# **Carbon burning in massive stars**

## **David Jenkins**







UNIVERSITY of the WESTERN CAPE



## different burning phases characterize the evolution of a "massive" star

each burning phase is controlled by different nuclear reactions, which govern the:

- energy production
- $\succ$  time scale
- nucleosynthesis

## Burning phases in massive stars



# Carbon burning: a crucial phase in the stellar nucleosynthesis



• key reactions at each stage of stellar burning



- In a star of 8-11 Solar masses, a carbon flash lasts just milliseconds.
- In a star of 25 Solar masses carbon burning lasts about 600 years.

VR.





## THE INSTITUTE OF PHYSICS Sir Fred Hoyle FRS (1915-2001)

was educated here (1926-1933)

Astrophysicist, cosmologist and author Plumian Professor of Astronomy and Experimental Philosophy at the University of Cambridge (1958-1972)

He discovered the origin of carbon (which, with water, is essential for life) and other heavy elements



## Ikeda Diagram





## Cross-sections for some light systems at subcoulomb energies



R. Stokstad et al., Phys.Rev.Lett. 37 (1976)



E [MeV]

Jiang et al. Gasques et al. Caughlan and Fowler ·PA KNS . . . Q = 2.24 MeVQ = 4.62 MeVQ = -2.62 MeV6 8

### Experimental and theoretical efforts

- + J.R. Patterson *et al.*, APJ 157, 367, (1969)
- G.J. Michaud and E.W. Vogt, PRC 5, 350, (1972)
- + M.G. Mazarakis and W.E. Stephens, PRC 7, 1280, (1973)
- R.G. Stokstad *et al.*, PRL 37, 888, (1976)
- + P.R. Christensen *et al.*, Nucl. Phys. A 280, 189, (1977)
- + M.D. High and B. Čujec, NIM A 282, 181, (1977)
- + K.-U. Kettner *et al.*, PRL 38, 377, (1977)
- + K.A. Erb *et al.*, PRC 22, 507, (1980)
- + H.W. Becker et al., Z. Phys. A 303, 305, (1981)
- Y. Suzuki and K.T. Hecht, Nucl. Phys. A 388, 102. (1982)
- B. Čujec *et al.*, PRC 39, 1326, (1989)
- L.R. Gasques et al., PRC 72, 025806, (2005)
- + E.F. Aguilera *et al.*, PRC 73, 064601, (2006)
- L. Barrón-Palos et al, Nucl. Phys. A 779, 318, (2006)
- D. Jenkins et al., PRC 76, 044310, (2007)
- + C.L. Jiang et al., PRC 75, 015803, (2007)
- + T. Spillane et al., PRL 98, 122501, (2007)
- + J. Zickefoose, Ph.D. thesis, U. of Connecticut (2010)
- + C.L. Jiang *et al.*, NIM A 682, 12, (2012)
- + X. Fang *et al.*, Jour. Phys. 420, 012151, (2013)
- + C.L. Jiang et al., PRL 110, 072701, (2013)
- A.A. Aziz *et al.*, PRC 91, 015811, (2015)
- + B. Bucher et al., PRL 114, 251102, (2015)
- + A. Tumino *et al.*, EPJ Conf. 117, 09004, (2016)



# <sup>12</sup>C+<sup>12</sup>C cross-sections, sources of uncertainties nb to pb range

1) Backgrounds: Detection of charged particles, p and  $\alpha$ :  $^{12}C + H \rightarrow p$  and  $^{12}C + D \rightarrow p$  or d Detection of  $\gamma$ -rays:

<sup>12</sup>C+H  $\rightarrow \gamma$  and <sup>12</sup>C + D  $\rightarrow \gamma$ ; cosmic rays and room backgrounds

2) Thick targets measurements: Taking the difference of two measurements at different energies.





## New technique

Particle-y coincidences



╋ 1) Reduction of the backgrounds DSSD3: 17° < θ < 32 ° 2) Using thin target Faraday  $I_{MOX-12C} = 600 pnA$ Cup Monitor Target Wheel



## New technique

![](_page_11_Figure_1.jpeg)

![](_page_12_Figure_1.jpeg)

### Gammasphere runs $E_{Lab} = 5.5 - 10 \text{ MeV}$ , $I_{Max-12C} = 600 \text{ pnA}$

![](_page_13_Figure_1.jpeg)

CL Jiang et al., Phys. Rev. C 98, 2018

## Results

Increase beam intensity

Adapt target system

better gamma efficiency

## New challenges

![](_page_14_Picture_4.jpeg)

# Use of the $\gamma$ -particle coincidence technique with

![](_page_15_Picture_0.jpeg)

- Andromede facility, University of Paris-Sud Orsay
- 4 MV Pelletron
- ECR Source
- <sup>12</sup>C υp to 10 μA

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_16_Picture_0.jpeg)

#### Collaboration : IPHC and GANIL

## Targets

- Cryogenic pumping
- Fixed target system
  - Rotating target (> 1000 rpm)

![](_page_16_Picture_6.jpeg)

![](_page_16_Picture_7.jpeg)

![](_page_16_Picture_8.jpeg)

M. Heine et al., NIMA

![](_page_17_Picture_0.jpeg)

## Targets

![](_page_17_Picture_2.jpeg)

- Cryogenic pumping
- Fixed target system
- Rotating target (> 1000 rpm)
- I > 1 pμA

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

M. Heine et al., NIMA

![](_page_18_Picture_0.jpeg)

## Particle detection

- Annular DSSD, MICRON chip Collab. York
- New PCB design / ceramics
- New pin connectors
- $\Delta\Omega \sim 24 \%$  of  $4\pi$ .

![](_page_19_Picture_0.jpeg)

## Particle detection

![](_page_19_Picture_2.jpeg)

- New PCB design / ceramics
- New pin connectors
- $\Delta\Omega \sim 24 \%$  of  $4\pi$ .

![](_page_20_Figure_0.jpeg)

Light Yield [ph·MeV<sup>-1</sup>]

![](_page_21_Picture_0.jpeg)

Design IPHC : G. Heitz / M. Heine

## Gamma detection

- Up to 36 LaBr<sub>3</sub> detectors
  from the FATIMA collaboration
  (P. Regan et al.)
- Cylindrical geometry IPHC designed mechanical support, Strabourg + York construction
- Self activity
- ε = 8% @ 440 keV
- ε = 5% @ 1634 keV

![](_page_22_Figure_0.jpeg)

Self activity &  $\gamma$  of interest from <sup>12</sup>C+<sup>12</sup>C fusion

![](_page_22_Figure_2.jpeg)

Coincidence with 1 particle :  $\gamma$  from fusion

![](_page_23_Figure_0.jpeg)

Without coincident gamma ray

![](_page_23_Figure_2.jpeg)

With coincident gamma ray

![](_page_24_Figure_0.jpeg)

## *E<sub>rel</sub>* = 2.16 *MeV*

*E<sub>rel</sub>* = 3.77 *MeV* 

![](_page_24_Figure_3.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

# Indirect i.e. nuclear structure insights are necessary to get further ....

## An increase in the ${}^{12}C + {}^{12}C$ fusion rate from resonances at astrophysical energies

A. Tumino<sup>1,2</sup>\*, C. Spitaleri<sup>2,3</sup>, M. La Cognata<sup>2</sup>, S. Cherubini<sup>2,3</sup>, G. L. Guardo<sup>2,4</sup>, M. Gulino<sup>1,2</sup>, S. Hayakawa<sup>2,5</sup>, I. Indelicato<sup>2</sup>, L. Lamia<sup>2,3</sup>, H. Petrascu<sup>4</sup>, R. G. Pizzone<sup>2</sup>, S. M. R. Puglia<sup>2</sup>, G. G. Rapisarda<sup>2</sup>, S. Romano<sup>2,3</sup>, M. L. Sergi<sup>2</sup>, R. Spartá<sup>2</sup> & L. Trache<sup>4</sup>

![](_page_27_Figure_3.jpeg)

Tumino, A. et al., An increase in the <sup>12</sup>C+<sup>12</sup>C fusion rate from resonances at astrophysical energies. Nature 557, 687 (2018).

![](_page_27_Picture_7.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

P. Adsley, D.G. Jenkins et al., Phys. Rev. Lett. 129, 102701 (2022)

![](_page_28_Picture_3.jpeg)

![](_page_29_Figure_0.jpeg)

P. Adsley, D.G. Jenkins et al., Phys. Rev. Lett. 129, 102701 (2022)

![](_page_29_Picture_3.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

## Implications for <sup>12</sup>C + <sup>12</sup>C burning

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

P. Adsley,<sup>1,2,\*</sup> M. Heine,<sup>3,4</sup> D. G. Jenkins,<sup>5,6,7</sup> S. Courtin,<sup>3,4,6</sup> R. Neveling,<sup>2</sup> J. W. Brümmer,<sup>8</sup> L. M. Donaldson,<sup>2</sup> N. Y. Kheswa,<sup>2</sup> K. C. W. Li,<sup>8</sup> D. J. Marín-Lámbarri,<sup>2,7,9</sup> P. Z. Mabika,<sup>7</sup> P. Papka,<sup>2,8</sup> L. Pellegri,<sup>1,2</sup> V. Pesudo,<sup>2,7,10</sup> B. Rebeiro,<sup>7</sup> F. D. Smit,<sup>2</sup> and W. Yahia-Cherif<sup>11</sup> <sup>1</sup>School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa <sup>2</sup>*iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa* <sup>3</sup>IPHC, Université de Strasbourg, Strasbourg F-67037, France <sup>4</sup>CNRS, UMR7178, Strasbourg F-67037, France <sup>5</sup>Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom <sup>6</sup> USIAS/Université de Strasbourg, Strasbourg F-67083, France <sup>7</sup>Department of Physics and Astronomy, University of the Western Cape, P/B X17, Bellville 7535, South Africa <sup>8</sup>Department of Physics, Stellenbosch University, Private Bag X1, 7602 Matieland, Stellenbosch, South Africa <sup>9</sup>Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 Cd. México, México <sup>10</sup>Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid 28040, Spain <sup>11</sup> Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté de Physique, B.P. 32 El-Alia, 16111 Bab Ezzouar, Algiers, Algeria

#### Further details in P. Adsley, M. Heine, D.G. Jenkins et al., Phys. Rev. Lett. 129, 102701 (2022)

## Thanks !

University of Strasbourg and IPHC (France): S.C, G. Fruet, F.Haas, M.Heine et al.

**University of York (UK):** D.Jenkins , L.Morris

**IPN Orsay**: S. Della Negra, F. Hammache, N. de Séreville, P. Adsley, A. Meyer et al.

Argonne National Laboratory (USA): C.L.Jiang, D.Santiago-Gonzalez, K.E.Rehm, B.B.Back et al.

University of Surrey (UK):

P.H. Regan, M. Rudigier

GANIL (Caen, France): C. Stodel et al.

University of Aarhus (Denmark): O. Kirsebom

![](_page_33_Picture_9.jpeg)

![](_page_33_Picture_11.jpeg)

![](_page_33_Picture_12.jpeg)

IOP Series in Nuclear Spectroscopy and Nuclear Structure

### Nuclear Data A primer

**David G Jenkins** John L Wood

![](_page_34_Picture_3.jpeg)

#### IOP Series in Nuclear Spectroscopy and Nuclear Structure Nuclear Data A collective motion view

**David Jenkins** John L Wood

![](_page_34_Picture_6.jpeg)

**IOP** ebooks

IOP Series in Nuclear Spectroscopy and Nuclear Structure

### Nuclear Data An independent-particle motion view

**David Jenkins** John L Wood

![](_page_34_Figure_13.jpeg)

Finis