\langle \psi | P(12) | \psi \rangle = \langle \psi | e^{i\pi b_1^{\dagger} b_1} | \psi \rangle$$

$$\langle \psi | P(123) | \psi \rangle = \langle \psi | e^{i\pi (b_1^{\dagger} b_1 + b_2^{\dagger} b_2)} e^{\theta_1 (b_1^{\dagger} b_2 - b_2^{\dagger} b_1)} | \psi \rangle$$
for n=3 with  $\theta_1 = \arctan \sqrt{3}$ 

Cyclic permutation related to a change of oscillator coordinates: Talmi-Brody-Moshinsky brackets

## Wave Functions

- Labeled by  $[N], \alpha, L_t^P$
- Total number of bosons: N
- Angular momentum: L
- Parity: P
- Permutation symmetry: †



#### Three-Body Clusters

Permutation symmetry

$$H = \xi_1 \left( R^2 s^{\dagger} s^{\dagger} - b_1^{\dagger} \cdot b_1^{\dagger} - b_2^{\dagger} \cdot b_2^{\dagger} \right) (\text{h.c.}) \\ + \xi_2 \left[ \left( b_1^{\dagger} \cdot b_1^{\dagger} - b_2^{\dagger} \cdot b_2^{\dagger} \right) (\text{h.c.}) + 4 \left( b_1^{\dagger} \cdot b_2^{\dagger} \right) (\text{h.c.}) \right] \\ + \kappa \vec{L} \cdot \vec{L}$$

Classical limit: potential energy surface

$$E_{N}(r,\chi,\theta) = \langle N; r,\chi,\theta | : H : | N; r,\chi,\theta \rangle$$

$$|N; r,\chi,\theta\rangle = \frac{1}{\sqrt{N!}} (b_{c}^{\dagger})^{N} | 0 \rangle$$

$$b_{c}^{\dagger} = \frac{s^{\dagger} + r \cos \chi b_{2,y}^{\dagger} + r \sin \chi (\cos \theta b_{1,y}^{\dagger} + \sin \theta b_{1,x}^{\dagger})}{\sqrt{1 + r^{2}}}$$

## Equilibrium Shape

Energy surface

$$E_N(r,\chi,\theta) = \frac{N(N-1)}{(1+r^2)^2} \Big[ \xi_1 (R^2 - r^2)^2 \\ + \xi_2 r^4 \Big\{ 4(\cos\chi\sin\chi\cos\theta)^2 + (\sin^2\chi - \cos^2\chi)^2 \Big\} \Big]$$

Equilibrium shape: two Jacobi coordinates have equal length ( $r_0=R$  and  $\chi_0=\pi/4$ ) and are perpendicular ( $\theta=\pi/2$ )

Equilateral triangle: Oblate top



## **Rotation-Vibration Spectrum**

$$E = E_{\text{vib}} + E_{\text{rot}}$$

$$E_{\text{vib}} \approx \omega_1(\nu_1 + \frac{1}{2}) + \omega_2(\nu_2 + 1)$$

$$\omega_1 = 4NR^2\xi_1$$

$$\omega_2 = \frac{4NR^2}{1 + R^2}\xi_2$$

$$E_{\text{rot}} = \kappa L(L+1)$$

Rotational sequence

 $L^P = 0^+, 2^+, 3^-, 4^\pm, 5^-, \dots$ 



Fingerprint of triangular symmetry  $(D_{3h})$ 

Bijker & Iachello, AP 298, 334 (2002)





Marín-Lámbarri, Bijker et al, PRL-113, 012502 (2014)

### ElectricTransitions

| $\rho(\vec{r}) = \frac{Ze}{k} \left(\frac{\alpha}{\pi}\right)^{3/2} \sum_{i=1}^{k} e^{-\alpha}$ $\vec{r}_1 = (\beta, \frac{\pi}{2}, 0)$ $\vec{r}_2 = (\beta, \frac{\pi}{2}, \frac{2\pi}{3})$ $\vec{r}_2 = (\beta, \frac{\pi}{2}, \frac{4\pi}{3})$ | $(\vec{r}-\vec{r_i})^2$ | $ \begin{array}{c} 1 & \hat{x} \\ \hat{y} \downarrow \\ 3 \end{array} $ | $\int \langle r \rangle$<br>?(EL;0 <sup>+</sup> – | $F_L(q) = c_L j_L(q\beta) e^{-q^2/4\alpha}$ $^{2} \gamma^{1/2} = \sqrt{\beta^2 + 3/2\alpha}$ $\Rightarrow L^P) = \frac{(Ze)^2 c_L^2 \beta^{2L}}{4\pi}$ $^{2} \qquad 2L \pm 1 \qquad 1$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\alpha = 0.56  1/\text{fm}^2$<br>$\beta = 1.82 \text{ fm}$                                                                                                                                                                                       |                         |                                                                         |                                                   | $c_L^2 = \frac{-2}{3} \left[ 1 + 2P_L(-\frac{1}{2}) \right]$ $Q_{2^+} = +\frac{2}{7} Ze\beta^2$                                                                                        |
| $\frac{12}{12}$ $P(E_2; 2^{\pm}, 2^{\pm})$                                                                                                                                                                                                        |                         | Exp.                                                                    | -2fm4                                             | Bijker & Iachello,                                                                                                                                                                     |
| $ \begin{array}{c}C  B(E2, 2_1^+ \rightarrow 0_1^+) \\ B(E3, 3^- \rightarrow 0^+) \end{array} $                                                                                                                                                   | ) 7.0                   | $7.03 \pm 0.19$                                                         | $e^{2}$ fm <sup>6</sup>                           | AP 298, 334 (2002)                                                                                                                                                                     |
| $B(E4; 4^+ \rightarrow 0^+)$                                                                                                                                                                                                                      | ) 48                    | 104 1 14                                                                | $e^{2}$ fm <sup>8</sup>                           |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                   | 57                      | 53+44                                                                   | $e^{\text{fm}^2}$                                 |                                                                                                                                                                                        |
| ~2 <sup>+</sup> _1                                                                                                                                                                                                                                | 5.1                     | J.J ⊥ <del>1</del> . <del>4</del>                                       |                                                   |                                                                                                                                                                                        |
| $\langle r^2  angle^{1/2}$                                                                                                                                                                                                                        | 2.448                   | $2.468 \pm 0.012$                                                       | fm                                                |                                                                                                                                                                                        |

### ACM for <sup>16</sup>O



Figure 5: Comparison between the observed spectrum of  ${}^{16}$ O (left) and the theoretical spectrum (right). The levels are organized in columns corresponding to the ground state band and the three vibrational bands with A, E and F symmetry of a spherical top with tetrahedral symmetry. The last column shows the lowest non-cluster r levels.

#### ElectricTransitions: <sup>8</sup>Be, <sup>12</sup>C, <sup>16</sup>O

$$\rho(\vec{r}) = \frac{Ze}{k} \left(\frac{\alpha}{\pi}\right)^{3/2} \sum_{i=1}^{k} e^{-\alpha(\vec{r}-\vec{r}_{i})^{2}}$$

$$\mathcal{F}_{L}(q) = c_{L}j_{L}(q\beta) e^{-q^{2}/4\alpha}$$

$$\langle r^{2} \rangle^{1/2} = \sqrt{\beta^{2} + 3/2\alpha}$$

$$B(EL; 0^{+} \rightarrow L^{P}) = \frac{(Ze)^{2} c_{L}^{2} \beta^{2L}}{4\pi}$$

$$c_{L}^{2} = \begin{cases} \frac{2L+1}{4\pi} [1 + P_{L}(-1)] & 2\alpha \text{-cluster} \\ \frac{2L+1}{3} [1 + 2P_{L}(-\frac{1}{2})] & 3\alpha \text{-cluster} \\ \frac{2L+1}{4} [1 + 3P_{L}(-\frac{1}{3})] & 4\alpha \text{-cluster} \end{cases}$$

$$Q_{2+} = \begin{cases} -\frac{4}{7}Ze\beta^{2} & 2\alpha \text{-cluster} \\ +\frac{2}{7}Ze\beta^{2} & 3\alpha \text{-cluster} \end{cases}$$

Exp. (fm)

## **Electric Transitions**

|                 |                                  | ACM  | Exp.           | GFMC           |                        |
|-----------------|----------------------------------|------|----------------|----------------|------------------------|
| <sup>8</sup> Be | $B(E2; 2^+_1 \rightarrow 0^+_1)$ | 14   |                | $20.0 \pm 0.8$ | $e^2$ fm <sup>4</sup>  |
|                 | $B(E2; 4^+_1 \rightarrow 2^+_1)$ | 20   | $21 \pm 2.3^*$ | $27.2\pm1.5$   | $e^2$ fm <sup>4</sup>  |
|                 | $B(E4; 4^+_1 \rightarrow 0^+_1)$ | 153  |                |                | $e^2$ fm <sup>8</sup>  |
| <sup>12</sup> C | $B(E2; 2^+_1 \rightarrow 0^+_1)$ | 7.8  | $7.63\pm0.19$  |                | $e^2$ fm <sup>4</sup>  |
|                 | $B(E3; 3^1  ightarrow 0^+_1)$    | 65   | $104\pm14$     |                | $e^2$ fm <sup>6</sup>  |
|                 | $B(E4; 4^+_1 \rightarrow 0^+_1)$ | 48   |                |                | $e^2$ fm <sup>8</sup>  |
| <sup>16</sup> O | $B(E3; 3^1  ightarrow 0^+_1)$    | 215  | $205\pm10$     |                | $e^2$ fm <sup>6</sup>  |
|                 | $B(E4;4^+_1  ightarrow 0^+_1)$   | 425  | $378 \pm 133$  |                | $e^2$ fm <sup>8</sup>  |
|                 | $B(E6; 6^+_1  ightarrow 0^+_1)$  | 9626 |                |                | $e^2$ fm <sup>12</sup> |

Exp.

(efm<sup>2</sup>)

 $+5.7 +5.3 \pm 4.4$ 

 $Q_{2_{1}^{+}}$ 

<sup>8</sup>Be

<sup>12</sup>C

ACM

(efm<sup>2</sup>)

-7.6

#### Consequence of Symmetry

- \* Estimated value GFMC
- Datar et al, PRL 111, 062502 (2013)

GFMC

(efm<sup>2</sup>)

 $-9.1 \pm 0.2$ 

## Algebraic Cluster Model

|                        | <b>2</b> α      | <b>3</b> α            | <b>4</b> α      |
|------------------------|-----------------|-----------------------|-----------------|
| ACM                    | <i>U</i> (4)    | <i>U</i> (7)          | U(10)           |
| Point group            | $\mathcal{Z}_2$ | ${\cal D}_{{\sf 3}h}$ | $\mathcal{T}_d$ |
| Geom. conf.            | Linear          | Triangle              | Tetrahedron     |
| Model                  | Rotor           | Oblate top            | Spherical top   |
| Vibrations             | 1               | 3                     | 6               |
| Rotations              | 2               | 3                     | 3               |
| G.s. band              | 0+              | 0+                    | 0+              |
|                        | 2+              | 2+                    |                 |
|                        |                 | 3-                    | 3-              |
|                        | 4+              | 4 <sup>±</sup>        | 4+              |
|                        |                 | 5-                    |                 |
|                        | 6+              | 6 <sup>±+</sup>       | 6 <sup>±</sup>  |
| Large E $\lambda$ elec | tric trar       | isitions!             |                 |



Z<sub>2</sub> Dumbbell <sup>8</sup>Be NPA 973, 1 (2018)

 $D_{3h}$  Triangle <sup>12</sup>C

PRC 61, 067305 (2000) Ann Phys 298, 334 (2002) PRL 113, 012502 (2014)

*T<sub>d</sub>* Tetrahedron <sup>16</sup>O PRL 112, 152501 (2014) NPA 957, 154 (2017)

*D*<sub>3*h*</sub> Bi-pyramid <sup>20</sup>Ne NPA 1006, 122077 (2021)

# Summary and Conclusions

- Algebraic Cluster Model
- SGA of U(3n-2) for n-body systems
- Discrete and continuous symmetries
- Rotational bands fingerprints of point group symmetries
- Hoyle band: linear, bent or triangular?
- Applications in molecular, nuclear, hadronic physics



## Odd Cluster Nuclei

- What are the signatures of  $\alpha$ -clustering in odd-mass nuclei?
- Cluster Shell Model (CSM)
- Splitting of sp levels in cluster potentials (analogous to Nilsson model)
- Double point groups



## Cluster Shell Model

#### Cluster density

$$\rho(\vec{r}) = \frac{Ze}{k} \left(\frac{\alpha}{\pi}\right)^{3/2} \sum_{i=1}^{k} \exp\left[-\alpha \left(\vec{r} - \vec{r}_{i}\right)^{2}\right]$$
$$= \frac{Ze}{k} \left(\frac{\alpha}{\pi}\right)^{3/2} e^{-\alpha (r^{2} + \beta^{2})} 4\pi \sum_{\lambda \mu} i_{\lambda} (2\alpha\beta r) Y_{\lambda \mu}(\theta, \phi) \sum_{i=1}^{k} Y_{\lambda \mu}^{*}(\theta_{i}, \phi_{i})$$

$$\vec{r_i} = (\beta, \theta_i, \phi_i)$$

#### Cluster potential

$$H = \sum_{i} \frac{\vec{p}_{i}^{2}}{2m} + V(\vec{r}) + V_{\text{SO}}(\vec{r}) + V_{\text{C}}(\vec{r})$$

Della Rocca, Bijker & Iachello NPA 966, 158 (2017)

Adrian Horacio Santana Valdés M.Sc. Thesis, UNAM (2018)



## Densitities of 3- $\alpha$ cluster



Della Rocca, Bijker & Iachello, NPA 966, 158 (2017)

## Triangular Symmetry



Symmetry:  $\mathcal{D}_{3h}'$ 

| Ω         | $E_{1/2}$ | $E_{5/2}$ | E <sub>3/2</sub> |
|-----------|-----------|-----------|------------------|
| Deg       | 2         | 2         | 2                |
| $s_{1/2}$ | 1         |           |                  |
| $p_{1/2}$ |           | 1         |                  |
| $p_{3/2}$ |           | 1         | 1                |
| $d_{3/2}$ | 1         |           | 1                |
| $d_{5/2}$ | 1         | 1         | 1                |

Bijker & Iachello, PRL 122, 162501 (2019)

#### Vibrations

| $^{12}\mathrm{C}$   | $^{12}\mathrm{C}\otimes\mathrm{E}_{5/2}$        | $^{12}\mathrm{C}\otimes\mathrm{E}_{1/2}$                                                       | $^{12}\mathrm{C}\otimes\mathrm{E}_{3/2}$     |
|---------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|
| Bend $\sqrt{E'}$    | $=$ $\frac{\mathrm{E_{3/2}}}{\mathrm{E_{1/2}}}$ | $\displaystyle{=} \displaystyle{=} \displaystyle{ \frac{\mathrm{E}_{3/2}}{\mathrm{E}_{5/2}} }$ | $= rac{\mathrm{E_{5/2}}}{\mathrm{E_{1/2}}}$ |
| Hoyle $\sqrt{A'_1}$ | $\sqrt{\mathbf{E}_{5/2}}$                       | $ E_{1/2}$                                                                                     | $ E_{3/2}$                                   |
| Gsb -√ A'₁          | $\sqrt{\cdot \mathrm{E}_{5/2}}$                 | $-\sqrt{\mathrm{E}_{1/2}}$                                                                     | $ E_{3/2}$                                   |

#### Rotations

| gsb                               | ${\sf gsb}\otimes E_{{\sf 5/2}}$                  | ${\sf gsb}\otimes E_{1/2}$                      | gsb $\otimes E_{3/2}$                      |
|-----------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------|
| $\mathbf{D_{3h}:A_1'}$            | $\mathbf{D'_{3h}}:\mathbf{E_{5/2}}$               | $\mathbf{D_{3h}'}:\mathbf{E_{1/2}}$             | $\mathbf{D_{3h}'}:\mathbf{E_{3/2}}$        |
| — 4 <sup>+</sup> — 4 <sup>-</sup> | 9/2 <sup></sup> 9/2 <sup>+</sup> 9/2 <sup>+</sup> | <u> </u>                                        | $9/2^{\pm}$ $9/2^{\pm}$                    |
| 9-                                |                                                   | <u> </u>                                        | $7/2^{\pm}$                                |
| 3<br>2+                           | $ 5/2^ 5/2^+$                                     | $-5/2^+$ $-5/2^-$                               | $5/2^{\pm}$                                |
| 0+                                |                                                   | $ 3/2^+$<br>1/2 <sup>+</sup>                    | $3/2^{\pm}$                                |
| $K^{P} = 0^{+} - 3^{-}$           | $K^{P} = 1/2^{-}$ $5/2^{+}$ $7/2^{+}$             | $K^P = 1/2^+$ 5/2 <sup>-</sup> 7/2 <sup>-</sup> | ${ m K}^{ m P}=3/2^{\pm}$ 9/2 <sup>±</sup> |
| <sup>12</sup> C                   |                                                   |                                                 |                                            |
|                                   |                                                   | 13 <sub>C</sub>                                 |                                            |

Rotational Energy  

$$H_{\text{rot}} = \frac{L_{1}^{2} + L_{2}^{2}}{2\mathcal{I}} + \frac{L_{3}^{2}}{2\mathcal{I}_{3}} = \sum_{i=1}^{2} \frac{(J_{i} - j_{i})^{2}}{2\mathcal{I}} + \frac{(J_{3} - j_{3})^{2}}{2\mathcal{I}_{3}}$$

Wave function

$$|\Omega,\mu;J^PKM
angle \ = \ rac{1}{\sqrt{2}} \left(1+\widehat{P}\,\mathrm{e}^{i\pi J_2}\,\widehat{p}\,\mathrm{e}^{-i\pi j_2}
ight) |J^PKM
angle |\Omega,\mu
angle$$

Energies

$$\begin{split} E_{\Omega}(J) &\approx \frac{1}{2\mathcal{I}} \Big[ J(J+1) - 2K^2 + \delta_{K,1/2} a_{\Omega}(-1)^{J+1/2} \left( J + \frac{1}{2} \right) \Big] \\ a_{\Omega} & \text{Decoupling parameter} \end{split}$$

Generalized formula for triangular symmetry

#### Bandas Rotacionales en <sup>13</sup>C



## **Electric Transitions**



Dominated by collective part

| $B(E2; 3/2^1 \to 1/2^1)$                 | = | $B(E2; 5/2^1 \to 1/2^1)$         |
|------------------------------------------|---|----------------------------------|
|                                          | = | $B(E2; 2^+_1 \rightarrow 0^+_1)$ |
| $B(E3; 5/2^+_1 \rightarrow 1/2^1)$       | = | $B(E3; 3^1  ightarrow 0^+_1)$    |
| $Q_{5/2_1^-} = \frac{10}{7} Q_{3/2_1^-}$ | = | $Q_{2_{1}^{+}}$                  |



|                 | B(EL)                              | Th   | Exp           |                       |
|-----------------|------------------------------------|------|---------------|-----------------------|
| <sup>12</sup> C | $B(E2; 2^+_1 \rightarrow 0^+_1)$   | 7.8  | $7.63\pm0.19$ | $e^2$ fm <sup>4</sup> |
|                 | $B(E3; 3^1 \rightarrow 0^+_1)$     | 65.0 | $104\pm14$    | $e^2$ fm <sup>6</sup> |
|                 | $Q_{2_{1}^{+}}^{-}$                | 5.7  | $5.3 \pm 4.4$ | efm <sup>2</sup>      |
| <sup>13</sup> C | $B(E2; 3/2_1^- \to 1/2_1^-)$       | 7.8  | $6.4 \pm 1.5$ | $e^2$ fm <sup>4</sup> |
|                 | $B(E2; 5/2_1^- \to 1/2_1^-)$       | 7.8  | $5.6\pm0.4$   | $e^2$ fm <sup>4</sup> |
|                 | $B(E3; 5/2^+_1 \rightarrow 1/2^1)$ | 65.0 | $100\pm40$    | $e^2$ fm <sup>6</sup> |
|                 | $Q_{5/2_1}^{-}$                    | 5.7  |               | efm <sup>2</sup>      |
|                 | $Q_{3/2_1}^{-1}$                   | 4.0  |               | efm <sup>2</sup>      |

## Form Factors

#### Charge distribution

$$\rho_{ch}(\vec{r}) = \rho_{ch}^{c}(\vec{r}) + \rho_{ch}^{sp}(\vec{r})$$

$$\rho_{ch}^{c}(\vec{r}) = \frac{(Ze)_{c}}{3} \left(\frac{\alpha}{\pi}\right)^{3/2} \sum_{i=1}^{3} e^{-\alpha(\vec{r}-\vec{r}_{i})^{2}}$$

$$\rho_{ch}^{sp}(\vec{r}) = \tilde{e}\,\delta(\vec{r}-\vec{r}_{sp})$$



#### Form factors

$$\left\langle \psi_{f}\left|\int
ho_{\mathsf{Ch}}(ec{r})\,\mathsf{e}^{iec{q}\cdotec{r}}d^{\mathsf{3}}r\,\right|\psi_{i}
ight
angle$$

### Correspondence <sup>12</sup>C y <sup>13</sup>C





#### Factor de forma elástico CO

#### Factor de forma inelástico C2

## Analogue of Hoyle state in $^{13}C$



## **Energy Systematics**

#### GS bands versus Hoyle-bands for 3a-like nuclei



| 4n + 1         | Nuclei                                                                | References                                                                                                                             |
|----------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| n = 2 $n = 3$  | <sup>9</sup> Be, <sup>9</sup> B<br><sup>13</sup> C<br><sup>13</sup> N | NPA 973, 1 (2018)<br>PRL 122, 162501 (2019)<br>EPJ-ST 229, 2353 (2020)<br>PLB 843, 138026 (2023)<br>B.Sc. Thesis, Villavicencio (2025) |
| n = 5          | <sup>21</sup> Ne, <sup>21</sup> Na                                    | NPA 1010, 122193 (2021)                                                                                                                |
| 4 <i>n</i> + 2 | Nuclei                                                                | References                                                                                                                             |
| <i>n</i> = 2   | <sup>10</sup> Be<br><sup>10</sup> B, <sup>10</sup> C                  | JPCS 2619, 012006 (2023)<br>in progress, Omar Díaz                                                                                     |



# Summary and Conclusions

- Cluster Shell Model: <sup>13</sup>C
- Symmetries
- Rotational bands: fingerprints of a triangular configuration of three alpha particles plus a neutron
- Large electric transitions
- Form factor to identify the analogue of Hoyle state in <sup>13</sup>C
- Benchmark for microscopic studies of nuclear clustering



Bijker & Iachello, PRL 122, 162501 (2019)

## Who's Who?

- UNAM, Mexico
- Adrian Santana
- Omar Díaz
- UABJ, Mexico
- Emiliano Villavicencio
- Yale
- Valeria Della Rocca
- Francesco Iachello



# Pauli Principle

- ACM: effective  $\alpha$ - $\alpha$  interaction of the Morse type
- CSM similar to Nilsson model
- Nucleon moves in the deformed field generated by the cluster of α particles



## Experimental Studies <sup>12</sup>C

| gs<br>gs | 3-<br>4- | Kokalova et al, PRC 87, 057307 (2013)<br>Freer et al, PRC 76, 034320 (2007) |
|----------|----------|-----------------------------------------------------------------------------|
| -        |          | Kirsebom et al, PRC 81, 064313 (2010)                                       |
| gs       | $5^{-}$  | Marín-Lámbarri et al, PRL 113, 012502 (2014)                                |
| Hoyle    | 2+       | Itoh et al, PRC 84, 054308 (2011)                                           |
|          |          | Freer et al, PRC 86, 034320 (2012)                                          |
|          |          | Zimmerman et al, PRL 110, 152502 (2013)                                     |
| Hoyle    | 4+       | Freer et al, PRC 83, 034314 (2011)                                          |
| Hovle    | 3-,4-    | Some evidence for negative parity strengths                                 |

between 11 and 14 MeV Freer et al, PRC 76, 034320 (2007)



Some evidence for negative parity strength between

2.47 fm

3.45 fm

Freer et al, PRC 76, 034320 (2007)

t: experimentally observed states currently assigned to the group

Tzany Kokalova, JPCS 569, 012010 (2014)

## Estimate of Hoyle Radius

 Moments of inertia and radii of ground state (i=gs) and Hoyle band (i=H)

$$\frac{1}{2\mathcal{I}_i} = \frac{1}{Am\beta_i^2(1+2/\alpha\beta_i^2)}$$
$$\left\langle r^2 \right\rangle_i^{1/2} = \sqrt{\beta_i^2 + 3/2\alpha}$$

• Radii 
$$\langle r^2 \rangle_{gs}^{1/2} = 2.47 \text{ fm}$$
  
 $\langle r^2 \rangle_{H}^{1/2} = 3.45 \text{ fm}$ 

#### 4. Four-body Clusters: Spherical Top

$$H_{4,\text{vib}} = \xi_1 \left( R^2 s^{\dagger} s^{\dagger} - b_1^{\dagger} \cdot b_1^{\dagger} - b_2^{\dagger} \cdot b_2^{\dagger} - b_3^{\dagger} \cdot b_3^{\dagger} \right) (\text{h.c.}) \\ + \xi_2 \left[ \left( -2\sqrt{2} b_1^{\dagger} \cdot b_3^{\dagger} + 2b_1^{\dagger} \cdot b_2^{\dagger} \right) (\text{h.c.}) \right. \\ + \left( -2\sqrt{2} b_2^{\dagger} \cdot b_3^{\dagger} + \left( b_1^{\dagger} \cdot b_1^{\dagger} - b_2^{\dagger} \cdot b_2^{\dagger} \right) \right) (\text{h.c.}) \right] \\ + \xi_3 \left[ \left( 2b_1^{\dagger} \cdot b_3^{\dagger} + 2\sqrt{2} b_1^{\dagger} \cdot b_2^{\dagger} \right) (\text{h.c.}) \right. \\ + \left( 2b_2^{\dagger} \cdot b_3^{\dagger} + \sqrt{2} \left( b_1^{\dagger} \cdot b_1^{\dagger} - b_2^{\dagger} \cdot b_2^{\dagger} \right) \right) (\text{h.c.}) \\ + \left( b_1^{\dagger} \cdot b_1^{\dagger} + b_2^{\dagger} \cdot b_2^{\dagger} - 2b_3^{\dagger} \cdot b_3^{\dagger} \right) (\text{h.c.}) \right]$$

 $\begin{array}{lll} R^2=0 & : & \mbox{anharmonic oscillator} \\ R^2=1,\,\xi_1>0,\,\xi_2=\xi_3=0 & : & \mbox{deformed oscillator} \\ R^2\neq 0,\,\xi_1,\,\xi_2,\,\xi_3>0 & : & \mbox{spherical top} \end{array}$ 

# Equilibrium Shape

• Three coordinates have equal length

 $q_{1,0} = q_{2,0} = q_{3,0} = \sqrt{2R^2/(1+R^2)}$ 

and are perpendicular

 $\theta_{12,0} = \theta_{23,0} = \theta_{31,0} = \pi/2$ 

- Regular tetrahedron
- Platonic solids



## Vibrations

 Vibrational excitations of a spherical top with tetrahedral symmetry

$$E_{4,\text{vib}} = \omega_1(\nu_1 + \frac{1}{2}) + \omega_2(\nu_2 + 1) + \omega_3(\nu_3 + \frac{3}{2})$$

• Frequencies

$$\omega_1 = 4NR^2\xi_1$$
,  $\omega_2 = \frac{8NR^2}{1+R^2}\xi_2$ ,  $\omega_3 = \frac{8NR^2}{1+R^2}\xi_3$ 



## Rotations

- Hamiltonian  $H_4 = H_{4,vib} + H_{4,rot}$
- Angular momentum: L is exact symmetry of  $H_{4,rot} = \kappa_1 \vec{L} \cdot \vec{L} + \kappa_2 (\vec{L} \cdot \vec{L} - \vec{I} \cdot \vec{I})^2$
- Angular momentum in index space: I is good quantum number if  $\xi_2 = \xi_3$
- Rotational excitations of ground state vibrational band have L=I
- Rotational energies  $E_{3,rot} = \kappa_1 L(L+1)$

$$E_{4} = \omega_{1}(\nu_{1} + \frac{1}{2}) + \omega_{2}(\nu_{2} + 1) + \omega_{3}(\nu_{3} + \frac{3}{2}) + \kappa_{1}L(L+1)$$



#### ACM for <sup>16</sup>O

• Lowlying  $\frac{L_i^P = 0^+_2}{2}$  state interpreted as a





ith RC 25, 1108

Figure 5: Comparison between the observed spectrum of  ${}^{16}$ O (left) and the theoretical spectrum (right). The levels are organized in columns corresponding to the ground state band and the three vibrational bands with A, E and F symmetry of a spherical top with tetrahedral

Electric Transitions  

$$B(EL; 0 \to L) = \left(\frac{Ze}{4}\right)^2 \beta^{2L} \frac{2L+1}{4\pi} \left[4 + 12P_L(-\frac{1}{3})\right]$$

$$B(E1; 0 \to 1) = 0$$
  

$$B(E2; 0 \to 2) = 0$$
  

$$B(E3; 0 \to 3) = (Ze)^2 \frac{7}{4\pi} \frac{5}{9} \beta^6$$
  

$$B(E4; 0 \to 4) = (Ze)^2 \frac{9}{4\pi} \frac{7}{27} \beta^8$$
  

$$B(E5; 0 \to 5) = 0$$
  

$$B(E6; 0 \to 6) = (Ze)^2 \frac{13}{4\pi} \frac{32}{81} \beta^{12}$$

## ACM for four-body systems

9 relative degrees of freedom: Jacobi vectors

$$\vec{\rho}_{1} = (\vec{r}_{1} - \vec{r}_{2})/\sqrt{2}$$
  
$$\vec{\rho}_{2} = (\vec{r}_{1} + \vec{r}_{2} - 2\vec{r}_{3})/\sqrt{6}$$
  
$$\vec{\rho}_{3} = (\vec{r}_{1} + \vec{r}_{2} + \vec{r}_{3} - 3\vec{r}_{4})/\sqrt{12}$$

Introduce three dipole bosons and an auxiliary scalar boson





such that the total number of bosons is conserved

 $N = n_1 + n_2 + n_3 + n_s$ 

## Permutation symmetry

$$P(12) |\psi_t\rangle = \begin{cases} + |\psi_t\rangle & t = A_1, E_\lambda, F_{2\lambda}, F_{2\eta}, F_{1\rho} & n_\rho \text{ even} \\ - |\psi_t\rangle & t = A_2, E_\rho, F_{1\lambda}, F_{1\eta}, F_{2\rho} & n_\rho \text{ odd} \end{cases}$$

Separate basis states with  $n_{
ho}$  even and odd

$$\begin{aligned} \langle \psi_t | P(1234) | \psi_t \rangle &= \langle \psi_t | e^{i\pi(b_\rho^{\dagger}b_\rho + b_{\lambda}^{\dagger}b_{\lambda} + b_{\eta}^{\dagger}b_{\eta})} \\ &e^{\theta_1(b_\rho^{\dagger}b_{\lambda} - b_{\lambda}^{\dagger}b_\rho)} e^{\theta_2(b_{\lambda}^{\dagger}b_{\eta} - b_{\eta}^{\dagger}b_{\lambda})} | \psi_t \rangle \\ \theta_1 &= \arctan\sqrt{3} \qquad \theta_2 = \arctan\sqrt{8} \end{aligned}$$

Change of oscillator coordinates: Talmi-Moshinsky brackets

|                                                   | $A_1$ | $E_{\lambda}$  | $F_{2\lambda}$ | $F_{2\eta}$    | $F_{1 ho}$    | $A_2$ | $E_{ ho}$     | $F_{1\lambda}$ | $F_{1\eta}$   | F <sub>2</sub> |
|---------------------------------------------------|-------|----------------|----------------|----------------|---------------|-------|---------------|----------------|---------------|----------------|
| $ig \langle \psi_t    P$ (12) $  \psi_t  angle$   | 1     | 1              | 1              | 1              | 1             | -1    | -1            | -1             | -1            | -1             |
| $ig \langle \psi_t    P$ (1234) $  \psi_t  angle$ | 1     | $-\frac{1}{2}$ | $-\frac{1}{6}$ | $-\frac{1}{3}$ | $\frac{1}{2}$ | 1     | $\frac{1}{2}$ | $\frac{1}{6}$  | $\frac{1}{3}$ | $-\frac{1}{2}$ |