Heavy B isotopes as multineutron Halos

Jaume Carbonell

In collaboration with

E. Hiyama (U. Tohoku and RIKEN),

R. Lazauskas (IPHC Strasbourg), M. Marqués (LPC Caen)

T. Frederico (ITA Brasil)

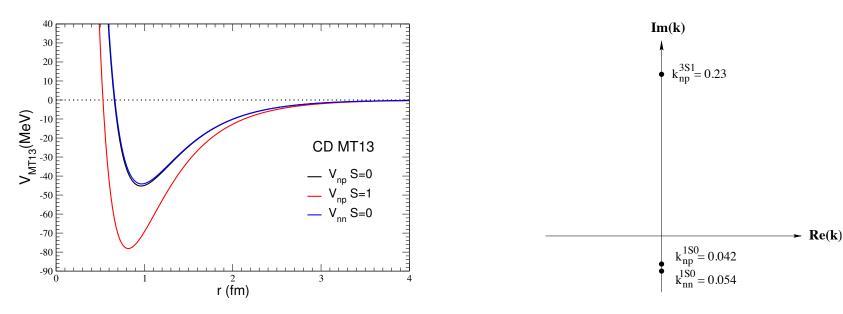
MENU

n-17B scattering and the 18B virtual state

¹⁹B as ¹⁷B core + **nn**

²⁰B and ²¹B as ¹⁷B+ x **n** x=3,4

The neutron-Nucleus (nA) <u>low-energy</u> scattering is a privileged tool to learn <u>about</u> the nuclear force


- Free from Coulomb interactions
- Not disturbed by the kinetic energy

$$H = H0 << V + V$$

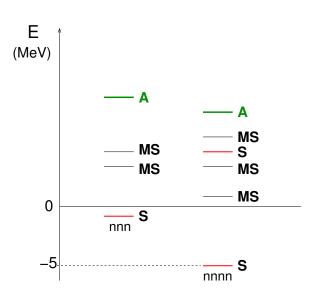
It is very sensible to any detail of V, the non trivial part of H

By doing a systematic study of nA, i.e. by increasing A=1,2,3,... some interesting trends governing the nuclear processes are manifested

The S-wave neutron-Nucleon (n,p) interaction is attractive in all spin and isospin channels

The **np** S=1 state is the more attractive one, enough to **bind** the deuteron by B=2.22 MeV
The **np** and **nn** S=0 states are not bound... but almost: have a "virtual state" close to threshold
This spin-dependence accounts for a 20% difference in the attractive strength of NN interaction

However, and despite all V_{nN} are attractive, the low-energy n scattering on light nuclei, starting as soon as n-2H, behave as if V_{nA} was repulsive...

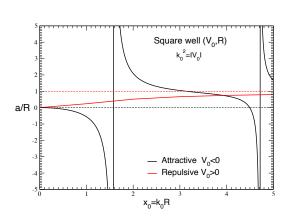

An approaching a nucleus "feels" others n's in the target and it doesn't like them! (Pauli)

A dramatic consequence happens in 3n and 4n systems:

 H_{3n} has a (ground) bound state at about 1 MeV (5 MeV for $H_{4n})\,$

... but in nature neither 3n nor 4n are bound

The lowest state of H_{3n} and H_{4n} is symmetric The first antisymmetric state is much higher in spectrum Everything happens <u>as if there was a repulsion among n</u>'s: the "Pauli repulsion"



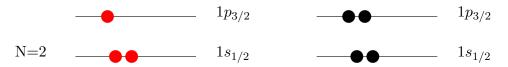
An interesting quantity to measure the repulsive/attractive character of V_{nA} is the scatt length

$$a_{nA} = -f_{nA}(E=0)$$

For purely repulsive V, a>0

For purely attractive V, a<0...until a bound state appears

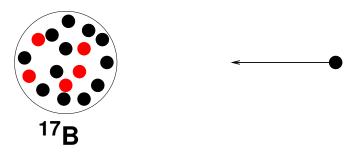
For a realistic interaction – mixing repulsive core with attractive parts – the result is the net balance of both tendences


The evolution of a_{nA} when increasing N is summarized below

ZNA	Sym	J	a-	a+
1 0 1	р	1/2+	-23.75	+5.42 *
0 1 1	n	1/2+	-18.59	1
1 1 2	² H	1-	+0.65*	+6.44
2 1 3	³ He	1/2+	+6.6*-3.7i	+3.5
1 2 3	³ H	1/2+	+3.9	+3.6
2 2 4	⁴ He	0+	+2.61	1
3 3 6	⁶ Li	1+	+4.0	+0.57
3 4 7	⁷ Li	3/2-	+0.87	-3.63
2 6 8	⁸ He	0+	-3	
3 6 9	⁹ Li	3/2-	-14	

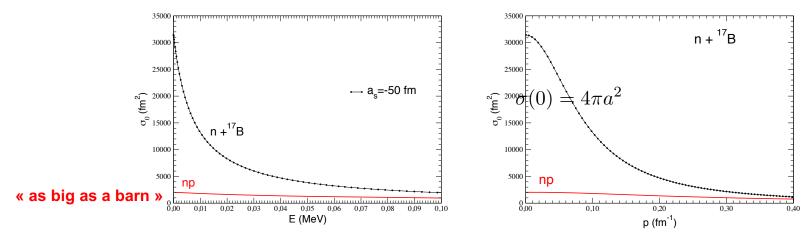
N=20		$1d_{3/2} \ 2s_{1/2} \ 1d_{5/2}$
N=8		$1p_{1/2} \\ 1p_{3/2}$
N=2		$1s_{1/2}$

For A=1 all and are attractive


For A=2, a_{nA} starts being repulsive: strong Pauli repulsion dominates over **nN** attraction For A=7, in ⁷Li (J=3/2⁻) an attractive channel appears again...

P-wave **n's** decrease Pauli repulsion: 2 $p_{3/2}$ n's are enough to result into "overall attractive" V_{nA} The "attraction" persists in ${}^{9}Be, {}^{12}Be, {}^{15}B...$ **until something very spectacular occurs.....**

¹⁸B ONE OF THE MOST FASCINATING SYSTEMS IN NUCLEAR PHYSICS

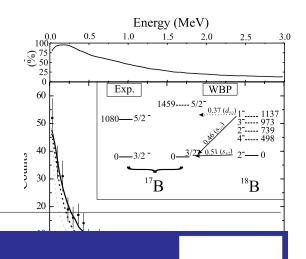

¹⁷B is a (strong) stable nucleus with $J^{\pi}=3/2$ consisting on a sea of 12n sourrounding 5p

The balance between the attractive π -exchange between **n** and **17 Nucleons** and the "Pauli repulsion" with the **12n**'s in ¹⁷B is **so fine-tuned** that the scattering length is $a_{n-17B} \sim -100$ fm

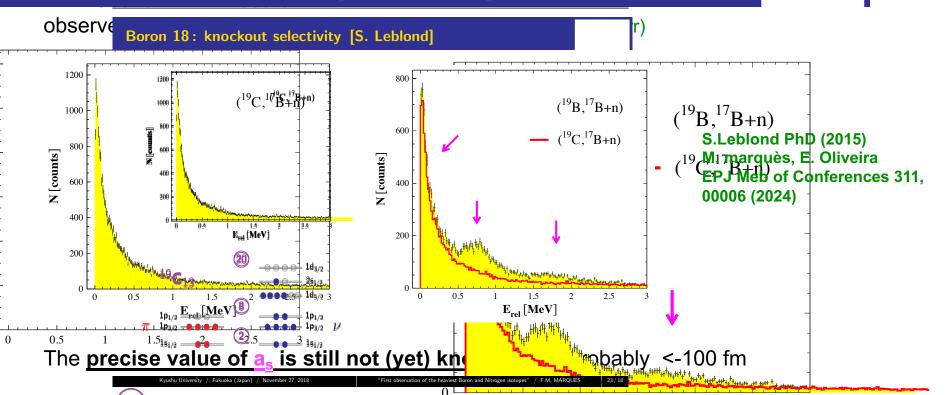
A low energy n scattering on ¹⁷B "feels" a monster of geometrical size D~400 fm

The « low energy region » where n feels the monster in a warm law in

Nevertheless the effect is huge, even with respect to what was considered huge untill now!


EXPERIMENTAL

How do we know that this history is true?


I. A first MSU measurement

Spyrou et al. PLB683(2010)129

claimed the existence of a ^{18}B "virtual" (unbound) state and a $n-^{17}B$ $a_s < -50$ fm

18: knockout selectivity [S. Leblond]

THEORY

The large value of a_s indicates the existence of a " ¹⁸B virtual state" very close to threshold It corresponds to a pole in the $n-^{17}B$ scattering amplitude f(k) at Im(k)<0, as in nn case

One of the most interesting virtual states in Nucl Physics:

- the scattering length a_s is the « **nuclear chart record** »waiting for a final result!
- much larger than the highly celebrated a_{NN} =-24 fm, which, « controls the nuclear chart »
 - S. König, Griesshammer, Hammer, van Kolck, Phys. Rev. Lett 118, 202501 (2017)
 - « We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy"
- It is even comparable to atomic physics cases! and a candidate to Efimov martyrology

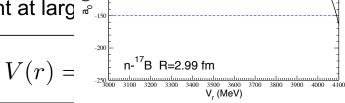
But this not all....

- ¹⁹B is bound with a binding energy B in [0,0.53] MeV
- ¹⁹B has several resonant states
- A series of ²⁰B,²¹B resonances were recently discovered S.Leblond et al, PRL121,262502(2018)

All that gave a strong motivation to model ¹⁹B as a ¹⁷B-n-n 3-body cluster

- built wit 2 resonant scattering lengths (exemple of Borromean state)
- with possible extensions to ¹⁷B-n-n-n and ¹⁷B-n-n-n-n

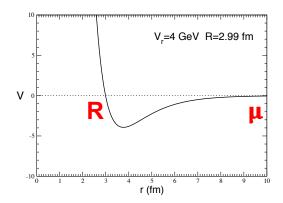
19_R

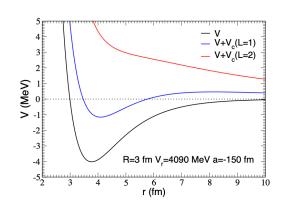

First results in E. Hiyama, R. Lazauskas, M. Marqués, J. Carbonell, PRC100, 011603R (2019)

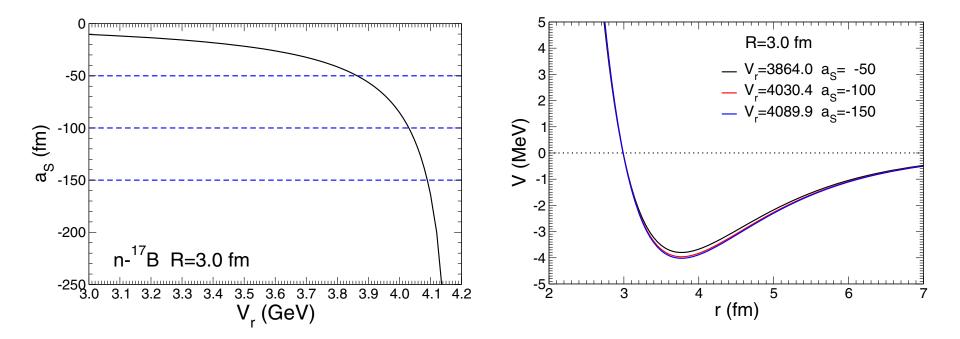
MODELING THE n-17B SYSTEM

Ingredients:

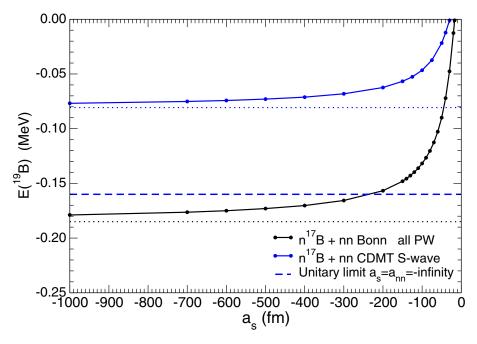
- Repulsive+Attractive part : V_r,V_a, μ
- Hard core radius : **n** cannot pend **R** can be (matter radius **R**_m=3.0
- Pion exchange (dominant at larg 🗐


Simplest ansatz

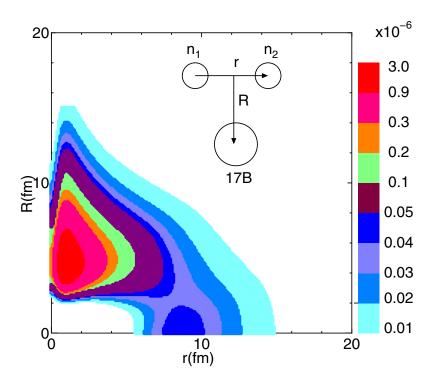



V_r is adjusted to reproduce the experimental value of a_s

Since we are still waiting for it, we parametrize all in terms of as


Determining $a_s = f(V_r)$

Dashed lines correspond to a_s =-50 (3864 MeV), -100 (4030), -150 (4090) fm with R=3.0 Singularity of a_s (r.h.s) would correspond to appearance of an (unphysical) bound ¹⁸B state Corresponding potentials saturates for $a_s \sim$ -100 fm


MODELING ¹⁹B as ¹⁷B-n-n CLUSTER

Solve the 3-body problem (Faddeev+Gaussian) with V_{n-17B} and some realistic V_{nn} ¹⁹B appears to be bound for a_s <-50 (the only parameter!) in a $J^{\pi}=3/2^-$ state (L=0,S=0)

We used 2 different **nn** interactions and let V_{n-17B} act in S-wave (s. blue) or in all PW (s. black) The energy is always compatible with the experimental value E=-0.14+/-0.39 MeV

In the S-wave case we consider the unitary limit: $a_s = a_{nn} \rightarrow -\infty$ (blue dashed) The result is still compatible with experimental value and constitutes a first illustration of this interesting limit in Nuclear Physics. Spatial probability amplitude $|\Psi(r,R)|^2$ fixing a_s=-100 fm

We also found two ^{19}B resonances: fixing a_s =-150 and using the S-wave model

L=1 E_1 =0.24-0.31i MeV

L=2 E₂=1.02-1.22i MeV

Their existence is in agreement with experimental findings

J. Gibelin et al., Contribution to FB22, Caen july 2018, Springer Proc in Press

Very simple and successful model: local S-wave potential, no 3-body force, one single parameter The key of the succes is the double resonant character of nn and n-Core

Some refinements: the spin-spin dependence

¹⁷B being $J^{\pi}=3/2^{-}$, there are two different scattering lengths a_s corresponding to S=1,2. Assuming that the virtual state we adjusted was a_2 there is no reason that a_1 = a_2

Introduced a spin-spin dependence with different V_{n-17B} for each S, keeping the same form

$$V_{n^{17}B}^{(S)}(r) = V_{r}^{(S)} \ \left(e^{-\mu r} - e^{-\mu R}\right) \frac{e^{-\mu r}}{r} \qquad S = 1, 2$$

There exists a critical value a_1^c above which ^{17}B binding disappears but this requires unphysical SS beaking $V_r^{(1)}/V_r^{(2)}=2$: results are stable even when varying R

GOING BEYOND: MODELING ²⁰B (as ¹⁷B-n-n-n) and ²¹B (as ¹⁷B-n-n-n-n)

The success in describing ¹⁹B encourage us to go beyond and add more n's to the same core

This implies solving the 4- and 5-body problem, for what we used the same techniques than previously.

Notice that what we have added is, in principle, a trivial part : more n's !!!

The delicate, and so questionable, part is the n-Core interaction...that was already tested in ¹⁹B, for ground as well as for resonant states

Not only a curiosity but recent experimental data claim for resonant states in the, supposed unbound, **B** heaviest isotopes: ²⁰B and ²¹B

PHYSICAL REVIEW LETTERS 121, 262502 (2018)

First Observation of ²⁰B and ²¹B

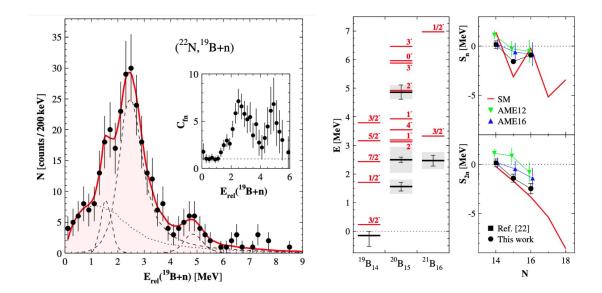
S. Leblond, F. M. Marqués, J. Gibelin, N. A. Orr, Y. Kondo, T. Nakamura, J. Bonnard, N. Michel, N. L. Achouri, T. Aumann, H. Baba, F. Delaunay, Q. Deshayes, P. Doornenbal, N. Fukuda, J. W. Hwang, N. Inabe, T. Isobe, D. Kameda, D. Kanno, S. Kim, N. Kobayashi, T. Kobayashi, T. Kubo, J. Lee, R. Minakata, T. Motobayashi, D. Murai, T. Murakami, K. Muto, T. Nakashima, N. Nakatsuka, A. Navin, S. Nishi, S. Ogoshi, H. Otsu, H. Sato, Y. Satou, Y. Shimizu, K. Takahashi, H. Takeda, S. Takeuchi, R. Tanaka, Y. Togano, A. G. Tuff, M. Vandebrouck, and K. Yoneda

Results for ²⁰B

Direct calculations shows no bound state in the ¹⁷B+3n system (agreement with data)

The situation is similar than in ⁶He= ⁴He+n+n bound but ⁷He=4He+n+n+n unbound

We computed the n-[17B-n-n] scattering with several choices (I,II,III) of model parameters


- S waves are repulsive
- P waves are attractive, but not enough to create a resonant state

	L=0		L=1			
Case	$a_S ext{ (fm)}$	$E(^{19}B)$ (MeV)	$a_0 \text{ (fm)}$	$r_0~({ m fm})$	$a_1~({ m fm^3})$	$r_1~(\mathrm{fm^{-1}})$
I	-150	-0.11	16.69		-551	0.37
II	-1000	-0.13	15.79		-495	0.36
III	- 150	-0.53	8.47	3.59	-86	0.64

There are recent experimental claims about several resonances in this system

First observation of ²⁰B and ²¹B

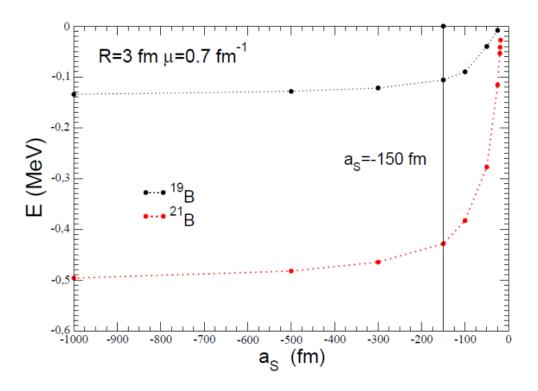
S. Leblond et al, Phys. Rev. Lett. 121, 262502 (2018)

By assuming a single resonance, they get

$$E_R = 2.44 \pm 0.09 \text{ MeV} \text{ and } \Gamma = 1.2 \pm 0.4$$

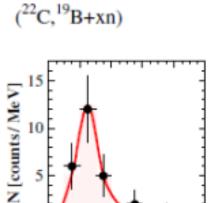
A more detailed analysis shows a superposition of 3 resonant states

$$E_r=1.56\pm0.15\,\mathrm{MeV}$$
 with $\Gamma<0.5\,\mathrm{MeV}$


$$E_r = 2.50 \pm 0.09 \,\mathrm{MeV}$$
 with $\Gamma < 0.9 \pm 0.3 \,\mathrm{MeV}$

$$E_r$$
=4.86±0.25 MeV with $\Gamma < 0.5$ MeV

Nothing within our cluster model: neither by S-matrix poles nor by « real scaling » method


Results for ²¹B

We found ²¹B **bound**, for any parameter set binding ¹⁹B
The value of its binding energy is related to the ¹⁹B one, i.e. to scattering length
It is very hard to imagine a mechanism inverting (cross) the black and red curves !!!

There is a general agreement among the experimentalst that ²¹B is unbound Traditional SHM (2005) predicts an unbound g.s. by 3 MeV (but also for 19B)

First observation of ²⁰B and ²¹B S. Leblond et al, Phys. Rev. Lett. 121, 262502 (2018)

By proton removal from ²²C, they observed ²¹B to be resonant state by 2.47 ± 0.19 MeV with respect to ¹⁹B+2n threshold.

A recent « ab initio » result of ⁸B-²¹B (binding ¹⁹B) found ²¹B bound (with small probability)

PHYSICAL REVIEW LETTERS 126, 022501 (2021)

Editors' Suggestion

Featured in Physics

Ab Initio Limits of Atomic Nuclei

S. R. Stroberg, ^{1,2,*} J. D. Holt[©], ^{2,3,†} A. Schwenk[©], ^{4,5,6,‡} and J. Simonis^{7,4,5,8}

¹Department of Physics, University of Washington, Seattle, Washington 98195, USA

²TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

³Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec H3A 2T8, Canada

⁴Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

⁵ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

⁶Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

⁷Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, 55099 Mainz, Germany

CONCLUSIONS

We built a local potential to describe the $n^{-17}B$ interaction and its virtual state It depends on one parameter, adjusted to reproduce the huge $n^{-17}B$ scattering length (a_s <-50 fm)

Supplemented with the nn interaction it describes well ¹⁹B as a 3-body ¹⁷B-n-n cluster:

- Its ground state (E=-0.14 +/- 0.40) MeV
- Two (L=1, and L=2) resonances all in agreement with experimental findings.

The model is extended to describe the recently measured B isotopes (S. Leblond et al) as

$$^{21}B = ^{17}B - n - n - n$$

²¹B is found to be bound and no any resonance states are obtained in ²⁰B and ²¹B

Either the resonance in **S. Leblond et al** corresponds to an excited state (and ²¹B is bound)

this cluster model is unable to describe ²⁰B and ²¹B as 3n and 4n system around a ¹⁷B core.

In favour of our result is the fact the chain ¹⁵B-¹⁷B-¹⁹B is similar and ends with a bound ¹⁹B! But in this subttle physics, <u>any small approximation can kill you</u>!

We badly need a more precise direct measurement of ¹⁹B S_{2n}: too big error bars and dB/dE is not a direct measurement!!!