

Searching for dineutron correlations in borromean halo nuclei

Anna Corsi, CEA/IRFU/DPhN

Main collaborators: Y.Kubota (RNC), J.Casal and M.Gomez (U.Sevilla)

Borromean nuclei and dineutron correlation

Borromean nuclei= 3B system without 2B unbound subsystem ¹¹Li (⁹Li+2n), ¹⁴Be(¹²Be+2n), ¹⁷B(¹⁵B+2n),...

Dineutron correlation is key to explain their binding

13C	14C	15C	16C	17C	18C	19C	20C	21C	22C	
4.94E+3	8.17E+3	1.21E+3	4.25E+3	7.33E+2	4.18E+3	5.76E+2	2.98E+3	-6.80E+1	1.03E+2	S _n
12B	13B	14B	15B	16B	17B	18B	19B	20B	21B	
3.36E+3	4.87E+3	9.69E+2	2.77E+3	-8.30E+1	1.46E+3	-5.00	9.37E+1	-1.56E+3	-9.10E+2	
11Be	12Be	13Be	14Be	15Be	16Be					
5.01E+2	3.17E+3	-5.10E+2	1.77E+3	-1.80E+3	4.50E+2					
10Li	11Li	12Li	13Li							
·2.64E+1	3.95E+2	-2.10E+2	1.00E+2							

neutron correlation is key to explain their binding

number of neutrons

number of protons

Theoretical predictions of dineutron correlation

Due to pairing interaction between valence nucleons

Responsible for the BEC behaviour in nuclear matter and dineutron correlation in nuclei Matsuo, Phys. Rev. C73, 044309 (2006), Hagino et al., PRL 99, 022506 (2007)

Experimental signature of dineutron correlation

Tanihata et al., PRL 55 (1985)

⁹Li core excitation by the neutrons of the halo deduced from charge radii R_c(fm) Sanchez et al, PRL 96 (2006)

No direct information on correlations

Experimental signature of dineutron correlation

n

Coulomb breakup cross section $dB(E1)/dE_{rel}$ $B(E1) \sim \cos(\theta_{12})$ $\Rightarrow \langle \theta_{12} \rangle = 48^{+14} \cdot 18 \text{ degrees}$ Nakamura *et al.*, PRL 96 (2006)

Present work (RIKEN) dB(E1)/dE_{rel} Ieki et al(MSU). Shimoura et al.(RIKEN) Zinser et al.(GSI) Calculation with nn correlation 0.5 0.0 0.0 0.5 1.0 1.5 2.0 3.0 2.5 E_{rel} (MeV)

- Two-neutron transfer reactions Tanihata *et al.*, PRL 100 (2008)
- Knockout reactions

 θ_{nf}

 $\Rightarrow < \theta_{nf} > = 103.4(2.1)^{\circ}$ degrees H.Simon *et al*, Phys. Rev. Lett. 83, 496 (1999); NPA 791 (2007)

- Different degree of dineutron in coulomb breakup and knockout
- No dependence on peripherality

Dineutron correlation via Quasi-Free Scattering

- QFS on Hydrogen target factorization of cross section via DWIA
- High momentum transfer → minimize Final State Interaction (FSI)
- Kinematically complete measurement
- Need high luminosity (10⁵ pps ¹¹Li beam, 15-cm MINOS target)

The MINOS device

- Liquid Hydrogen Target (5-15 cm) + vertex tracker (time-projection chamber)
- Increase luminosity and preserve resolution in spectroscopy measurements

A.Obertelli, ERC Starting Grant 2010-2015 Developed at IRFU (2011-2013) A.Obertelli et al., Eur. Phys. J. A (2014) 50

Dineutron correlation via Quasi-Free Scattering at RIBF

Dineutron correlation via Quasi-Free Scattering

Focus on the decay of 10Li and 13Be

Structure of 10Li

✓ *s-wave* virtual state and *p-wave* confirmed

 \checkmark 2-3 times better resolution; statistics x 100

Structure of 10Li

Structure of 10Li

- ✓ s-wave virtual state and p-wave confirmed
- ✓ 2-3 times better resolution; statistics x 100
- new resonance:
 E_r = 5.52±0.04 MeV
 Γ = 0.72±0.10 MeV
- Multipole Decomposition Analysis of missing momentum spectrum suggests d-wave

- Inconsistent interpretations of ¹³Be spectrum in the literature
- Our experiment: gamma-n-¹²Be coincidences with high statistics

- Inconsistent interpretations of ¹³Be spectrum in the literature
- Gamma-n-¹²Be coincidences with high statistics => level scheme
- Core excited contribution in the cross section is marginal

Analysis with:

- 3B model + Transfer to the Continuum J.Casal, M.Gomez-Ramos, A.Moro
- core excitation of ¹²Be taken into account via rotational model (only 2⁺ state)
- different parametrizations for V_{n-core}
- need to include *p-wave* to reproduce E_{n-12Be}

Analysis with:

- 3B model + Transfer to the Continuum J.Casal, M.Gomez-Ramos, A.Moro
- core excitation of ¹²Be taken into account via rotational model (only 2⁺ state)
- different parametrizations for V_{n-core}
- need to include *p*-wave to reproduce E_{n-12Be} and P_x distributions

Analysis with:

- 3B model + Transfer to the Continuum J.Casal, M.Gomez-Ramos, A.Moro
- core excitation of ¹²Be taken into account via rotational model (only 2⁺ state)
- different parametrizations for V_{n-core}
- need to include *p*-wave to reproduce E_{n-12Be} and P_x distributions

p-wave needed for dineutron
 correlation

18

Analysis with:

- 3B model + Transfer to the Continuum J.Casal, M.Gomez-Ramos, A.Moro
- core excitation of ¹²Be taken into account via rotational model (only 2⁺ state)
- different parametrizations for V_{n-core}
- can reproduce k_y distribution with the same s, p, d wave admixture

Focus on the (p,pn) reaction and dineutron

Dineutron correlation in 11Li

- Measure K' (⁹Li-n₂ momentum) and k (n₁ missing momentum)
- Deduce the correlation angle in the momentum space
- Look at correlation angle θ_{nf} as a function of missing momentum k (peripherality)

Dineutron correlation in 11Li

Dineutron correlation develops at the periphery (missing momentum ~ 0.3 fm⁻¹)

Dineutron correlation in 11Li

- Dineutron correlation develops at the periphery (missing momentum ~ 0.3 fm⁻¹)
- Stronger dineutron correlation in GSI data (11Li+C). Carbon is a surface probe.

Y. Kubota, A.Corsi et al., Phys. Rev. Lett. 125 (2020) 252501

- Dineutron correlation develops at the periphery (missing momentum ~ 0.3 fm⁻¹)
- Similar correlation angle pattern in ¹⁴Be and ¹⁷B. Universality?

l irfu

3B model + eikonal sudden approximation of (p,pN) reaction

J.Casal, M.Gomez-Ramos

Mixture of s, p, and d waves in agreent with experimental observables from this and previous experiments

- 12Be+n, 15B+n relative energy
- 11Li Coulomb breakup,
- 14Be and 17B matter radii

Absorption dominates for missing momentum > 0.5 fm⁻¹

3B model + eikonal sudden approximation of (p,pN) reaction

J.Casal, M.Gomez-Ramos

Mixture of s, p, and d waves in agrement with experimental observables from this and previous experiments

- 12Be+n, 15B+n relative energy
- 11Li Coulomb breakup,
- 14Be and 17B matter radii

Absorption dominates for missing momentum > 0.5 fm⁻¹

- ➢ ¹¹Li: well reproduced
 - ¹⁴Be: deviation maybe due to absence of ${}^{12}Be(0{}^{+}_{2})$ state in 3B model. Improvement with 16% of $0{}^{+}_{2}$
- ➢ ¹⁷B: dineutron correlation driven by p wave

How to quantify the degree of dineutron correlation?

• experimental data (correlation angle)

irfu

Conclusions and perspectives

• **QFS on Borromean nuclei** ¹¹Li, ¹⁴Be, ¹⁷B

• New information on the spectroscopy of ¹⁰Li, ¹³Be

- ✓ new *d*-wave resonance at 5.5 MeV in ¹⁰Li
- ✓ dominance of *p*-wave at 0.5 MeV in ¹³Be

• Dineutron correlation

- ✓ dineutron as a function of peripherality for the first time
- ✓ hint of universality of dineutron at nuclear periphery
- ✓ better theoretical interpretation / more complex measurement

Theory

o Room for improvements in the description of 3B system

