

LIGHT NUCLEI WITH **NEURAL-NETWORK** QUANTUM STATES

BRYCE FORE

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Light nuclei between singleparticle and clustering features December 2nd 2024

QUANTUM MANY-BODY METHODS

THE QUANTUM MANY-BODY PROBLEM

Many-body Schrödinger equation

$$\left(-\sum_{i}\frac{\nabla_{i}^{2}}{2m_{N}}+V\right)\left|\Psi_{0}\right\rangle=E_{0}\left|\Psi_{0}\right\rangle$$

Fermions have anti-symmetric wavefunction

$$\Psi(x_1, \dots, x_i, \dots, x_j, \dots, x_A) = -\Psi(x_1, \dots, x_j, \dots, x_i, \dots, x_A)$$

THE NUCLEAR MANY BODY METHODS

Configuration-interaction

$$\begin{split} \left| \Psi_{0} \right\rangle &= \sum_{h_{1}, \dots, p_{1}, \dots} c_{h_{1} \dots}^{p_{1} \dots} \left| \Phi_{h_{1} \dots}^{p_{1} \dots} \right\rangle \\ \left| \Phi_{h_{1} \dots}^{p_{1} \dots} \right\rangle &= a_{p_{1}}^{\dagger} \dots a_{h_{1}} \dots \left| \Phi_{0} \right\rangle \end{split}$$

Quantum Monte Carlo

$$|\Psi_V\rangle = \sum_n c_n |\Psi_n\rangle$$

 $H|\Psi_n\rangle = E_n|\Psi_n\rangle$

$$\lim_{\tau \to \infty} e^{-(H - E_0)\tau} \left| \Psi_V \right\rangle = c_o \left| \Psi_0 \right\rangle$$

CURSE OF DIMENSIONALITY

NEURAL QUANTUM STATES

NEURAL QUANTUM STATES

- Most quantum states of interest have
 distinctive features and intrinsic structures
- Artificial neural networks compactly represent complex high-dimensional functions
- Build in symmetries of quantum system to NQS architecture

SCALING AND COMPUTATIONAL PERFORMANCE

Scaling with system size

Conventional QMC: $O(2^A)$ Neural quantum states: $O(A^5)$

A = Number of particles in system

VARIATIONAL MONTE CARLO WITH NQS

1. Create the NQS wavefunction

$$\Psi_V(R,S;\omega) = e^{U(R,S;\omega)} \Phi(R,S;\omega)$$

2. Compute its energy (Metropolis-Hastings algorithm)

$$\frac{\langle \Psi_V | O | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \approx \frac{1}{N_{conf}} \sum_{\{R,S\}} O_L(R,S)$$

3. Minimize the energy to get the ground state

$$E_0 \le E_V = \frac{\left\langle \Psi_V \middle| \widehat{H} \middle| \Psi_V \right\rangle}{\left\langle \Psi_V \middle| \Psi_V \right\rangle}$$

METROPOLIS-HASTINGS SAMPLING

Sampling algorithm:

Randomly sample coordinates, R', and spins, S'

$$P_R = \frac{|\Psi_V(R',S)|^2}{|\Psi_V(R,S)|^2} \qquad P_S = \frac{|\Psi_V(R,S')|^2}{|\Psi_V(R,S)|^2}$$

- If P is greater than uniform random variable from 0 to 1, accept new values
- Observables are estimated by taking averages over sampled configurations

$$\frac{\langle \Psi_{V}|O|\Psi_{V}\rangle}{\langle \Psi_{V}|\Psi_{V}\rangle} = \frac{\sum_{S} \int dR \ |\Psi_{V}(R,S)|^{2} \ O_{L}(R,S)}{\sum_{S} \int dR \ |\Psi_{V}(R,S)|^{2}} \approx \frac{1}{N_{conf}} \sum_{\{R,S\}} O_{L}(R,S)$$
$$O_{L} = \frac{\langle RS|O|\Psi_{V}\rangle}{\langle RS|\Psi_{V}\rangle}$$

NQS OPTIMIZATION

Improve wavefunction by minimizing energy expectation value

$$E_0 \le E_V = \frac{\left\langle \Psi_V \left| \widehat{H} \right| \Psi_V \right\rangle}{\left\langle \Psi_V \right| \Psi_V \right\rangle}$$

Gradient of energy
$$(G_i = \frac{dE_V}{d\omega_i})$$

$$G_i = 2\left(\frac{\langle \partial_i \Psi_V | \hat{H} | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} - E_V \frac{\langle \partial_i \Psi_V | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle}\right)$$

Parameters at step s are updated as

$$\omega^{s+1} = \omega^s - \eta G$$

STOCHASTIC RECONFIGURATION

Improve wavefunction by minimizing energy expectation value

$$E_0 \le E_V = \frac{\left\langle \Psi_V \left| \widehat{H} \right| \Psi_V \right\rangle}{\left\langle \Psi_V \right| \Psi_V \right\rangle}$$

Gradient of energy $(G_i = \frac{dE_V}{d\omega_i})$, supplemented by Quantum Fisher Information S_{ij} $G_i = 2\left(\frac{\langle \partial_i \Psi_V | \hat{H} | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} - E_V \frac{\langle \partial_i \Psi_V | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle}\right); \quad S_{ij} = \frac{\langle \partial_i \Psi_V | \partial_j \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} - \frac{\langle \partial_i \Psi_V | \Psi_V \rangle \langle \Psi_V | \partial_j \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle \langle \Psi_V | \Psi_V \rangle}$

Parameters at step s are updated as

$$\omega^{S+1} = \omega^S - \eta (S + \Lambda)^{-1} G$$

NQS WAVEFUNCTION ANSATZ OVERVIEW

• Neural Slater-Jastrow $\Psi_V = e^{U(\bullet)} \phi_{\bullet}(\bullet)$

• Hidden Fermion

$$\Psi_V = \det \begin{pmatrix} \phi \bullet (\bullet) & \phi \bullet (\bullet) \\ \phi \bullet (\bullet) & \phi \bullet (\bullet) \end{pmatrix}$$

Neural Pfaffian

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

$$\phi(x_i, x_j) = \eta(x_i, x_j) - \eta(x_j, x_i)$$

13

FERMIONIC WAVEFUNCTIONS

$$\Psi_V(X) = e^{U(X)} \Phi(X)$$

$$\Psi(\dots, x_i, \dots, x_j, \dots) = -\Psi(\dots, x_j, \dots, x_i, \dots)$$
$$U(\dots, x_i, \dots, x_j, \dots) = U(\dots, x_j, \dots, x_i, \dots)$$
$$\Phi(\dots, x_i, \dots, x_j, \dots) = -\Phi(\dots, x_j, \dots, x_i, \dots)$$

- Build in fermion antisymmetry for network compactness
- Permutation-invariant Jastrow function improves ansatz flexibility
- Build U and Φ functions from fully connected, deep neural networks

DEEP SET ARCHITECTURE

Generic permutation invariant function

$$U(X) = \rho\left(\sum_{i} \vec{\phi}(x_{i})\right) \qquad \qquad \vec{\phi} \colon \mathbb{R}^{5} \to \mathbb{R}^{N}$$
$$\rho \colon \mathbb{R}^{N} \to \mathbb{R}$$

Wagstaff et al., arXiv:1901.09006 (2019)

Zaheer et al., arXiv:1703.06114 (2017)

NEURAL SLATER-JASTROW ANSATZ

- Slater determinants historically used to represent simple many-body states
- Slater determinant to enforce antisymmetry
- Single particle wavefunctions represented by neural networks

$$\Psi_V(X) = e^{U(X)} \Phi(X)$$

$$\Phi(X) = \begin{vmatrix} \phi_1(x_1) & \phi_1(x_2) & \dots & \phi_1(x_n) \\ \phi_2(x_1) & & & \vdots \\ \vdots & & & \\ \phi_n(x_1) & \dots & \phi_n(x_n) \end{vmatrix}$$

HIDDEN FERMIONS

Visible wavefunctions on visible coordinates

Hidden wavefunctions on visible coordinates

Visible wavefunctions on hidden coordinates

Hidden wavefunctions on hidden coordinates

J. R. Moreno, PNAS 119 (32) e2122059119

NEURAL PFAFFIAN ANSATZ

- Slater determinant \rightarrow Pfaffian
- Build in antisymmetry through a single pairing orbital rather than determinant of single-particle states

$$det(M) = pf(M)^{2} \qquad \phi(x_{i}, x_{j}) = \eta(x_{i}, x_{j}) - \eta(x_{j}, x_{i})$$

$$\Phi(X) = pf \begin{bmatrix} 0 & \phi(x_{1}, x_{2}) & \cdots & \phi(x_{1}, x_{N}) \\ \phi(x_{2}, x_{1}) & 0 & \cdots & \phi(x_{2}, x_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(x_{N}, x_{1}) & \phi(x_{N}, x_{2}) & \cdots & 0 \end{bmatrix}$$

J. Kim, Commun Phys 7, 148 (2024)

MESSAGE PASSING NEURAL NETWORK

Backflow transformation representable by updates to fully connected graph

$$\boldsymbol{x}_i \to f(\boldsymbol{x}_i; \{\boldsymbol{x}_j\}_{j \neq i})$$

- Update edge values based on vertices
- Update vertex values based on connected edges
- Retains ordering information for antisymmetry operation

NQS RESULTS

PIONLESS EFT HAMILTONIAN

- Pionless-EFT Hamiltonian
- NN potential fit to
 - np scattering lengths
 - effective radii
 - deuteron binding energy

$$H_{LO} = -\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

$$v_{ij}^{CI} = \sum_{p=1}^{4} v^{p}(r_{ij})O_{ij}^{p}$$

$$O_{ij}^{p=1,4} = (1, \tau_{ij}, \sigma_{ij}, \sigma_{ij}\tau_{ij})$$

$$V_{ijk} = \tilde{c}_{E} \sum e^{-(r_{ij}^{2} + r_{jk}^{2})/R_{3}^{2}}$$

cyc

 Three body potential adjusted to reproduce ³H binding

R. Schiavilla, PRC 103, 054003(2021)

NEURAL QUANTUM STATE RESULTS IN NUCLEI

RESULTS IN 160 -118NQS AFDMC -120VMC Energy (MeV) -122 Exp -124 -126 - Contract -128500 1000 1500 O **Optimization Steps**

Ground state is degenerate in L_z

Break degeneracy using magnetic field B_z

Ground state is degenerate in L_z

Break degeneracy using magnetic field B_z

A. Gnech, B. Fore, Phys. Rev. Lett. 133, 142501

Ground state is degenerate in L_z

Break degeneracy using magnetic field B_z

A. Gnech, B. Fore, Phys. Rev. Lett. 133, 142501

SLIGHTLY LESS MINIMAL POTENTIAL

$$H_{LO} = -\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

- Charge symmetry breaking terms: V_{CC} , V_{MM} , V_{τ_z} , V_{T12}
- Charge-dependent (CD) and charge-asymmetric (CA) terms: V^{CD}, V^{CA}
- Three body force fit to ¹⁶O instead of ³H
- Projectors for three body force to exclude
 - nnn
 - ppp

 - $\psi\psi\psi$

CONCLUSIONS AND NEXT STEPS

- Conclusions:
 - Favorable scaling with number of fermions
 - Scaling to leadership-class computers
 - Universal and accurate approximations for fermion wavefunctions
 - NQS can access a variety of nuclear observables
- Next steps:
 - Improved nuclear potential including tensor term
 - Expanding to larger nuclei

COLLABORATORS

A. Lovato, A. Tropiano

OHIO UNIVERSITY

J. Kim

M. Hjorth-Jensen

THANK YOU

