High-precision spectroscopy of ²⁰O benchmarking ab-initio calculations in light nuclei

Irene Zanon

Post-doctoral Fellow

Università degli Studi di Ferrara

Outlook

Physical motivations

The ²⁰O experiment

 γ -particle spectroscopy

Optimization of the simulation

Lifetime measurements

Theoretical interpretation

Future perspective

Part I: Physical motivations

GRETINA

The path until now...

AGATA

Improvements of experimental setups

Improvements of theoretical models

I. Vernon³⁶, H. Wang², Z. Yang², M. Yasuda¹, K. Yoneda² & S. Yoshida³

nature

I FTTFRS

13/12/24

/

The «oxygen anomaly»

z	20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26Mg	27 Mg	28Mg	29Mg	30Mg	31Mg	32Mg	33Mg	34Mg	35Mg	36Mg
	19Na	20Na	21Na	22Na	23Na	24Na	25Na	26Na	27Na	28Na	29Na	30Na	31Na	32Na	33Na	34Na	35Na
10	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne	25Ne	26Ne	27Ne	28Ne	29Ne	30Ne	31Ne	32Ne	33Ne	34Ne
	17F	18F	19F	20F	21F	22F	23F	24F	25F	26F	27F	28F	29F	30F	31F		
8	160	170	180	190	200	210	220	230	240	250	260	270	280				
	15N	16N	17N	18N	19N	20N	21N	22N	23N	24N	25N						
6	14C	15C	16C	17C	18C	19C	20C	21C	22C	23C					EC+β+		e +
	13B	14B	15B	16B	17B	18B	19B	20B	21B							β- α	
4	12Be	13Be	14Be	15Be	16Be											P	
l	8		10		12		14		16		18		20			N	
																SF Unkni	own

- Disappearance of the N=20 magic number;
- Anomaly in the drip line;

- Nuclei close to the drip-lines are fundamental to understand the nuclear interaction.
- Regular evolution of the drip line in the p-sd region **but** the oxygen represents an exception.
- According to the shell model, ²⁸O is expected to be the heaviest isotope.
 ²⁴O is observed to be the last bound isotope.

- The position of the drip line of the oxygen isotopic chain is reproduced by introducing the **3N forces.**
- The location of the drip line changes from the $Od_{3/2}$ orbital (N=20, ²⁸O) to the $1s_{1/2}$ (N=16, ²⁴O).
- Additional information on the relative position of 1s_{1/2} and 0d_{3/2} orbitals is need.

PRL 105, 032501 (2010)	PHYSICAL	REVIEW	LETTERS
------------------------	----------	--------	---------

Three-Body Forces and the Limit of Oxygen Isotopes

week ending 16 JULY 2010

Takaharu Otsuka, ^{1,2,3} Toshio Suzuki,⁴ Jason D. Holt,⁵ Achim Schwenk,⁵ and Yoshinori Akaishi⁶
 ¹Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan
 ²Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033, Japan
 ³National Superconductor Cyclotron Balaratory Michiga, are Uliversity, East Lassing, Michigan, 48824, USA
 ⁴Department of Physics, Generatory Michiga, are Uliversity, Fast Lassing, Michigan, 48824, USA
 ⁴Department of Physics, Generatory Michiga, and Uliversity, Saturdana 3, Tokyo 156-8550, Japan
 ⁵TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 243, Canada
 ⁶RIKEN Nishina Center, Hirosawa, Wako-shi, Saitama 351-0198, Japan (Received 17 August 2009; published 13 July 2010)

T. Otsuka et al., PRL 104, 012501 (2010)

Article

p-sd Shell Gap Reduction in Neutron-Rich Systems and Cross-Shell Excitations in ²⁰O

M. Wiedeking, S. L. Tabor, J. Pavan, A. Volya, A. L. Aguilar, I. J. Calderin, D. B. Campbell, W. T. Cluff, E. Diffenderfer, J. Fridmann, C. R. Hoffman, K. W. Kemper, S. Lee, M. A. Riley, B. T. Roeder, C. Teal, V. Tripathi, and I. Wiedenhöver

Florida State University, Tallahassee, Florida 32306, USA (Received 13 December 2004; published 7 April 2005) 22 N

The ²⁰O studycase

- In ²⁰O, the 2⁺₂ and 3⁺₁ states are based on a mixed configuration of d_{5/2} and s_{1/2};
- The positions of the the orbitals influences the lifetime of the 2^{+}_{2} and 3^{+}_{1} states of 20 O.

- Precise particle-gamma spectroscopy;
- Measure 2⁺₂ and 3⁺₁ states;
- Comparison with theory

Part II: The experiment

The experiment

- Performed in GANIL (France) in 2020
- ¹⁹O(d,p)²⁰O reaction;
- RIB of ¹⁹O @8 MeV/A
 i: 4x10⁵ pps, purity > 99%;
- Target CD₂ 0.3 mg/cm²
 + ^{nat}Au 20 mg/cm²;
- AGATA array + MUGAST + VAMOS.

The experiment: MUGAST

- Array of silicon detectors;
- Detection of light charged particles;
- 7 trapezoids + 1 annular;
- Designed to be coupled to AGATA;
- Segmentation of the silicons;
- Good energy and angular resolution.

The experiment: VAMOS++

- Magnetic spectrometer;
- Identification of the channel of interest.

The experiment: AGATA

- State-of-the-art of gamma-ray array.
- 36 HPGe crystals;
- 36 segments per crystal + 1 core;
- Combination of PSA and tracking;

Event-by-event Doppler Correction

- Detection of the proton;
- Kinematic reconstruction;
- Improved the resolution of 25% with respect to the one using the average β =12.6%

Selectivity of the set-up

- Low beam intensity;
- AGATA triggerless;
- Different gates to reduce the background.

The Doppler-Shift Attenuation Method

Part III: γ-particle spectroscopy

Kinematic lines

Kinematic lines

13/12/24

28

3+

0

2+

2+

3954

38

2+

3+

Excitation Energy (MeV)

Part IV: Optimization of the simulation

Monte Carlo simulation

Complete geometry and performance of the setup reproduced in the AGATA Geant4 code.

Realistic parameters included:

- Measured energy and position resolution of the detectors;
- Disabilitation of missing strips of MUGAST;
- Particle angular distribution;
- Energy Loss;
- Energy tuning...

Angular distribution

C. Hoffman et al., PRC 85, 054318 (2012)

Angular distribution

I. Zanon, Il Nuovo Cimento **44 C**, 83 (2021)

44

Experimental data agree with simulations.

 $2^+_1 \rightarrow 0^+_1$ chosen because of its long τ . The energy loss in the degrader is reproduced.

Part V: Lifetime measurements

Two degrees of freedom:

- The lifetime of the state;
- The energy of the transition.

Two series of simulations:

- Coarse scan;
- Fine scan.

Range of energy for the comparison based on the Doppler shift.

- Gate on the E_X of 2^+_2
- Best energy for 2396.6 keV;
- Best lifetime value 70 fs;
- Least- χ^2 value below 2;
- Statistical errors evaluated using the $\Delta \chi^2$ method.

Systematic errors around 5%

Part VI: Theoretical interpretation

Comparison with theory

Comparison between experimental reduced transition probabilities and theoretical models: abinitio VS-IMSRG and USDB

Comparison with theory

High-Precision Spectroscopy of ²⁰O Benchmarking Ab Initio Calculations in Light Nuclei

I. Zanon^(a),^{1,2,*} E. Clément,³ A. Goasduff,¹ J. Menéndez,⁴ T. Miyagi,^{5,6,7} M. Assié,⁸ M. Ciemała,⁹ F. Flavigny,¹⁰ A. Lemasson,³ A. Matta,¹⁰ D. Ramos,³ M. Rejmund,³ L. Achouri,¹⁰ D. Ackermann,³ D. Barrientos,¹¹ D. Beaumel,⁸ G. Benzoni,¹² A. J. Boston,¹³ H. C. Boston,¹³ S. Bottoni,^{14,12} A. Bracco,^{12,14} D. Brugnara,^{1,15} G. de France,³ N. de Sereville,⁸ F. Delaunay,¹⁰ P. Desesquelles,⁸ F. Didierjean,¹⁶ C. Domingo-Prato,¹⁷ J. Dudouet,¹⁸ J. Eberth,¹⁹ D. Fernández,²⁰ C. Fougères,³ A. Gadea,¹⁷ F. Galtarossa,⁸ V. Girard-Alcindor,³ V. Gonzales,²¹ A. Gottardo,¹ F. Hammache,⁸ L. J. Harkness-Brennan,¹³ H. Hess,¹⁹ D. S. Judson,¹³ A. Jungclaus,²² A. Kaşkaş,²³ Y. H. Kim,²⁴ A. Kuşoğlu,²⁵ M. Labiche,²⁶ S. Leblond,³ C. Lenain,¹⁰ S. M. Lenzi,²⁷ S. Leoni,¹² H. Li,³ J. Ljungvall,⁸ J. Lois-Fuentes,²⁰ A. Lopez-Martens,⁸ A. Maj,²⁸ R. Menegazzo,²⁷ D. Mengoni,^{15,27} C. Michelagnoli,^{3,24} B. Million,¹² D. R. Napoli,¹ J. Nyberg,²⁹ G. Pasqualato,^{15,27} Zs. Podolyak,³⁰ A. Pullia,¹² B. Quintana,³¹ F. Recchia,^{15,27} D. Regueira-Castro,²⁰ P. Reiter,¹⁹ K. Rezynkina,³² J. S. Rojo,³³ M. D. Salsac,³⁴ E. Sanchis,²¹ M. Şenyiğit,²³ M. Siciliano,^{34,35} D. Sohler,³⁶ O. Stezowski,¹⁸ Ch. Theisen,³⁴ A. Utepov,^{3,10} J. J. Valiente-Dobón,¹ D. Verney,⁸ and M. Zielinska³⁴

Underestimation of B(E2)

Role of the B(M1) in the comparison

Nature of the 2⁺₁ state more complex

Part VII: Future perspective

Next steps:

- Normalisation of angular distrib.
- Extract spectroscopic factors
- **High-E** γ**-rays**, from unbound?
- Limit on the lifetime of high-energy states

Courtesy of C. Paxman, post-doc @ GANIL

So far:

- \diamond Tweaks: σ = 98 keV @ 5.3 MeV
- Angular distributions extracted
- Compared to optical models

UNBOUND STATES

Conclusions

- Challenging experiment with state-of-the art particle detection and γ -ray tracking;
- Precise control on the population of the states using of (d,p) reaction to populate ²⁰O;
- Lifetime measurement of the 2⁺₂ and 3⁺₁ states;
- Importance of mp-mh excitation and B(M1);

Thank you for your attention

The collaboration

I.Zanon, E. Clément, C. Paxman, A. Goasduff, J. Menendez, T. Miyagi, M. Ciemała, M. Assié, F. Flavigny, C. Fougeres, S. Leblond, A. Lemasson, A. Matta, D. Ramos, K. Rezynkina, M. Rejmund, M. Siciliano, D. Ackermann, D. Beaumel, S. Bottoni, D. Brugnara, N. de Sereville, F. Delauney,
F. Didierjean, G. De France, P. Delahaye, J. Dudouet, D. Fernández Fernández, J.L. Fuentes, A.F. Gadea Raga, F. Galtarossa,
V. Girard-Alcindor, F. Hammache, A. Kosoglu, C. Lenain, J. Ljungvall, A. Lopez-Martens, G. Pasqualato, D. Ragueira Castro, J.S. Rojo, A. Utepov, Y.H. Kim, M. Zielinska

On behalf of the AGATA, VAMOS and MUGAST collaborations

Publications

Experiment e775s:

- I. Zanon et al., High-Precision Spectroscopy of ²⁰O Benchmarking Ab Initio Calculations in Light Nuclei, Physical Review Letter 131, 262501 (2023)
- D. Mengoni et al., Advances in nuclear structure via charged particle reactions with AGATA Eur. Phys. J A **59(5)**, 117 (2023)
- M. Assié *et al.*, The MUGAST-AGATA-VAMOS campaign, NIM A **1014** 165743 (2021);
- I. Zanon, Testing three-body forces in the oxygen region via lifetime measurements, NC 45 C 66 (2022);
- I. Zanon, Lifetime measurements in ²⁰O via DSAM, NC 44 C 83 (2021);