Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix LXXXI ESNT WORKSHOP «Light nuclei between single-particle and clustering features» Spectrum and EM properties in a macroscopic  $\alpha$ -cluster model for <sup>24</sup>Mg: Evidence of  $\mathcal{D}_{4h}$  symmetry

5<sup>th</sup> December 2024



Gianluca Stellin and Karl-Heinz Speidel

CEA Paris-Saclay, ESNT & DRF/DPhN/IRFU/LENA



## **Macroscopic α-cluster models**

Cover Motivation  $G\alpha$ CM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

Phenomenological approaches, describing **even-even self-conjugate** nuclei in terms of interacting  $\alpha$ -*particles* as the only degrees of freedom. Pioneers: Wheeler (1937), Wefelmeier (1937), Hafstad and Teller (1938).

#### Applications:

α-α scattering: *Nucl. Phys.* **80**, 99-112 (1966), ...

<sup>8</sup>Be: Phys. Rev. 59, 27-36 (1941), Prog. in Part. and Nucl. Phys. 110, 103735 (2020), ...

Phys. Rev. 103, 701 (1956), Zeitschr. f. Phys. 290, 93-105 (1979), Phys. Rev. C 61, 067305 (2000), Ann. of Phys. 298, 344-360 (2002), J. of Phys. G 43, 024003 (2016), J. of Phys. G 43, 085104 (2016), Few-Body Syst. 58, 19 (2017), Prog. in Part. and Nucl. Phys. 110, 103735 (2020), Phys. Rev. C 102, 014314 (2020), ...

<sup>16</sup>O: Phys. Rev. 57, 454 (1940), Nucl. Phys. A 165, 199-210 (1971), Few-Body Syst. 38, 97-101 (2006), Phys. Rev. Lett. 112, 152501 (2014), Nucl. Phys. A 957, 154-176 (2017), Prog. in Part. and Nucl. Phys. 110, 103735 (2020), Phys. Rev. C 102, 014314 (2020), ...

<sup>20</sup>Ne: Phys. Rev. **152**, 1023 (1966), Phys. Rev. C **4**, 1044 (1971), Nucl. Phys. A **1006**, 122077 (2021), ...

<sup>24</sup>Mg: Phys. Rev. **152**, 1023 (1966), Phys. Rev. C **4**, 1044 (1971), ...

<sup>28</sup>Si: Phys. Rev. **145**, 727 (1966), Phys. Rev. C **4**, 1044 (1971), ...

<sup>32</sup>S: Phys. Rev. 145, 727 (1966), Phys. Rev. C 4, 1044 (1971), ...

<sup>36</sup>Ar: *Phys. Rev. C* **4**, 1044 (1971), ...

« Becoming conglomerates of a small number of α-particles, nuclei acquire *molecular shapes*, differing markedly from the ones of quadrupole (prolate or oblate) or octupole (pear-shaped) type, which originate from the deformation a continuous spherical surface. The associated finite discrete-symmetries are referred to as *exotic nuclear symmetries*.
 I. Dedes, J. Dudek et al. *SSNET '24*

Consequence: <sup>16</sup>O (tedrahedron  $\rightsquigarrow \mathcal{T}_d$  symmetry):  $\mathscr{I}_x = \mathscr{I}_y = \mathscr{I}_z$  It has rotational bands!

Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5th December 2024 2/27

#### Geometric α-cluster model

In this macroscopic approach ( $G\alpha CM$ ), the N  $\alpha$ -partcles rotate and vibrate about their equilibrium positions, sitting at the vertices of a *polyhedral structure*. Equilibrium configurations are characterized by a *point symmetry group*  $\mathcal{G}$ , whereas  $\mathcal{G}(N)$  is the *permutation-inversion group* of the N  $\alpha$ -partcles.



Inspiration: R. Bijker and F. Iachello, Nucl. Phys. A 1006, 122077 (2021)

Gianluca Stellin

Motivation

LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5th December 2024

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix 0000

## The rotational-vibrational hamiltonian

The system is described the quantum vibration-rotation Hamiltonian, with N = 6  $\alpha$ -clusters:

$$H = \frac{1}{2} \sum_{\alpha\beta} (J_{\alpha} - p_{\alpha}) \mu_{\alpha\beta} (J_{\beta} - p_{\beta}) + \frac{1}{2} \sum_{j=1}^{3N-6} P_j^2 + \frac{1}{2} \sum_{j=1}^{3N-6} \lambda_j Q_j^2 - \frac{\hbar^2}{8} \sum_{\alpha} \mu_{\alpha\alpha}$$
  
*i.e.* the GaCM Hamiltonian  
where:  $\longrightarrow$  J.K.G. Watson, *Mol. Phys.* 15, 479-490 (1968)  
1,  $Q_2 \dots Q_{3N-6}$  are the *normal* vibrational coordinates, and  $P_j = -i\hbar \frac{\partial}{\partial Q_j}$  the conjugate momenta  
 $j = 1, 2 \dots 3N - 6$   
 $\mu_{\alpha\beta}^{-1} = I_{\alpha\beta} - \sum_{k=1}^{3N-6} \left( \sum_{j=1}^{3N-6} \zeta_{jk}^{\alpha} Q_j \sum_{l=1}^{3N-6} \zeta_{lk}^{\beta} Q_l \right)$ 

inertia tensor

where 
$$\zeta_{jk}^{\gamma} \equiv \sum_{\alpha\beta} \epsilon_{\gamma\alpha\beta} \sum_{i=1}^{N} l_{\alpha i,j} l_{\beta i,k}$$

 $\blacktriangleright Q_1,$ 

are constant coefficients, depending on the transf. matrix elements  $l_{\alpha i,j}$  betw. the displacement coordinates  $\Delta \alpha_i$  of the clusters wrt. the equilibrium positions  $\alpha_i^e$  and the  $Q_j$ 's in the body-fixed frame • vibrational angular momentum operator:  $p_{\alpha} = \sum_{j=1}^{3N-6} \zeta_{jk}^{\alpha} Q_j P_k$   $\longrightarrow$  P. Bunker and P. Jensen, *Fundamentals of Molecular Symmetry, CRC Press* (2004)

• rotational angular momentum operator, function of the *Euler angles* 
$$(\chi, \theta, \varphi)$$
:

$$J_x = -i\hbar \Big\{ \cos\varphi \left[ \cot\theta \frac{\partial}{\partial\varphi} - \frac{1}{\sin\theta} \frac{\partial}{\partial\chi} \right] + \sin\varphi \frac{\partial}{\partial\theta} \Big\} \qquad J_y = -i\hbar \Big\{ \sin\varphi \left[ \cot\theta \frac{\partial}{\partial\varphi} - \frac{1}{\sin\theta} \frac{\partial}{\partial\chi} \right] - \cos\varphi \frac{\partial}{\partial\theta} \Big\} \qquad J_z = i\hbar \frac{\partial}{\partial\varphi}$$

$$Remarks:$$

 $\alpha, \beta, \gamma \dots = x, y, z$  ( $\xi, \eta, \zeta$ ) are the Cartesian components in the body-fixed or *instrinsic* (laboratory) frame Anharmonic contrib. are not included in the potential, but may be relevant. Center-of-mass motion is neglected.

4/27LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5th December 2024 Gianluca Stellin

# Cover Motivation GαCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## **Approximation scheme for the Hamiltonian**

► The construction of the *effective* reciprocal inertia tensor becomes increasingly difficult at growing N. Hence, it's convenient to operate a separation in the inertia tensor between the **static** part,  $I_{\alpha\beta'}^{\text{stat}}$  depending on the clusters equilibrium postions,  $I_{\alpha\beta'}^{\text{dyn}}$  and a **dynamic** part, depending on the  $Q_j$ 's:

$$I_{\alpha\beta} \equiv I_{\alpha\beta}^{\text{stat}} + I_{\alpha\beta}^{\text{dyn}} \qquad \stackrel{\text{the separation is}}{\stackrel{\text{restat}}{\stackrel{\text{inertia tensor}}} I_{\alpha\beta}^{\text{dyn},\zeta} \equiv I_{\alpha\beta}^{\text{dyn},\zeta} = I_{\alpha\beta}^{\text{dyn}} - \sum_{k=1}^{3N-6} \left( \sum_{j=1}^{3N-6} \zeta_{jk}^{\alpha} Q_j \sum_{l=1}^{3N-6} \zeta_{lk}^{\beta} Q_l \right)$$

Equipped with this separation, the *effective* reciprocal inertia tensor can be recast in Taylor series:

$$\boldsymbol{\mu} = (\mathbf{I}^{\mathrm{stat}} + \mathbf{I}^{\mathrm{dyn},\zeta})^{-1} = \left(\mathbb{1} - \mathbf{I}^{\mathrm{stat}^{-1}} \mathbf{I}^{\mathrm{dyn},\zeta} + \mathbf{I}^{\mathrm{stat}^{-1}} \mathbf{I}^{\mathrm{dyn},\zeta} \mathbf{I}^{\mathrm{stat}^{-1}} \mathbf{I}^{\mathrm{dyn},\zeta} + \dots\right) \mathbf{I}^{\mathrm{stat}^{-1}}$$

where  $\mathbf{I}^{\text{dyn},\zeta}$  is treated as a «small» contribution. The *vibrational* angular momentum can be treated on the same footing. What springs from it is a systematic **approximation scheme** for the G $\alpha$ CM Hamiltonian:

$$H_{LO} = \frac{J^2}{2I_{xx}^{\text{stat}}} - \frac{J_z^2}{2} \left( \frac{1}{I_{xx}^{\text{stat}}} - \frac{1}{I_{zz}^{\text{stat}}} \right) + \frac{1}{2} \sum_{j=1}^{3N-6} P_j^2 + \frac{1}{2} \sum_{j=1}^{3N-6} \lambda_j^2 Q_j^2 - \frac{\hbar^2}{8} \sum_{\alpha} \mu_{\alpha\alpha}^{\text{stat}}$$
$$H_{NLO} = H_{LO} - \frac{1}{2} \sum_{\alpha\beta} J_\alpha (I_{\alpha\beta}^{\text{stat}-1} I_{\beta\gamma}^{\text{dyn},\zeta} I_{\gamma\delta}^{\text{stat}-1}) J_\delta - \sum_{\alpha\beta} J_\alpha I_{\alpha\beta}^{\text{stat}-1} p_\beta + \frac{\hbar^2}{8} \left( I_{\alpha\beta}^{\text{stat}-1} I_{\beta\gamma}^{\text{dyn},\zeta} I_{\gamma\alpha}^{\text{stat}-1} \right)$$
$$H_{N^2LO} = H_{NLO} + \frac{1}{2} \sum_{\alpha\beta} p_\alpha (I_{\alpha\beta}^{\text{stat}-1}) p_\beta + \frac{1}{2} \sum_{\alpha\beta} J_\alpha (I_{\alpha\beta}^{\text{stat}-1} I_{\beta\gamma}^{\text{dyn},\zeta} I_{\gamma\delta}^{\text{stat}-1} I_{\delta\epsilon}^{\text{dyn},\zeta} I_{\epsilon\eta}^{\text{stat}-1}) J_\eta + \dots$$

 $H_{LO}$  corresponds to the **rigid rotor limit** for a *symmetric top*, in which rotations and vibrations are decoupled. Power counting is based on the number of  $p_{\alpha}$  and  $I_{\alpha\beta}^{\text{dyn},\zeta}$  insertions characterizing each contribution:

$$-\frac{1}{2}\sum_{\alpha\beta}J_{\alpha}(I_{\alpha\beta}^{\text{stat}-1}I_{\beta\gamma}^{\text{dyn},\zeta}I_{\gamma\delta}^{\text{stat}-1}I_{\delta\epsilon}^{\text{dyn},\zeta}I_{\epsilon\eta}^{\text{stat}-1})p_{\eta} \quad \nleftrightarrow \quad \text{order three} \quad \equiv N^{3}LO$$

Gianluca Stellin

LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 5/27

## **Eigenvalues and pertubation theory**

Fixing the axes of the body-fixed frame on the principal axes of inertia of the equilibrium  $\alpha$ -cluster  $\mathcal{D}_{4h}$  configuration,  $I_{\alpha\beta}^{\text{stat}}$  is diagonal and the eigenvalues of the LO Hamiltonian are analytical:

Cover Motivation  $G\alpha CM$  Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

0000

$$E_{LO}(J,K,[\mathfrak{n}]) = \frac{\hbar^2}{2I_{xx}^{\text{stat}}} [J(J+1) - K^2] + \frac{\hbar^2}{2I_{zz}^{\text{stat}}} K^2 + \sum_{i=1}^{6} \hbar\omega_i (\mathfrak{n}_i + \frac{1}{2}) + \sum_{i=7}^{9} \hbar\omega_i (\mathfrak{n}_i + 1) - \frac{\hbar^2}{8} \sum_{\alpha} I_{\alpha\alpha}^{\text{stat}-1} [J(J+1) - K^2] + \frac{\hbar^2}{2I_{zz}^{\text{stat}}} K^2 + \sum_{i=1}^{6} \hbar\omega_i (\mathfrak{n}_i + \frac{1}{2}) + \sum_{i=7}^{9} \hbar\omega_i (\mathfrak{n}_i + 1) - \frac{\hbar^2}{8} \sum_{\alpha} I_{\alpha\alpha}^{\text{stat}-1} [J(J+1) - K^2] + \frac{\hbar^2}{2I_{zz}^{\text{stat}}} K^2 + \sum_{i=1}^{6} \hbar\omega_i (\mathfrak{n}_i + \frac{1}{2}) + \sum_{i=7}^{9} \hbar\omega_i (\mathfrak{n}_i + 1) - \frac{\hbar^2}{8} \sum_{\alpha} I_{\alpha\alpha}^{\text{stat}-1} [J(J+1) - K^2] + \frac{\hbar^2}{2I_{zz}^{\text{stat}}} K^2 + \sum_{i=1}^{6} \hbar\omega_i (\mathfrak{n}_i + \frac{1}{2}) + \sum_{i=7}^{9} \hbar\omega_i (\mathfrak{n}_i + 1) - \frac{\hbar^2}{8} \sum_{\alpha} I_{\alpha\alpha}^{\text{stat}-1} [J(J+1) - K^2] + \frac{\hbar^2}{2I_{zz}^{\text{stat}}} K^2 + \sum_{i=1}^{6} \hbar\omega_i (\mathfrak{n}_i + \frac{1}{2}) + \sum_{i=7}^{9} \hbar\omega_i (\mathfrak{n}_i + 1) - \frac{\hbar^2}{8} \sum_{\alpha} I_{\alpha\alpha}^{\text{stat}-1} [J(J+1) - K^2] + \frac{\hbar^2}{2I_{zz}^{\text{stat}}} K^2 + \sum_{i=1}^{6} \hbar\omega_i (\mathfrak{n}_i + \frac{1}{2}) + \sum_{i=7}^{9} \hbar\omega_i (\mathfrak{n}_i + \frac{1}{2}) +$$

where  $\mathbf{n}_i \rightsquigarrow$  number of vibrational quanta of the mode *i*, vectorized as  $[\mathbf{n}]$ and  $(\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7, \omega_7, \omega_8, \omega_8, \omega_9, \omega_9) \equiv (\lambda_1, \lambda_2 \dots \lambda_{12}) \rightsquigarrow$  frequencies of the normal modes

- and the modes  $\omega_7, \omega_8, \omega_9$  are **doubly-degnerate**, whereas the others are 1-dimensional. The eigenvalues of  $H_{NLO}$  and higher-order Hamiltonians can be obtained only approximately, via perturbation theory (PT).
  - Since I<sup>dyn,ζ</sup> is non-diagonal, *triaxiality* emerges at a dynamical level in PT, although starting from an axially-symmetric rigid-rotor Hamiltonian at LO. Additionally, certain terms coupling J and p or I<sup>dyn,ζ</sup> can be reproduced by means of Dunham expansion, x LJ. Dunham, *Phys. Rev.* 41, 721-731 (1932)

$$\Delta E_D([\mathfrak{n}], J) = \sum_{k=1}^6 \sum_{ij} y_{ij} \left( \mathfrak{n}_k + \frac{1}{2} \right)^i [J(J+1)]^j + \sum_{k=7}^9 \sum_{ij} y_{ij} (\mathfrak{n}_k + 1)^i [J(J+1)]^j$$

where i, j are positive integers and  $y_{ij}$  are numerical coefficients.

Anharmonicity, absent in this formulation of the GαCM Hamiltonian, can be modeled by adding on top of the rigid-rotor eigenvalues the correction in R. Bijker et al. *Nucl. Phys. A* **1006**, 122077 (2021) :

$$\Delta E_A([\mathfrak{n}]) = -\sum_{i=1}^9 x_{ii}\mathfrak{n}_i + \sum_{i< j=1}^9 x_{ij}\mathfrak{n}_i\mathfrak{n}_j$$

where  $x_{ij}$  are numerical coefficients.

The effect of anharmonicities can be assessed in states associated with multiple ( $n_k \ge 2$ ) vibrational quanta. In <sup>20</sup>Ne,  $x_{ij}$  are small in negative-parity states and sizable (~ 1 MeV) and negative in positive-parity states.

Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5th December 2024 6/27

## **Rotation-vibration eigenstates**

Cover Motivation  $G\alpha CM$  Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

0000

The eigenstates of the  $H_{LO}$  Hamiltonian are factorized into a rotational,  $\psi_R^{\pm}$ , and a vibrational part,  $\psi_V$ :

$$\Psi_{RV}^{\pm} \equiv \langle \mathbf{Q}, \mathbf{\Omega} | L^{\pi} M, \boldsymbol{\nu} \rangle \equiv \psi_{R}^{\pm}(\chi, \theta, \varphi) \psi_{V}(Q_{1}, Q_{2} \dots Q_{3N-6})$$
 Hermite polynomial

where 
$$\psi_V(Q_1, Q_2 \dots Q_{3N-6}) = \prod_{i=1}^{3N-6} \Phi_{\nu_i}(Q_i)$$
 and  $\Phi_{\nu_i}(Q_i) = \sqrt{\frac{\omega_i}{2^{\nu_i}\nu_i!\hbar\sqrt{\pi}}} H_{\nu_i}(\sqrt{\frac{\omega_i}{\hbar}}Q_i) e^{-\frac{\omega_i}{2\hbar}Q_i^2}$ 

are the one-dim. harmonic oscillator eigenfunctions. The excitation quanta «phonons» are encoded by

with 
$$\nu_i = \mathfrak{n}_i$$
 for  $i = 1, 2, \dots 6$  and  $\nu_7 + \nu_8 = \mathfrak{n}_7$   $\nu_9 + \nu_{10} = \mathfrak{n}_8$   $\nu_{11} + \nu_{12} = \mathfrak{n}_9$ 

The latter are denoted also by the *irreducible representation*  $\Gamma$  according to which the normal coordinate  $Q_i$  transforms under the operations of  $\mathcal{D}_{4h}$ , the symmetry group of the equilibrium  $\alpha$ -cluster configuration.

The rotational states carry the parity  $\pi$  = + and are expressed in terms of the Wigner D matrices,  $D_{KM}^J(\chi, \theta, \varphi)$ ,

$$\begin{split} \psi_{R}^{\pm}(\chi,\theta,\varphi) &\equiv \langle \chi,\theta,\varphi|J,M,K,\pm \rangle = \sqrt{\frac{(2J+1)}{16\pi^{2}(\delta_{K0}+1)}} \begin{bmatrix} D_{-KM}^{J*}(\chi,\theta,\varphi) \pm (-1)^{J+K} D_{KM}^{J*}(\chi,\theta,\varphi) \end{bmatrix} \\ \text{where} \qquad \begin{array}{c} J(J+1)\hbar^{2} & & \text{eigenvalue of the total angular momentum operator } J^{2} \\ M\hbar & & \text{eigenvalue of the projection } J_{z} \text{ (body-fixed z-axis)} \\ K\hbar & & \text{eigenvalue of the projection } J_{\varsigma} \text{ (laboratory-fixed z-axis)} \end{array}$$

Since the vibrational states have positive parity, the transformation properties of  $\Psi_{RV}^{\pm}$  depend only on  $\psi_{R}^{\pm}$ . Starting from basis states of irreducible representations of SO(3), it is not possible to generate J<sup> $\pi$ </sup> = 0<sup>-</sup> states.

For the latter, one could resort to irreducible representations of O(3):

M.K.F. Wong, J. Math. Phys. 8, 1899-1911 (1967)
 M.K.F. Wong, J. Math. Phys. 10, 1065-1068 (1969)

## The role of symmetries

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

 $\alpha$ -particles are stable bosonic (S = 0) and zero-isospin (T = 0) clusters of nucleons with mass  $m \approx 3727.4$  MeV.

The LO G $\alpha$ CM Hamiltonian is invariant under parity,  $\mathscr{P}$ , time reversal,  $\mathscr{T}$ , the point group of the  $\alpha$ -cluster configuration at equilibrium,  $\mathcal{D}_{4h}$ , as well as the full permutation-inversion group  $\mathcal{G}(N) \approx \mathcal{S}_6 \times \mathscr{P}$ .

The *structure parameters* specifying the equilibrium  $\alpha$ -configuration are  $\beta_1$  and  $\beta_2$ .

By construction, the structure is axially –symmetric, hence SO(2)-invariant  $\forall \beta_1, \beta_2 !$ 

000



Representation with the adopted  $\beta_1$ and  $\beta_2$  and the underlying nucleons, having the experimental charge radii.

Adopted values:  $(\beta_1, \beta_2) = (2.38, 3.72) \text{ fm}$ 

#### Moments of inertia

pointlike charge dristribution:  $I_{xx}^{\text{stat}} = I_{yy}^{\text{stat}} = 2m(\beta_1^2 + \beta_2^2)$   $I_{zz}^{\text{stat}} = 4m\beta_1^2$ 

Gaussian charge dristribution:

$$I_{xx}^{\text{stat}} = I_{yy}^{\text{stat}} = 2m(\beta_1^2 + \beta_2^2) + \frac{6m}{\alpha_1}$$
$$I_{zz}^{\text{stat}} = 4m\beta_1^2 + \frac{6m}{\alpha_1}$$



Experimental moments of inertia are nearer to the ones corresponding to a pointlike charge distribution.

R. Bijker et al., Nucl. Phys. A 1006, 122077 (2021)

## Transformation properties of the LO eigenstates

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

It is useful to consider the transformation properties under the operations of  $\mathcal{D}_{4h}$  of the rotation-vibration states at LO, acting as reference states for the application of perturbation theory in the G $\alpha$ CM. The properties of the  $\psi_V$ 's depend on the irreducible trepresentations according to which the normal coordinates transform.

| $\mathcal{D}_{4h}$ | $\mathbb{I}$ | $2C_4(z)$ | $C_2$ | $2C_2'$ | $2C_2''$ | i  | $2S_4$ | $\sigma_h$ | $2\sigma_v$ | $2\sigma_d$ | Coordinates       |            |
|--------------------|--------------|-----------|-------|---------|----------|----|--------|------------|-------------|-------------|-------------------|------------|
| $A_{1g}$           | 1            | 1         | 1     | 1       | 1        | 1  | 1      | 1          | 1           | 1           | $Q_1, Q_2$        |            |
| $A_{2g}$           | 1            | 1         | 1     | -1      | -1       | 1  | 1      | 1          | -1          | -1          |                   |            |
| $B_{1g}$           | 1            | -1        | 1     | 1       | -1       | 1  | -1     | 1          | 1           | -1          | $Q_4$             |            |
| $B_{2g}$           | 1            | -1        | 1     | -1      | 1        | 1  | -1     | 1          | -1          | 1           | $Q_5$             |            |
| $E_g$              | <b>2</b>     | 0         | -2    | 0       | 0        | 2  | 0      | -2         | 0           | 0           | $(Q_7, Q_8)$      |            |
| $A_{1u}$           | 1            | 1         | 1     | 1       | 1        | -1 | -1     | -1         | -1          | -1          | <b>_</b>          | doubly-    |
| $A_{2u}$           | 1            | 1         | 1     | -1      | -1       | -1 | -1     | -1         | 1           | 1           | $Q_3$ ,           | degenerate |
| $B_{1u}$           | 1            | $^{-1}$   | 1     | 1       | -1       | -1 | 1      | -1         | -1          | 1           | /                 | modes      |
| $B_{2u}$           | 1            | -1        | 1     | -1      | 1        | -1 | 1      | -1         | 1           | -1          | $Q_6$             | /          |
| F                  | 2            | 0         | 9     | 0       | 0        | 9  | 0      | 2          | 0           | 0           | $(Q_9, Q_{10})$   | /          |
| $L_g$              | 2            | 0         | -2    | 0       | 0        | -2 | 0      | 2          | 0           | 0           | $(Q_{11},Q_{12})$ |            |

#### Character table of $\mathcal{D}_{4h}$ :

 $\bigcirc \bigcirc \bigcirc$ 

Rules:

**1.** The HO eigenfunctions with zero vibration quanta transform as the  $A_g$  irreducible representation (irrep).

2. The HO eigenfunctions with one vibration quanta in the mode  $\omega_i$  transform according to the same *irrep* as the normal coordinate  $Q_i$ .

**3.** The HO eigenfunctions with odd quanta in the non-degenerate mode  $\omega_i$  (i  $\leq 6$ ) transform as the normal coord.  $Q_i$ .

4. The HO eigenfunctions with even quanta in the non-degenerate mode  $\omega_i$  ( $i \le 6$ ) transform the irrep  $A_g$ .

**5.** The HO eigenfunctions with  $n_i$  quanta in the doubly-degenerate mode  $\omega_i$  (i = 7,8,9) transform as the reducible representation whose characters are obtained from the symmetric  $n_i$  th power of the irrep  $\Gamma_2$  of the rel. coordinate pair:

$$\chi^{(\Gamma_{2})^{\mathfrak{n}}}[R] = \frac{1}{2} \Big\{ \chi^{\Gamma_{2}}[R] \chi^{(\Gamma_{2})^{\mathfrak{n}-1}}[R] + \chi^{\Gamma_{2}}[R^{\mathfrak{n}}] \Big\} \qquad \forall R \in \mathcal{D}_{4h} \qquad \Gamma_{2} = E_{g}, E_{u}$$

Gianluca Stellin

### **Transformation properties of the LO eigenstates**

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

000

Summarizing, the transf. properties of the HO doubly-degenerate *vibrational eigenstates* are given by:

| $E_g: \mathfrak{n}_7 = \Big $ | ${\cal D}_{4h}$                                                        | $E_u$ : $\mathfrak{n}_8, \mathfrak{n}_9 =$ | $\mathcal{D}_{4h}$                                    |
|-------------------------------|------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| 0                             | $A_{1g}$                                                               | 0                                          | $A_{1g}$                                              |
| 1                             | $E_{g}$                                                                | 1                                          | $E_{u}^{-}$                                           |
| 2                             | $A_{1g}\oplus B_{1g}\oplus B_{2g}$                                     | 2                                          | $A_{1g}\oplus B_{1g}\oplus B_{2g}$                    |
| 3                             | $2E_g$                                                                 | 3                                          | $2E_u$                                                |
| 4                             | $2A_{1g}\oplus A_{2g}\oplus B_{1g}\oplus B_{2g}$                       | 4                                          | $2A_{1g} \oplus A_{2g} \oplus B_{1g} \oplus B_{2g}$   |
| 5                             | $3E_g$                                                                 | 5                                          | $3E_u$                                                |
| 6                             | $2A_{1g} \oplus A_{2g} \oplus \overset{\circ}{2}B_{1g} \oplus 2B_{2g}$ | 6                                          | $2A_{1g} \oplus A_{2g} \oplus 2B_{1g} \oplus 2B_{2g}$ |

In a similar fashion, the analysis of the transformation properties of the *rotational states* (J  $\leq$  6),  $\psi_R^{\pm}$  yields:

| τπ      |             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tπ           |                                                 | D                                                                             |                 |                                               |                                                                                                                                                                                       |         |                                                                                              |                                                                                                                        | $J^{\pi}$ | K                                           | $D_{4h}$                                                      |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------|-------------------------------------------------------------------------------|-----------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|---------------------------------------------------------------|
| $J^{*}$ | K           | $D_{4h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $J^{\kappa}$ | K                                               | $D_{4h}$                                                                      | $I\pi$          | K                                             | Du                                                                                                                                                                                    | _J^     | K                                                                                            | $D_{4h}$                                                                                                               | 6+        |                                             | <u> </u>                                                      |
| $0^+$   | 0           | $A_{1g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2^{-}$      | 0                                               | $A_{1u}$                                                                      | $\frac{J}{4^+}$ |                                               |                                                                                                                                                                                       | $5^{+}$ | 0                                                                                            | $A_{2g}$                                                                                                               | 0.        |                                             | $E_g$                                                         |
| 0-      | 0           | $A_{1u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | $\frac{1}{2}$                                   | $E_u \\ B_{1u} \oplus B_{2u}$                                                 | 4               | 1                                             | $E_g$                                                                                                                                                                                 |         | $\frac{1}{2}$                                                                                | $E_g \ B_{1g} \oplus B_{2g}$                                                                                           |           | $\begin{vmatrix} 2\\ 3 \end{vmatrix}$       | $B_{1g} \oplus B_{2g}$ $E_{g}$                                |
| $1^+$   | 0           | $A_{2g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $3^{+}$      | 0                                               | $A_{2g}$                                                                      |                 | $\frac{2}{3}$                                 | $B_{1g} \oplus B_{2g}$ $E_{z}$                                                                                                                                                        |         | $\frac{3}{4}$                                                                                | $E_g \\ A_{1a} \oplus A_{2a}$                                                                                          |           | 45                                          | $A_{1g} \oplus A_{2g} \\ E_{g}$                               |
|         | 1           | $E_g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 1                                               | $E_g$<br>$B_1 \oplus B_2$                                                     |                 | 4                                             | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ A_{1g} \oplus A_{2g} \end{array} \end{array}$ |         | 5                                                                                            | $E_g$                                                                                                                  |           | 6                                           | $B_{1g} \oplus B_{2g}$                                        |
| $1^{-}$ | 0           | $A_{2u}  onumber E_{2u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | $\frac{2}{3}$                                   | $\begin{vmatrix} D_{1g} \oplus D_{2g} \\ E_g \end{vmatrix}$                   | 4-              | 0                                             | $A_{1u}$                                                                                                                                                                              | $5^{-}$ | 0                                                                                            | $A_{2u}$                                                                                                               | 6-        | 0                                           | $A_{1u}$<br>$E_{u}$                                           |
| 2+      | 0<br>1<br>2 | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | $3^{-}$      | $\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$ | $ \begin{array}{c} A_{2u} \\ E_u \\ B_{1u} \oplus B_{2u} \\ E_u \end{array} $ |                 | $egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$ | $ \begin{array}{c} E_u \\ B_{1u} \oplus B_{2u} \\ E_u \\ A_{1u} \oplus A_{2u} \end{array} $                                                                                           |         | $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5     \end{array} $ | $ \begin{array}{c}     E_u \\     B_{1u} \oplus B_{2u} \\     E_u \\     A_{1u} \oplus A_{2u} \\     E_u \end{array} $ |           | $\begin{array}{c} 2\\ 3\\ 4\\ 5\end{array}$ | $B_{1u} \oplus B_{2u}$ $E_{u}$ $A_{1u} \oplus A_{2u}$ $E_{u}$ |
|         |             | 5 -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                                 |                                                                               |                 |                                               |                                                                                                                                                                                       |         | 5                                                                                            | - u                                                                                                                    |           | 6                                           | $B_{1u} \oplus B_{2u}$                                        |

**EM multipole transition probabilities** 

Cover Motivation  $G\alpha$ CM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

► In the G $\alpha$ CM, the reduced electric or magnetic multipole transition probability between two rotation-vibration states with defined  $J^{\pi}$  nd K is defined as

$$B(R\lambda, J_i^{\pi_i}, |K_i|, [\mathfrak{n}]_i \to J_f^{\pi_f}, |K_f|, [\mathfrak{n}]_f) = \frac{1}{2J_i + 1} \sum_{M_i = -J_i}^{J_i} \sum_{M_f = -J_f}^{J_f} \sum_{\mu = -\lambda}^{\lambda} |\langle J_f, M_f, |K_f|, [\mathfrak{n}]_f | \Omega_{\lambda\mu}(R) | J_i, M_i, |K_i|, [\mathfrak{n}]_i \rangle|^2$$

where the electric (R = E) and magnetic multipole (M) operators are defined in the laboratory frame respectively. The intrinsic counterparts are linked to the lab. transition probabilities by a Wigner-D matrix:

$$\Omega_{\lambda\mu}(R) = \sum_{\nu=-\lambda}^{\lambda} D_{\nu\mu}^{\lambda}(\chi,\theta,\varphi) \,\,\omega_{\lambda\mu}(R)$$

► In the lab. frame , the  $\Omega_{\lambda\mu}(E)$  transition operators transform as the  $A_g(A_u)$  irrep of  $\mathcal{D}_{4h}$  when  $\lambda$  is even (odd). The opposite rule holds for  $\Omega_{\lambda\mu}(M)$ . Recalling the positions of the  $\alpha$ -clusters in the laboratory frame,  $\mathbf{R}_i \equiv (\xi_i, \eta_i, \zeta_i)$ , the EM multipole transition operators can be written as:

$$\Omega_{\lambda\mu}(E) = \int \mathrm{d}^3 r \ r^{\lambda} Y^{\mu}_{\lambda}(\theta,\phi) \rho(\mathbf{r}) \qquad \Omega_{\lambda\mu}(M) = \int \mathrm{d}^3 r \ \mathbf{j}(\mathbf{r}) \cdot \mathbf{J} r^{\lambda} Y^{\mu}_{\lambda}(\theta,\phi) \rho(\mathbf{r}) \qquad \text{where} \\ \rho(\mathbf{r}) = e \sum_{i=1}^{Z} \delta(\mathbf{r} - \mathbf{R}_i) \quad \text{and} \qquad \mathbf{j}(\mathbf{r}) = \frac{e\hbar}{2mi} \sum_{i=1}^{Z} [\delta(\mathbf{r} - \mathbf{R}_i) \overrightarrow{\nabla}_i - \overleftarrow{\nabla}_i \delta(\mathbf{r} - \mathbf{R}_i)]$$

are the *charge density* and the *current density* operators respectively.

#### Outlook:

The analysis of the transformation properties of  $\omega_{\lambda\mu}(R)$  under  $\mathcal{D}_{4h}$ , together with the knowledge of the transformation properties of the reference  $H_{LO}$  eigenstates, and the *vanishing integral rule*, provides additional selection rules. In fact, the transition pattern itself is a fingerprint of  $\mathcal{G}$ !

↔ G.S. et al., J. of Phys. G 43, 085104 (2016)

#### **Electric and magnetic moments**

The *electric quadrupole moment* is defined as the average value of  $\Omega_{20}(E)$  calculated with respect to the state with maximum projection of *J* along the z axis of the laboratory frame, M = J:

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

 $\bigcirc$ 

$$Q(J^{\pi}, |K|, [\mathfrak{n}]) = \sqrt{\frac{16\pi}{5}} \langle J^{\pi}, |K|, J, [\mathfrak{n}] | \Omega_{20}(E) | J^{\pi}, |K|, J, [\mathfrak{n}] \rangle \equiv \frac{3K^2 - J(J+1)}{(2J+3)(J+1)} Q_0(E) | J^{\pi}, |K|, J, [\mathfrak{n}] \rangle = \sqrt{\frac{16\pi}{5}} \langle J^{\pi}, |L| \rangle = \sqrt{\frac{16\pi}{5}}$$

for the  $2_1^+$  (1.369 MeV), the experimental *intrinsic* quadrupole moment,  $Q_0$ , is – 29.0(30) e fm<sup>2</sup> At LO in the GaCM with ( $\beta_1$ ,  $\beta_2$ ) = (2.38, 3.72) fm and fitted values of the frequencies  $\omega_{i\nu}$  one obtains:

$$Q_0 = -17.76 \text{ e fm}^2$$

From the intrinsic E2 moment, one obtains a classical constraint over the moments of inertia of the  $6\alpha$  system at equilibrium:  $Q_0^{cl} = \frac{144 \ m}{5} \left( \frac{1}{\mathscr{I}_z} - \frac{1}{\mathscr{I}_x} \right)$ 

▶ Analogously, magnetic dipole moments are calculated on states with *M* = *J*:

$$\mu(J^{\pi},|K|,[\mathfrak{n}]) = \sqrt{\frac{2\pi}{3}} \langle J^{\pi},|K|,J,[\mathfrak{n}]|\Omega_{10}(M)|J^{\pi},|K|,J,[\mathfrak{n}]\rangle$$

Calculations of the M1 moment are envisaged. Since the model does not account for the single-nucleon degrees of freedom, the most relevant contributions must come from the terms  $\propto J_z$ 

$$\mu(J^{\pi}, |K|, [\mathfrak{n}]) \approx \frac{e\hbar^2}{2m} J \qquad \begin{array}{c} \text{corresponding to a} \\ \text{gyromagnetic factor of} \\ \text{w} \quad \text{G.S. et al., Eur. Phys. J. 58, 208 (2022)} \end{array}$$

• Due to the fact that proton and neutron degrees of freedom are absent in the G $\alpha$ CM, *electric dipole transitions* are zero in the model, at all orders in the approximation scheme, as they would entail a net displacement of the center-of-mass of the system.

#### **Energy spectrum**

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

Many of the observed energy levels lie between 10 and 13 MeV, many of them have uncertain  $J^{\pi}$  (red). Unambiguos lines are denoted in green.

#### Conventions:

**1.** The observed energy levels are classified into rotational bands, with definite  $K^{\pi}$  value.





**2.** At LO, levels in the same band correspond to the same vibration eigenfunction,  $\psi_V$ .

**3.** As a consequence, bands are labeled by the irrep(s) of  $\mathcal{D}_{4h}$  according to which the vibrational part of the eigenstates transform.

 $\checkmark$  depends on the vib. quanta [n] !

Gianluca Stellin

LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 13/27

## **Ground state band** A<sub>1g</sub>

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

▶ The states with zero quanta of vibration are distributed into two  $A_{1g}$  rotational bands:  $K^{\pi} = 0^+$  and  $4^+$ .

Energy [MeV]

The classification of the  $K^{\pi} = 0^+$  band agrees with NN-DC, and most theoretical investigations: J.D. Garrett *Phys. Rev. C.* **18**, 2032 (1978), L.K. Fifield et al. *Nucl. Phys. A* **322**, 1-12 (1979), J. Cseh et al. *Phys. Rev. C.* **48**, 1724 (1993), M. Kimura et al. *Prog. Theor. Phys.* **127**, 287, 2 (2012), J. Cseh et al. ArXiv:2312.08318 ...

The exp.  $Q_0$  indicates that <sup>24</sup>Mg is **prolate** in this band.

| Nucleon-mass-specific | ~~> | $\mathscr{I}_x = 118.7(44) \; \mathrm{fm}^2$ |
|-----------------------|-----|----------------------------------------------|
| moments of inertia:   |     | $\mathscr{I}_z = 41.7(20) \; {\rm fm}^2$     |

• With the adopted ( $\beta_1$ ,  $\beta_2$ ) values, the charge radius gives:

| $A_{1g}$ (g.s.) Band  | Exper.<br>fm | Gасм LO<br>fm |
|-----------------------|--------------|---------------|
| $R_{ch}[0^+ \ (0.0)]$ | 3.144        | 3.057(16)     |

and the reduced intraband E2 trans. probabilities ( $K^{\pi}=0^+$ ) give:

|                                           | Exper                 | $G\alpha$ см LO        |            |
|-------------------------------------------|-----------------------|------------------------|------------|
| INTRABAND $A_{1g}$ (g.s.)                 | W.U.                  | $e^2 \text{ fm}^4$     | $e^2 fm^4$ |
| $B[E2; 0^+ (0.0) \to 2^+ (1.369)]$        | $105.5^{+240}_{-230}$ | $433.24_{-946}^{+987}$ | 382.87     |
| ${\rm B}[E2;2^+~(1.369)\to 4^+~(4.123)]$  | $50.0_{-40}^{+47}$    | $205.5^{+196}_{-167}$  | 196.90     |
| ${\rm B}[E2;4^+~(4.123)\to 6^+~(8.113)]$  | $48.9^{+23}_{-13}$    | $201.1^{+95}_{-53}$    | 174.03     |
| ${\rm B}[E2;6^+~(8.113)\to 8^+~(11.860)]$ | n.a.                  | n.a.                   | 164.93     |



Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 14/27

### First excited band B<sub>2g</sub>

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

• Excitation quantum:  $\hbar\omega_5 = 2.997(29)$  MeV

associated with the normal coordinate:

$$Q_5 = \sqrt{m} \left( -\frac{\Delta x_1}{2\sqrt{2}} + \frac{\Delta x_2}{2\sqrt{2}} + \frac{\Delta x_3}{2\sqrt{3}} - \frac{\Delta x_4}{2\sqrt{3}} + \frac{\Delta y_1}{2\sqrt{2}} + \frac{\Delta y_2}{2\sqrt{2}} - \frac{\Delta y_3}{2\sqrt{2}} - \frac{\Delta y_4}{2\sqrt{2}} \right)$$

The  $K^{\pi} = 2^+$  bandhead is a 2<sup>+</sup> at 4.123 MeV. The composition of the band reflects the literature assignments, corroborated by the NNDC. It is the most consolidated singly-excited band.



The 6<sup>+</sup> band is new and rather uncertain.

Nucleon mass-specific moments of inertia:

 $\mathscr{I}_x = 140.3(15) \text{ fm}^2$  $\mathscr{I}_z = 87.7(24) \text{ fm}^2$ 

**Description:** Symmetric *scissoring mode* of pairs of adjacent  $\alpha$ -clusters in the xy plane. The basis of the bipyramid becomes rectangular. The apical  $\alpha$ -clusters do not move.



●ŎOOOOOÓOOO

### First excited band B<sub>2g</sub>

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

▶ For the states belonging to this band, 2 intraband and 3 interband EM transitions have been measured.

| Intraband $B_{2g}$                           | Experi<br>W.U.        | $\substack{\text{IMENTAL}\\ e^2 \text{ fm}^4}$ | $G\alpha CM LO$<br>$e^2 fm^4$ |
|----------------------------------------------|-----------------------|------------------------------------------------|-------------------------------|
| ${\rm B}[E2;2^+~(4.123)\to3^+~(5.235)]$      | n.a.                  | n.a.                                           | 196.85                        |
| ${\rm B}[E2;2^+~(4.238)\to 4^+~(6.010)]$     | $26.82^{+216}_{-216}$ | $110.30\substack{+888\\-888}$                  | 84.36                         |
| ${\rm B}[E2;4^+~(6.010)\to 6^+~(9.528)]$     | $36.1^{+317}_{-130}$  | $148.5^{+1307}_{-535}$                         | 133.62                        |
| $B[E2;5^+ (7.812) \rightarrow 7^+ (12.340)]$ | n.a.                  | n.a.                                           | 141.59                        |
| ${\rm B}[E2;6^+~(9.527)\to 8^+~(14.150)]$    | n.a.                  | n.a.                                           | 146.02                        |
| ${\rm B}[E2;8^+~(14.150)\to 10^+~(19.110)]$  | n.a.                  | n.a.                                           | 150.17                        |

The slight deviations can be partly filled by  $G\alpha CM$  at NLO in perturbation theory.

The predicted values not accompanied by the experimental counterpart could serve as possible ' $\alpha$ -cluster' benchmarks for the next measurements.

| Interband                                | Experi                            | $G\alpha$ см LO                   |                            |
|------------------------------------------|-----------------------------------|-----------------------------------|----------------------------|
| $A_{1g} \ (g.s.) \leftrightarrow B_{2g}$ | W.U.                              | $\mu_{\rm N}^2~{\rm fm}^0$        | $\mu_{\rm N}^2~{\rm fm}^0$ |
| $B[M1; 2^+ \ (1.369) \to 2^+ \ (4.238)]$ | $8.0^{+150}_{-40}\cdot 10^{-5}$   | $14.3^{+267}_{-74} \cdot 10^{-6}$ | 0.0                        |
| ${\rm B}[M1;2^+~(1.369)\to3^+~(5.235)]$  | $4.26^{+301}_{-195}\cdot 10^{-5}$ | $4.26^{+301}_{-195}\cdot 10^{-5}$ | 0.0                        |

| Nucleon-mass-specific |
|-----------------------|
| moments of inertia:   |

0000000000

$$\mathscr{I}_x = 140.3(15) \text{ fm}^2$$
  
 $\mathscr{I}_z = 87.7(24) \text{ fm}^2$ 

The calculated values of the reduced transition probabilities at LO in the GαCM agree with the experimental values within one standard deviation.

| Interband $B_{2g} \leftrightarrow$            | Exper                         | $G\alpha$ см LO                   |                            |
|-----------------------------------------------|-------------------------------|-----------------------------------|----------------------------|
| $A_{1g} \oplus E_g (2\omega_5, \omega_7) (?)$ | W.U.                          | $\mu_{\rm N}^2~{\rm fm}^0$        | $\mu_{\rm N}^2~{\rm fm}^0$ |
| $B[M1; 2^+ (4.238) \to 2^+ (10.731)]$         | $2.3^{+16}_{-7}\cdot 10^{-3}$ | $4.12^{+290}_{-126}\cdot 10^{-3}$ | $2.46\cdot 10^{-3}$        |
| ${\rm B}[M1;4^+~(6.010)\to 4^+~(n.a.)]$       | n.a.                          | n.a.                              | $3.32\cdot 10^{-3}$        |
| ${\rm B}[M1;6^+~(9.528)\to 6^+~(n.a.)]$       | n.a.                          | n.a.                              | $3.51\cdot 10^{-3}$        |

#### Work in progress:

The values in red correspond to incomplete calculations: more contributions are going to be summed up, after the correction of the M1 operator.

### **First excited band E**<sub>g</sub>

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

0000000000



Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 17/27

## **First excited band E**<sub>g</sub>

Cover Motivation  $G\alpha$ CM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

► The composition of the  $K^{\pi}$ = 1<sup>+</sup> band reflects entirely the assignments of Cseh (1993), Kimura (2012) and Cseh (2023). The  $K^{\pi}$ = 3<sup>+</sup> band agrees also with the predictions of the *algebraic* <sup>12</sup>C + <sup>12</sup>C *cluster model* by Lévai (1993). This provides further support of the classification of this band as a  $E_g$  mode, whose dynamics enhances the formation of <sup>12</sup>C + <sup>12</sup>C clusters. The fitted values of the moments of inertia for the two bands can be considered rather reliable.

### Nucleon-mass-specific moments of inertia:

 $\mathscr{I}_x = 126.3(39) \text{ fm}^2$  $\mathscr{I}_z = 40.4(25) \text{ fm}^2$ 

The moment of inertia along the x axis shows a small increase with respect to the one of the g.s. band. The one along the z axis decreses moderately.

#### Ş

Larger axial deformation!

| Interband                                     | Exper              | Gасм LO               |                      |
|-----------------------------------------------|--------------------|-----------------------|----------------------|
| $A_{1g}\ (\omega_2) \leftrightarrow E_g$      | W.U.               | $e^2 fm^4$            | $e^2 \text{ fm}^4$   |
| $B[E2;0^+ (6.432) \to 2^+ (9.004)]$           | $65.0^{+30}_{-25}$ | $267.3^{+123}_{-103}$ | $6.35\cdot10^{-2}$   |
| $B[E2; 2^+ (8.654) \rightarrow 4^+ (10.576)]$ | n.a.               | n.a.                  | $3.59 \cdot 10^{-2}$ |
| ${\rm B}[E2;4^+~(10.660)\to 4^+~(10.576)]$    | n.a.               | n.a.                  | $1.63\cdot 10^{-2}$  |

0000000000

**X** Sharp disagreement with the  $G\alpha$ CM predictions!

Interpretation: enhancement effect due to the vicinity of the 2+ at 8.655 MeV, whose transition strength to the 0+ at 6.432 MeV is comparable.

Mimicry mechanism? (M. Ploszajczak's talk on Tuesday)

| Interband                                  | Experin               | Gасм LO              |                    |
|--------------------------------------------|-----------------------|----------------------|--------------------|
| $A_{1g} \ (g.s.) \leftrightarrow E_g$      | W.U.                  | $e^2 fm^4$           | $e^2 \text{ fm}^4$ |
| $B[E2; 0^+ (0.0) \rightarrow 2^+ (9.004)]$ | $0.860^{+170}_{-130}$ | $3.54_{-53}^{+70}$   | 18.68              |
| ${\rm B}[E2;4^+~(4.123)\to 2^+~(9.004)]$   | $2.32_{-61}^{+70}$    | $9.54^{+288}_{-251}$ | 2.37               |

The E2 transition to the bandhead of the  $E_g$  band from the 0+ ground state is overestimated, whereas the opposite holds for the  $4^+ \rightarrow 2^+$  transition between the  $A_{1g}$  (g.s.) and the  $E_g$  band.

### First excited band B<sub>1g</sub>

Cover Motivation  $G\alpha$ CM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

• Excitation quantum:  $\hbar\omega_4 = 6.141(55)$  MeV

associated with the normal coordinate:  $Q_4 = \sqrt{m} \left( -\frac{\Delta x_1}{2\sqrt{2}} - \frac{\Delta x_2}{2\sqrt{2}} + \frac{\Delta x_3}{2\sqrt{3}} + \frac{\Delta x_4}{2\sqrt{3}} - \frac{\Delta y_1}{2\sqrt{2}} + \frac{\Delta y_2}{2\sqrt{2}} + \frac{\Delta y_3}{2\sqrt{2}} - \frac{\Delta y_4}{2\sqrt{2}} \right)$ 

The composition of the  $K^{\pi}=2^+$  band agrees with the considered literature, such as Cseh (1993), Cseh (2023). The 6<sup>+</sup> level, identified by Fifield (1979), is not recognized by the NNDC.

Mass-spec. moments of inertia:

$$\mathcal{I}_x = 132.9(58) \text{ fm}^2$$

$$\mathscr{I}_z = 92.6(44) \; {\rm fm}^2$$

• The calculated intraband transition probabilities are devoid of experimental counterpart.

| nme-<br>2, in- | Intraband $B_{1g}$                           |
|----------------|----------------------------------------------|
| -clu-          |                                              |
| dia-           | $B[E2; 2^+ (7.349) \rightarrow 3^+ (9.533)]$ |
| re in          | ${\rm B}[E2;2^+~(7.349)\to 4^+~(10.820)]$    |
| api-           | ${\rm B}[E2;3^+~(9.533)\to 4^+~(10.820)]$    |
| in at          | ${\rm B}[E2;4^+~(10.820)\to 6^+~(14.079)]$   |
|                | ${\rm B}[E2;6^+~(14.079)\to 8^+~(18.16)]$    |



00000000000

The  $K^{\pi}=6^+$  band is among the least uncertain upper *K*-bands.



• **Description:** Asymmetric *stretching mode*, involving pairs of  $\alpha$ -clusters sitting at the diagonal of the square in the xy plane. The apical  $\alpha$ -clusters remain at rest.

 $G\alpha CM LO$ 

 $e^2 fm^4$ 

184.83

79.21

126.74

125.46

79.21

#### CoverMotivationGαCM HamiltonianSymmetriesEM TransitionsSpectrum featuresSingle-excitation spectrumConclusionAppendix0000000000000

#### **First excited band E**<sub>u</sub>



associated with the normal coordinates:

$$Q_{9} = \sqrt{m} \left( -\frac{9\sqrt{3}}{2\sqrt{326}} \Delta x_{1} + \frac{9\sqrt{3}}{2\sqrt{326}} \Delta x_{2} - \frac{9\sqrt{3}}{2\sqrt{326}} \Delta x_{3} + \frac{9\sqrt{3}}{2\sqrt{326}} \Delta x_{4} + \frac{11\Delta y_{1}}{2\sqrt{978}} + \frac{11\Delta y_{2}}{2\sqrt{978}} + \frac{11\Delta y_{4}}{2\sqrt{978}} - \frac{4\sqrt{2}}{\sqrt{489}} \Delta y_{5} - \frac{4\sqrt{2}}{\sqrt{489}} \Delta y_{6} \right)$$

$$Q_{10} = \sqrt{m} \left( \frac{11\Delta x_{1}}{2\sqrt{978}} + \frac{11\Delta x_{2}}{2\sqrt{978}} + \frac{11\Delta x_{3}}{2\sqrt{978}} + \frac{11\Delta x_{4}}{2\sqrt{978}} - \frac{4\sqrt{2}}{\sqrt{489}} \Delta x_{5} - \frac{4\sqrt{2}}{\sqrt{489}} \Delta x_{6} - \frac{9\sqrt{3}}{2\sqrt{326}} \Delta y_{1} + \frac{9\sqrt{3}}{2\sqrt{326}} \Delta y_{2} - \frac{9\sqrt{3}}{2\sqrt{326}} \Delta y_{3} + \frac{9\sqrt{3}}{2\sqrt{326}} \Delta y_{4} \right)$$



The composition of the  $K^{\pi} = 1^{-}$  band agrees with Cseh (1993) and Cseh (2023), although lacks of high-J states. Nucleon-mass-specific moments of inertia:  $\mathscr{I}_{x} = 125.3(28) \text{ fm}^{2}$   $\mathscr{I}_{z} = 42.6(21) \text{ fm}^{2}$ 

► Description: Asymmetric *scissoring mode*, deforming the square in the xy plane into a trapezium. The apical  $\alpha$ -clusters move in opposition to the shrinking edge of the square.

20/27

 $(Q_9, Q_{10})$ 

Gianluca Stellin

CoverMotivationG $\alpha$ CM HamiltonianSymmetriesEM TransitionsSpectrum featuresSingle-excitation spectrumConclusionAppendix000000000000

### First excited band A<sub>1g</sub>



| Interband                                          | Experimental                   |                       | $G\alpha$ см LO |  |
|----------------------------------------------------|--------------------------------|-----------------------|-----------------|--|
| $A_{1g} (g.s.) \leftrightarrow A_{1g} (\omega_2)$  | ${\rm fm}^{-2} \ [\rho(E0)^2]$ | $e^2 fm^0$            | $e^2 fm^0$      |  |
| $B[E0; 0^+ (0.0) \to 0^+ (6.432)]$                 | $370(70)\cdot 10^{-3}$         | $33.19^{+615}_{-615}$ | 13.80           |  |
| Mercury 1 destructions and the terms of the second |                                |                       |                 |  |

→ Measured electric **monopole** transition!

 $\frac{\text{EXPERIMENTAL}}{\text{INTRABAND } A_{1g}(\omega_2)} \qquad \frac{\text{EXPERIMENTAL}}{\text{W.U.}} \quad \begin{array}{l} \text{G}\alpha\text{CM LO} \\ \text{W.U.} \quad \text{e}^2 \text{ fm}^4 \\ \text{e}^2 \text{ fm}^4 \end{array}$  $\text{B}[E2; 0^+ (6.432) \rightarrow 2^+ (8.655)] \quad 45.0^{+160}_{-110} \quad 185.1^{+658}_{-452} \quad 369.43 \end{array}$ 

Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 21/27

#### Second excited band E<sub>u</sub>

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

• Excitation quantum:  $\hbar\omega_9 = 6.921(14)$  MeV

associated with the normal coordinates:

$$Q_{11} = \sqrt{m} \left( -\frac{5\Delta y_1}{2\sqrt{33}} - \frac{5\Delta y_2}{2\sqrt{33}} - \frac{5\Delta y_3}{2\sqrt{33}} - \frac{5\Delta y_4}{2\sqrt{33}} + \frac{2\Delta y_5}{\sqrt{33}} + \frac{2\Delta y_6}{\sqrt{33}} \right) \qquad Q_{12} = \sqrt{m} \left( -\frac{5\Delta x_1}{2\sqrt{33}} - \frac{5\Delta x_2}{2\sqrt{33}} - \frac{5\Delta x_3}{2\sqrt{33}} - \frac{5\Delta x_4}{2\sqrt{33}} + \frac{2\Delta x_5}{\sqrt{33}} + \frac{2\Delta x_6}{\sqrt{33}} \right)$$

The composition of the  $K^{\pi=1^-}$  band agrees with Cseh (1993), Cseh (2023), except for the 7<sup>-</sup>, that has been added.







00000000000

Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 22/27

CoverMotivationG $\alpha$ CM HamiltonianSymmetriesEM TransitionsSpectrum featuresSingle-excitation spectrumConclusionAppendix000000000000000000000000

### First excited band A<sub>2u</sub>

► Excitation quantum:  $\hbar \omega_3 = 7.3722(10)$  MeV associated with the normal coordinate:

| $Q_3 = \sqrt{m} \left( -\frac{\Delta z_1}{2\sqrt{3}} - \frac{\Delta z_2}{2\sqrt{3}} \right)$ | $-\frac{\Delta z_3}{2\sqrt{3}} - \frac{\Delta z_4}{2\sqrt{3}} + \frac{\Delta z_5}{\sqrt{3}} + \frac{\Delta z_6}{\sqrt{3}}\right)$                                                                                                                       |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                                                                            | Nucleon-mass-specific<br>moments of inertia:                                                                                                                                                                                                            |
| 3                                                                                            | $\mathscr{I}_x = 226.5(52) \text{ fm}^2$<br>$\mathscr{I}_z = 66.1(14) \text{ fm}^2$                                                                                                                                                                     |
|                                                                                              | <b>Description:</b> Symmetric <i>wagging mode,</i> in which one apical $\alpha$ -cluster approaches the ones in the xy plane. The opposite apical cluster recedes from the xy plane, easing $\alpha$ + <sup>20</sup> Ne decay (threshold at 9.316 MeV). |

| Interband                                  | Exper                | $G\alpha CM LO$              |                        |
|--------------------------------------------|----------------------|------------------------------|------------------------|
| $A_{1g} \ (g.s.) \leftrightarrow A_{2u}$   | W.U.                 | $e^2 \ fm^6$                 | ${\rm e}^2~{\rm fm}^6$ |
| $B[E3; 0^+ (0.0) \rightarrow 3^- (8.358)]$ | $72.8^{+140}_{-119}$ | $2491\substack{+479\\-407}$  | 1396.24                |
| ${\rm B}[E3;2^+~(1.369)\to5^-~(10.028)]$   | $85.8^{+396}_{-242}$ | $2936\substack{+1355\\-828}$ | 664.88                 |

The K<sup>π</sup> assignment of the 0<sup>-</sup> band agrees with Garrett (1978), Cseh (1993), Kimura (2012), Kanada En'yo (2021) ...



| INTERATION A                              | Experi                | Gасм LO               |            |
|-------------------------------------------|-----------------------|-----------------------|------------|
| INTRABAND $A_{2u}$                        | W.U.                  | $e^2 fm^4$            | $e^2 fm^4$ |
| $B[E2; 3^{-} (8.358) \to 5^{-} (10.028)]$ | $50.29^{+220}_{-126}$ | $206.8^{+518}_{-518}$ | 178.18     |

Gianluca Stellin

Second excited band  $A_{1g}$ 

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

- **Excitation quantum**:  $\hbar \omega_1 = 9.30539(24)$  MeV associated with the normal coordinate:
- The composition of this band is less certain the one of all the other singly-excited rotational bands. This is also due to the large amount of 2<sup>+</sup> and 4<sup>+</sup> levels popolating the 10-13 MeV region.

00000000000



**NB**: The 0<sup>+</sup> bandhead is just below (< 0.1 MeV) the  $\alpha$  + <sup>20</sup>Ne decay threshold!

Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 24/27

### First excited band B<sub>2u</sub>

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

• **Excitation quantum**:  $\hbar \omega_6 = 10.721(71)$  MeV associated with the normal coordinate:

$$Q_6 = \sqrt{m} \left( \frac{\Delta z_1}{2} - \frac{\Delta z_2}{2} + \frac{\Delta z_3}{2} - \frac{\Delta z_4}{2} \right)$$



▶ The composition of the whole singly-excited  $B_{2u}$  band represents an original work. The 2<sup>-</sup> bandhead is rarely cited in the considered references. In Cseh (1993) is taken as a part of a 1<sup>-</sup> band.

### Nucleon-mass-specific moments of inertia:

 $\mathscr{I}_x = 133.5(69) \text{ fm}^2$  $\mathscr{I}_z = 67.5(32) \text{ fm}^2$ 

No experimental intraband transition probabilities are available!

Description: Symmetric *twisting mode*, in which pairs of planar α-clusters sitting along the diagonal of the square move in the axial direction, in the opposite way. The apical clusters remain at rest.



0000000000

#### Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 25/27

## Conclusion

Cover Motivation  $G\alpha$ CM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

- Motivated by the recent application of a macroscopic model with  $\mathcal{D}_{3h}$  symmetry on <sup>20</sup>Ne we have:
- $\checkmark$  defined an approximation scheme which couples rotational with vibrational motion for the systematic improvement of the rigid rotor Hamiltonian for  $\alpha$ -conjugate nuclei;

0000000000 •0

- ✓ tested the  $\mathcal{D}_{4h}$  symmetric square bipyramid as an equilibrium  $\alpha$ -cluster configuration for the G $\alpha$ CM applied to the <sup>24</sup>Mg, identifying all the 9 singly-excited rotational bands, of which the two excited  $A_{1g}$  bands are made partially of new assignments, whereas the  $B_{2u}$  is totally new;
- ✓ The composition of the  $K^{\pi} = 3^{\pm}$ ,  $4^{\pm}$  and  $6^{\pm}$  singly-excited rotational bands except for the  $E_g$  case is quite speculative, due also to the uncertain  $J^{\pi}$  assignment of part of the observed energy levels;
- $\checkmark$  calculated a sample of intraband and interband reduced EM multipole transition probabilities between the identified  $\alpha$ -cluster states of <sup>24</sup>Mg, finding in most cases reasonable agreement with experimental data;
- ✓ highlighted the connection between certain normal modes ( $A_{1g}$ ,  $A_{2u}$ ,  $E_g$ ) and the principal  $\alpha$ -decay channels.

## Outlook:

- ✓ Fitting of the structure parameters ( $\beta_1$ ,  $\beta_2$ ) based on the inelastic form factor  $F^2(q; 0^+_1 \rightarrow 0^+_2)$ , similarly to ref. R. Bijker et al. , *Nucl. Phys. A* **1006**, 122077 (2021);
- ✓ Correction of the M1 transition operator and prediction of the measured M1 and M2 transitions;
- ✓ Perturbative application of the NLO rotation-vibration coupling, at least to a small sample of excitations;
- ✓ Tentative inspection of doubly-excitated rotational bands, with special attention to neighbour states of  $\alpha$ -decay thresholds at 13.934 MeV (<sup>12</sup>C + <sup>12</sup>C), 14.047 MeV(2 $\alpha$ +<sup>16</sup>O) and 21.21 MeV (3 $\alpha$ +<sup>12</sup>C).

Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 26/27

#### Acknowledgements:

D. Lee (Michigan State Univ.), K.H. Speidel (HISKP Bonn, in memoriam) and V. Somà (CEA Paris-Saclay)

# Thank you for the attention!

Enjoy the rest of the workshop! «Light Nuclei between single-particle and clustering features»

3<sup>rd</sup>-6<sup>th</sup> December 2024



Commissariat à l'Énergie Atomique et aux Énergies Alternatives - www.cea.fr

Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024 27/27

### **Irrelevant energy levels**

Cover Motivation GaCM Hamiltonian Symmetries EM Transitions Spectrum features Single-excitation spectrum Conclusion Appendix

As for other  $\alpha$ -conjugate nuclei, not all the observed energy levels can fit the G $\alpha$ CM framework.

Among the **T** = **0** and unlabeled lines, the following do not fit  $\mathcal{D}_{4h}$  symmetry or do not exhibit  $\alpha$ -clustering:

| $J^{\pi}$            | Energy [MeV]            | $J^{\pi}$                                                         | Energy $[MeV]$          | $J^{\pi}$                 | Energy [MeV]                 |
|----------------------|-------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|------------------------------|
| $n.a. 3^{-} (5^{-})$ | 7.000<br>7.616<br>9.160 | $ \begin{array}{c} (2^+, 4^+) \\ n.a. \\ (5^-, 6^+) \end{array} $ | 9.284<br>9.300<br>9.450 | $(5^{-})$<br>n.a.<br>n.a. | $11.909 \\ 14.793 \\ 15.093$ |

▶ In addition, levels with uncertain isospin assignment (**T** = 0,1) could be neglected:

| $J^{\pi}$ | Energy $[MeV]$ | $J^{\pi}$         | Energy [MeV] | $J^{\pi}$ | Energy [MeV] |
|-----------|----------------|-------------------|--------------|-----------|--------------|
| $1^+$     | 9.828          | $(2^+, 3^-, 4^+)$ | 12.921       | 3-        | 13.346       |

Finally, levels with T = 1 do not represent  $\alpha$ -cluster energy levels, hence must be discarded:

| $J^{\pi}$          | Energy [MeV] | $J^{\pi}$ | Energy [MeV] | $J^{\pi}$    | Energy $[MeV]$ |
|--------------------|--------------|-----------|--------------|--------------|----------------|
| 4+                 | 9.516        | $2^+$     | 12.405       | $(2^+, 3^-)$ | 13.030         |
| n.a.               | 9.965        | 1+        | 12.527       | 4+           | 13.050         |
| $(1^+, 2^+)$       | 10.059       | 4+        | 12.639       | $2^{+}$      | 13.089         |
| 1+                 | 10.712       | $2^{-}$   | 12.670       | $(2^{\pm})$  | 13.367         |
| $(3^{\pm}, 5^{+})$ | 11.012       | 1+        | 12.8181      | $(6^{-})$    | 15.045         |
| 4+                 | 12.051       | 1+        | 12.955       | _            | _              |

Work in progress: Further levels of the experimental <sup>24</sup>Mg spectrum could be set apart when the analysis of the double vibrational excitations will be carried out.

Gianluca Stellin LXXXI ESNT Workshop «Light nuclei between single-particle and clustering features» - 5<sup>th</sup> December 2024