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Halo nuclei

Light, neutron-rich nuclei with large matter radius

Low Sn or S2n: one or two loosely-bound neutrons

Clusterised structure: neutrons can tunnel far from the core
→ halo-nucleus ≡ compact core + valence neutron(s)

Our case study : 11Be ≡ 10Be + n

Short-lived → studied via reactions (e.g. breakup)
→ need of an effective few-body model for reaction calculations
→ Halo-EFT
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Halo-EFT description of 11Be
Halo-structure → separation of scales
→ small parameter η = Rcore

Rhalo
≃ 0.4 < 1

→ expansion of the core-neutron Hamiltonian along η,
i.e. reproducing the low-energy (viz. long distance) behaviour of the system
[Bertulani, Hammer, van Kolck, NPA 712, 37 (2002)]
Review: [Hammer, Ji, Phillips, JPG 44, 103002 (2017)]

11Be =10Be(0+)+n [core has no internal structure]

→ single-particle description: H(r) = Tr +Vcn(r)

Effective Gaussian potentials in each partial wave ℓj @NLO (ℓ ⩽ 1):

Vcn(r) = V
(0)
ℓj e−

r2

2σ2 +V
(2)
ℓj r2e−

r2

2σ2

V
(0)
ℓj and V

(2)
ℓj fitted to reproduce:

→ Sn & asymptotic normalization coefficient (ANC) for bound states
→ effective range parameters for continuum states

σ:= cut-off → evaluates sensitivity to short-range physics
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What is the problem ?
Assumption: 10Be remains in its 0+ ground state still valid ?
→ Nuclear breakup: 11Be+C → 10Be+n+C
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Exp: [Fukuda et al. PRC 70, 054606 (2004)]
Th.: [L.-P. Kubushishi and P. Capel, arXiv:2406.10168 (2024)]

⇒ Missing peaks at 5
2

+
and 3

2

+
resonances → is s.p. enough ?
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Nuclear breakup & core excitation
Origin of these missing strengths ? → a missing degree of freedom [10Be(2+)]
⇒ 10Be core can be excited to its first 2+state [Moro & Lay, PRL 109, 232502 (2012)]

To better understand structure effects on reaction calculations
we have developed a Halo-EFT few-body model including core excitation

11Be: nuclear breakup & core excitation December 4, 2024 5 / 18



Core excitation within Halo-EFT
Extension of Halo-EFT to include core excitation:

H(r, ξ) = Tr +Vcn(r, ξ) + hcore(ξ)

hcore(ξ):= intrinsic Hamiltonian of the core with eigenstates χc
I(ξ)

Halo-EFT particle-rotor model [Bohr and Mottelson (1975)]:

Vcn(r, ξ) = Vcn(r) + βσY0
2(r̂)

d

dσ
Vcn(r)

Set of radial coupled-channel Schrödinger equations:[
Tℓ
r +Vαα(r) + ϵα − E

]
ψα(r) = −

∑
α′ ̸=α

Vαα′(r)ψα′(r)

with Vαα′(r) = Yα(r̂)χα(ξ)Vcn(r, ξ)Yα′(r̂)χα′(ξ), α={ℓ, s, j, I}

→ solved within the R-Matrix method on a Lagrange mesh
[D. Baye, Physics Reports 565 (2015) 1]

→ study impact of core excitation on: ψα, δα
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Ground state: 1
2

+

Compare to ab initio predictions [Calci et al., PRL 117, 242501 (2016)]

Ψ1/2+ = ψ1s1/2(r) ⊗ χ
10Be
0+ + ψ0d5/2(r) ⊗ χ

10Be
2+ + ψ0d3/2(r) ⊗ χ

10Be
2+

NLO potentials fitted to reproduce Sn and ab initio ANC for ̸= β
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β=0.5 in excellent agreement with ab initio for both ψα, δα
⇒ Including core dof improves both ψα, δα with 1 added parameter: β
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Ground state: 1
2

+
- Type 2 solution

Ψ1/2+ = ψ1s1/2(r) ⊗ χ
10Be
0+ + ψ0d5/2(r) ⊗ χ

10Be
2+ + ψ0d3/2(r) ⊗ χ

10Be
2+

Another type of solutions can be found:
→ when potential hosts a 0d bound state (expected in shell model)
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Results less good than calculations without core excitation
→ this solution is rejected
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Ground state and σ-dependency
Q: In the spirit of the Halo-EFT, are our calculations σ-independent ?
Idea: compare coupled-channel [Type 1 solution] to s.p. NLO results

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 u
1
s1

/2
⊗

 0
+
  
(f

m
-1

/2
) 

0 2 4 6 8 10
r (fm)

σ = σ
c
 =1.3 fm - β = 0.35

σ = σ
c
 =1.5 fm - β = 0.5

σ = σ
c
 =1.8 fm - β = 0.5

σ = σ
c
 =2.0 fm - β = 0.5

 ab initio
σ = σ

c
 =1.3 fm - β = 0

σ = σ
c
 =1.5 fm - β = 0

σ = σ
c
 =1.8 fm - β = 0

σ = σ
c
 =2.0 fm - β = 0

a)

0 1 2 3 4

E (MeV)

-180

-150

-120

-90

-60

-30

0

δ
1

s1
/2

⊗
 0

+
 (

d
eg

) 

b)

Coupled-channel calculations reduce σ-dependency for both ψα and δα
→ new degree of freedom decreases σ-dependency
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Bound excited state: 1
2

−

Ψ1/2− = ψ0p1/2(r) ⊗ χ
10Be
0+ + ψ0p3/2(r) ⊗ χ

10Be
2+ + ψ0f5/2(r) ⊗ χ

10Be
2+

NLO potentials fitted to reproduce Sn and ab initio ANC for ̸= β
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wfs: no improvement in the “pre-asymptotic”region (4-6 fm)
phase shifts: less good than without core excitation
No “type 2” solution because E0p3/2 not at the right energy
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Electric dipole transition probability: B(E1)
Observable to test our predictions: E1 transition from bound state to bound state: 1

2

+ → 1
2

−

B(Eλ; i → f) =
2Jf + 1

2Ji + 1
|⟨Jf ||M(Eλ)||Ji⟩|2 ,

Good agreement with experimental data & discrepancy with ab initio value
Ab initio overestimates the strength of the transition
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Resonances @NLO: 5
2

+
, 3

2

−
, 3

2

+

Compare to ab initio predictions [Calci et al., PRL 117, 242501 (2016)]

NLO potentials fitted to reproduce exp. Eres and Γres for ̸= β
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Excellent agreement with ab initio results → probing nature of resonances [Γ0+ ,Γ2+ ]

Direct access to scattering wfs, phase shifts → dB(E1)
dE , cross sections,...
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B(E1) distributions
E1 transition from 1

2

+
bound state to the continuum with final-state interactions
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 ab initio: Calci et al., PRL. 117, 242501 (2016)

σ=1.3 fm - β=0.35 - not folded

σ=1.5 fm - β=0.50 - not folded

σ=2.0 fm - β=0.50 - not folded

Good agreement with exp. data reproduced but overshoot at low E (like ab initio)
σ-dependency in B(E1) distributions: ̸= σ ↛= scattering properties

dB(E1)
dE
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s.p. NLO: σ-dependency in p-waves
Sensitivity already seen in NLO calculations:
[Capel, Phillips, Hammer, PRC 98, 034610 (2018)]

δp3/2 phaseshifts

11Be+ Pb →10Be+ n+ Pb

ab initio
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@NLO: σ-dependency in δ

leads to σ-dependency on cross sections

@N2LO: strong reduction of the σ-dependency in δp1/2 and δp3/2 ?
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s.p. N2LO: σ-dependency in p-waves
Description of 11Be @N2LO:

δp3/2 phaseshifts 11Be+ Pb →10Be+ n+ Pb
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Suppression σ-dependency in p-waves phaseshifts
→ same cross sections for all σ
[L.-P. Kubushishi and P. Capel, arXiv:2406.10168 (2024)]
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Coulomb breakup & Equivalent Photon Method (EPM)
Coulomb breakup: 11Be+Pb → 10Be+n+Pb @69AMeV → E1-dominated
EPM: cross section ∝ B(E1) through number of equivalent photons NE1(E):
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→ B(E1) distribution overshoots reflected on cross-sections (which are folded)
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Conclusion
I want to study reactions involving one-neutron halo nuclei :

need of a realistic few-body model for reaction calculations
→ Halo-EFT

My model of one-neutron halo nuclei [11Be] provides:

explicit inclusion of core excitation within Halo-EFT
1
2

+
state: core excitation improves its few-body description

→ both wave function and phase shift
1
2

−
state: core excitation does not improve its few-body description

realistic description of low-lying resonances of 11Be

[L.-P. Kubushishi and P. Capel, (2024), (in preparation)]
[L.-P. Kubushishi, (2024), (in preparation)]

Outlook:
same formalism to study structure and breakup of 17C (Juan’s talk), 19C, 31Ne, 37Mg,...

development of an halo-EFT for light deformed nuclei (ongoing)

include my model in reaction codes (nuclear breakup, knock-out,...)
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