

Study of Nuclear Fission Dynamics Within Relativistic Density Functional Theory

Zhipan Li Southwest University, Chongqing, China

2024.12

含弘光大 继往闲来 特立西南 學灯天下

Beautiful modern city

Delicious food...

xueyo

Hot spring...

Contents

1. Introduction

2. Theoretical Framework

- **>** RDFT based on Two Center Harmonic Oscillator (TCHO) basis
- > Time Dependent Generator Coordinate Method

3. Results and Discussion

- > Asymmetric fission of ¹⁸⁰Hg
- Fission fragment angular momenta
- > Multi-dimensional collective space
- 4. Summary & Outlook

Application of Nuclear Fission

Reactor design and operation

reactivity calculations, fuel and reactor core management, reactor safety (IND and CUM)

Reprocessing of spent fuel and nuclear waste management

- Fission product inventory, decay heat calculation (IND)

Safeguard

- monitor fission products for the verification (CUM)
- Fundamental physics
 - understanding fission physics, r-process nucleosynthesis, antineutrino anomaly (FY), fission angular momentum …

Fission yield (%)

Overview of the Nuclear fission process

 Nuclear fission: an atomic nucleus splits into two or more fragments.

 The process involves complex correlation, fluctuation, dissipation ...

Neutron-induced fission process

M. Bender et al., J. Phys. G 47, 113002 (2020)

🕼 西南大学

Progress in fission: Experiments & Observations

Progress in fission: Theoretical Models

Statistical model

Viñas, B. M., & Caamaño, M. EPJA, 60(12), 237.(2024).
J. Randrup, T. Døssing, R. Vogt, PRC106, 014609(2022).
J. Randrup, R. Vogt, PRL127, 062502(2021).
H. Paşca, A. V. Andreev, G. G. Adamian, et al., PRC104, 014604(2021).
A. Dey, D. C. Biswas, A. Chakraborty, et al. PRC103, 044322 (2021).
J.F. Lemaître, S. Goriely, S. Hilaire et al., PRC99, 034612 (2019).
Y.W. Hao G.X. Dong, X.B. Wang, et al., SSPMA49, 122001(2019).

> Macro-micro model

Ivanyuk, F. A., and N. Carjan. arxiv:2411.04505 (2024).
X. Guan, T.C. Wang, W.Q. Jiang, et al. PRC107, 034307(2023).
K. Pomorski, B. Nerlo-Pomorska, C. Schmitt, et al. PRC107, 054616(2023).
Y. Aritomo, A. Iwamoto, K. Nishio, and M. Ohta, PRC105, 034604(2022).
Y.G. Huang, Y.J. Feng, E.X. Xiao, et al. PRC106, 054606(2022).
L.L. Liu, X.Z. Wu, Y.J. Chen, et al. PRC105, 034614(2022).
X. Guan, Y. Xin, Y.J. Chen, et al. PRC104, 044329(2021).
M. Albertsson, B. G. Carlsson, T. Døssing, et al., PRC103, 014609(2021).
M. Verriere, M.R. Mumpower, PRC103, 034617(2021).
L.L. Liu, Y.J. Chen, X.Z. Wu, et al. PRC103, 044601(2021).
C. Karthikraj, Z.Z. Ren, et al. PRC101, 014603(2020).
K. Pomorski, A. Dobrowolski, R. Han, et al., PRC101, 054607(2020).
M. R. Mumpower, P. Jaffke, M. Verriere, et al., PRC101, 054607(2020).
Z.M. Wang, W.J. Zhu, C.L. Zhong, et al. NPA989, 81-96(2019).

> Microscopic model (DFT)

Ibrahim, Matthew and Bulgac, et al., PRL132, 242501 (2024). Godbey, K, A. S. Umar, et al. PRC110, L041601 (2024). B. Li, D. Vretenar, T. Nikšić, et al. FP19, 44201 (2024). X. B. Wang, Y.J. Chen, G. X. Dong, et al. PRC108, 034306(2023). N. Schunck, M. Verriere, G. Potel Aguilar, et al. PRC107, 044312(2023). M.H. Zhou, Z.Y. Li, S.Y. Chen, et al., CPC47, 064106 (2023). G. Scamps, PRC106, 054614(2022). Y. Iwata, T. Nishikawa, PRC105, 044603(2022). L. Tong, S.W. Yan, et al. PRC106, 044611(2022). Z.Y. Li, S.Y. Chen, Y.J. Chen, et al., PRC106, 024307(2022). Z. X. Ren, D. Vretenar, T. Nikšić, et al. PRL128, 172501(2022). A. Bulgac, I. Abdurrahman, K. Godbey, et al. PRL128, 022501(2022). J. Zhao, T. Nikšić, D. Vretenar, PRC106, 054609(2022). Y. Qiang, J. C. Pei, P. D. Stevenson, PRC103, L031304(2021). F. Mercier, J. Zhao, J. P. Ebran, et al., PRL127, 012501 (2021). A. Bulgac, I. Abdurrahman, S. Jin, et al., PRL126, 142502(2021). P. Marević, N. Schunck, PRL125, 102504(2020). G. Scamps, C. Simenel, Nature564, 382–385 (2018). Machine learning

Tsioulos, V., and V. Prassa. EPJ Web Conf. 304, 01015 (2024)
Q.F. Song, L. Zhu, B.S. Cai, et al., PRC107, 044609(2023).
Z.A. Wang, J.C. Pei, PRC104, 064608(2021).
L. Tong, R.N. He, S.W. Yan, PRC104,064617(2021).
A.E. Lovell, A.T. Mohan, P Talou, JPG47 114001(2020).
Z.A. Wang, J.C. Pei, Y. Liu, et al., PRL123, 122501(2019).

🕼 西南大学

Microscopic models for fission dynamics

> Time-Dependent Density Functional Theory (TDDFT)

Time evolution of intrinsic spatial wave functions (densities)

J. W. Negele, S. E. Koonin, P. Möller, *et al.*, PRC17, 1098 (1978).
A.Bulgac, P. Magierski, K. J. Roche *et al.*, PRL116, 122504 (2016)
T. Nakatsukasa, K. Matsuyanagi, *et al*, RMP. 88, 045004 (2016)
G. Scamps, C. Simenel, Nature 564,382(2018).
C. Simenel, A. S. Umar, PPNP. 103, 19 (2018)
Y. Qiang, J. C. Pei, P. D. Stevenson, PRC103, L031304(2021)
B. Li, Z. X. Ren, D. Vretenar, T. Nikšić, *et al.* PRC2022
Y. Iwata 1, T. Nishikawa, PRC105,044603(2022)
Z. X. Ren, D. Vretenar, T. Nikšić, *et al.* PRL128, 172501(2022)
Y. Huang, X. X. Sun, L. Guo, EPJA60, 100(2024)

> Time-Dependent Generator Coordinate Method (TDGCM)

Time evolution of the probability wave packet in collective space.

J.F. Berger M. Girod, and D. Gogny, CPC63, 365 (1991)
H. Goutte, J. F. Berger, P. Casoli, et al., PRC71,024316 (2005)
H. Tao, J. Zhao, Z. P. Li, *et al.*, PRC96,024319 (2017)
A.Zdeb, A. Dobrowolski, M. Warda, PRC95,054608 (2017)
J. Zhao, T. Nikšić, D. Vretenar, S.G. Zhou, PRC101, 064605(2020)
Y.J. Chen , Y. Su , L.L. Liu, et al., CPC47 054103(2023)
X. B. Wang, Yongjing Chen, G. X. Dong, PRC108, 034306(2023)
B. Li, D. Vretenar, T. Nikšić, et. al., FP19, 44201(2024)
Bulgac, Aurel.arxiv preprint arxiv:2408.02173 (2024)

Contents

I. Introduction

2. Theoretical Framework

- **>** RDFT based on Two Center Harmonic Oscillator (TCHO) basis
- > Time Dependent Generator Coordinate Method

3. Results and Discussion

- Asymmetric fission of ¹⁸⁰Hg
- > Fission fragment angular momenta
- > Multi-dimensional collective space

I. Summary & Outlook

Relativistic Density Functional Theory (RDFT)

Relativistic energy density functional

$$\begin{split} E_{\rm CDF} &= \int d\mathbf{r} \varepsilon_{\rm CDF}(\mathbf{r}) \\ &= \sum_k \int d\mathbf{r} \upsilon_k^2 \bar{\psi}_k(\mathbf{r}) (-i\gamma \nabla + m) \psi_k(\mathbf{r}) \\ &+ \int d\mathbf{r} \left(\frac{\alpha_S}{2} \rho_S^2 + \frac{\beta_S}{3} \rho_S^3 + \frac{\gamma_S}{4} \rho_S^4 + \frac{\delta_S}{2} \rho_S \Delta \rho_S \right. \\ &+ \frac{\alpha_V}{2} j_\mu j^\mu + \frac{\gamma_V}{4} (j_\mu j^\mu)^2 + \frac{\delta_V}{2} j_\mu \Delta j^\mu + \frac{e}{2} \rho_p A^0 \\ &+ \frac{\alpha_{TV}}{2} \vec{j}_{TV}^\mu \cdot (\vec{j}_{TV})_\mu + \frac{\delta_{TV}}{2} \vec{j}_{TV}^\mu \cdot \Delta (\vec{j}_{TV})_\mu \right) \end{split}$$

 $\rho_S, j^{\mu}, \vec{j}_{TV}^{\mu}$: Density and currents of nucleons $\alpha, \beta, \gamma, \delta$: Coupling constants (PC-PK1, DD-PC1, etc.)

Zhao, ZPLi, Yao & Meng, PRC 2010

> Single particle Dirac equation:

$$\begin{pmatrix} m+V+S & \sigma \cdot p \\ \sigma \cdot p & -(m-V-S) \begin{pmatrix} f \\ g \end{pmatrix} = \varepsilon \begin{pmatrix} f \\ g \end{pmatrix}$$

Scalar potential and vector potential
$$S(\mathbf{r}) = \alpha_S \rho_S + \beta_S \rho_S^2 + \gamma_S \rho_S^3 + \delta_S \Delta \rho_S,$$
$$V^{\mu}(\mathbf{r}) = \alpha_V j^{\mu} + \gamma_V (j_{\nu} j^{\nu}) j^{\mu} + \delta_V \Delta j^{\mu} - eA^{\mu} \frac{1-\tau_3}{2}$$
$$+\tau_3 (\alpha_{TV} j_{TV}^{\mu} + \delta_{TV} \Delta j_{TV}^{\mu}) ,$$

Two Center Harmonic Oscillator basis

> Potential of Two Center Harmonic Oscillator (TCHO) basis

$$V(r_{\perp},z) = V(r_{\perp}) + V(z) = \frac{1}{2}M\omega_{\perp}^{2}r_{\perp}^{2} + \begin{cases} \frac{1}{2}M\omega_{1}^{2}(z+z_{1})^{2}, & z < 0, \\ \frac{1}{2}M\omega_{2}^{2}(z-z_{2})^{2}, & z \ge 0, \end{cases} \xrightarrow{\text{Eigen}} \Phi(z,r_{\perp},\varphi) = \phi_{\nu}(z)\phi_{n_{r}}^{m_{l}}(r_{\perp})\Theta(\varphi)\chi_{m_{s}}(\varphi)$$

⑧亚南大学

Multi-dimensional constraints for PES

$$\langle E_{RDFT}
angle + \sum_{k=2,3} C_k (\langle \hat{Q}_k
angle - q_k)^2 + C_N (\langle \hat{Q}_N
angle - q_N)^2$$

 $\hat{Q}_{2,3}$ — **Q**uadrupole, octupole moment operator

 $\hat{Q}_N = exp[-(z-z_N)^2/a_N^2]$ z_N is the neck, a_N = 1fm

① 亚南大学

Advantages of RDFT-TCHO

> Better accuracy and efficiency

> ρ constraint for post-scission

$$\langle E_{\rm tot} \rangle + C_{\rho} \left(\int \rho(r_{\perp}, z) - \rho_0(r_{\perp}, z) dr \right)^2$$

Li, Chen, Zhou, Chen, ZPLi, PRC109, 064310 (2024) 19

Advantages of RDFT-TCHO

> Mass tensor calculated in cranking approximation:

Girod & Grammaticos, NPA330, 40 (1979)

Provides the microscopic inputs for the dynamical study involving prepost-scission configurations.

ふむ南大学

Fission dynamics

Time Dependent Generator Coordinate Method (TDGCM+GOA)

$$i\hbar\frac{\partial}{\partial t}g(\beta_2,\beta_3,t) = \left[-\frac{\hbar^2}{2}\sum_{kl}\frac{\partial}{\partial\beta_k}B_{kl}(\beta_2,\beta_3)\frac{\partial}{\partial\beta_l} + V(\beta_2,\beta_3)\right]g(\beta_2,\beta_3,t)$$

$\succ \textbf{Probability current} \\ J_k(\beta_2,\beta_3,t) = \frac{\hbar}{2i} \sum_{l=2}^3 B_{kl}(\beta_2,\beta_3) \bigg[g^*(\beta_2,\beta_3,t) \frac{\partial g(\beta_2,\beta_3,t)}{\partial \beta_l} - g(\beta_2,\beta_3,t) \frac{\partial g^*(\beta_2,\beta_3,t)}{\partial \beta_l} \bigg]$

Fission yield distribution

$$Y(A)=\int_{0}^{T}dtec{J}\left(eta_{2},eta_{3},t
ight).ec{n}ds$$

Tao, Zhao, ZPLi, Niksic, Vretenar, PRC96, 024319 (2017)

Evolution of collective probability density diribution

🔞 西南大学

Asymmetric fission of ¹⁸⁰Hg

Andreyev, Nishio & Schmidt, Rep. Prog. Phys. (2018)

Andreyev et al., PRL (2010)

Lower asymmetric fission valley is predicted

> Scission is defined as the saddle in the β_2 - q_N plane

5

4

(a) 3D PES

-1385

-1392

(b) contour map

-1397

-1398

β₃=2.08

Scission, TKE, and Yield distributions

Exp.

TDGCM

BSM(M)

120

Mechanics for asymmetric fission

(a) (b) (b)

- > Heavy fragment ~¹⁰⁰Ru: octupole deformed
- N=56 octupole shell of heavy fragment play crucial role

Li, Chen, Chen & ZPLi, PRC 106, 024307 (2022)

0.5

Fission Fragment Angular Momenta

TD-Multiple Rotations and Vibrations model

Collective Hamiltonian:

Scheme of TD-MRV model

● 亚南大学

Evolution of Fragment Angular Momenta (FAM)

- From saddle to scission: Rapid generation and chaotic evolution of FAM
- > After scission: Vary slightly till to a stable pattern when the fragments are well separated.

🕼 西南大学

Distributions of FAM

- > With the increase of A_F , the $P(S_H)$ increases rapidly: **2ħ~10ħ**.
- The mass dependence of average FAM presents a clear sawtooth-like pattern.

Correlations of FAM

🛞 亚南大学

Zhou, Chen, Li, Smith & ZPLi, arXiv:2311.06177

Dominated by Wriggling mode

- > Opening angle displays strong correlations at ~30°, 90°, and 160°.
- Differ from those of AMP (blue) and statistical model (magenta), which did not consider quantum shape fluctuations.

Measurement of correlations of FAM

We have carried out the experimental measurements for correlations of γ related to FAM from ²⁵²Cf source in IMP, Lanzhou, China.

🕼 亚南大学

Multi-dimensional collective space

Limitation of 2D space

Discontinuity!

🗿 亚南大峰

Dubray, Noël & Regnier, CPC2012; Zdeb, Warda & Robledo, PRC2021;

.

q₂₀

3D PES with nucleon number at neck (q_N)

➢ q_N < 6, PES is very flat: large fluctuations</p>

Coexistence of fission modes

Zhou, Li, Chen, Chen & ZPLi, Chin. Phys. C (2023)

- Few to ~10 MeV fluctuation in TKE
- Few to ~10 nucleons fluctuation in A_{frag}

q_N cannot be defined globally!!

③西南大学

Nuclear Shapes in Fourier Expansion

> Expand r(z, ϕ) instead of R(θ , ϕ)

$$r^2(z) = R_0^2 \sum_{n=1}^\infty igg[a_{2n} \cosigg(rac{(2n-1)\pi}{2} rac{z-z_{sh}}{z_0} igg) + a_{2n+1} \sinigg(rac{2n\pi}{2} rac{z-z_{sh}}{z_0} igg) igg]$$

 z_0 : Half length of atomic nucleus along z axis z_{sh} : The geometric center along the z axis K. Pomorski et al. Acta Phys. Pol. B Supl. 13, 361(2020)

① 亚南大学

PES in Fourier deformations

🔞 亚南大峰

Convergency for expansion orders

n	2	3	4	5	6	7
a_n	0.4865	0.1050	-0.2607	-0.0165	-0.0096	-0.0131
$\boldsymbol{\beta}_n$	2.2329	-1.0275	3.5623	-3.1828	6.2295	-7.2577

🔞 西南大學

Comparison of scission configurations

- Symmetric and asymmetric fission valleys are consistent
- Nearly linear relation between Z_F
 (A_F) and q₃, but not β₃: Jumps and plateaus
- > Not so reasonable in large (β_2 , β_3).

Spherical Harmonic

⑧玉南大学

Fission fragment charge distribution

- > More fluctuations in fragment charge distribution.
- The peak height and position that still need to be improved in further 3D calculation.

40

@ 亚南大学

PESs in q_4 and β_4

> PES in (q_2, q_4) plane is smooth; Scission configurations are easy to obtain

> While for (β_2, β_4) plane, β_4 has strong correlation with β_2 .

Li, Su, Chen & ZPLi, to be submitted 41

Summary and outlook

Relativistic DFT based on TCHO basis

Better accuracy and efficiency; possibility for post-scission

Based on RDFT-TCHO & TDGCM+GOA

- > Asymmetric fission of ¹⁸⁰Hg: *N*=56 octupole shell gap
- > Sawtooth-like distribution of FAM; Strong correlation at $\varphi_{LH} \sim 30^{\circ}$
- > Fourier shapes: fast convergence; better scission configurations ...
- Outlook: TDGCM based on 3D Fourier shapes; Y(A, Z) & P(S_L, S_H) Finite temperature; dissipation ...

Curriculum Vitae

Basic information:

Name: ZeYu Li

Birthday: 1997 - 02

Email: lizy email@163.com

Phone: +86 18989196521

Education:

- September 2022 Present: Doctor of Philosophy in Particle Physics and Nuclear Physics, China Institute of Atomic Energy. Supervisor: Research Fellow Y. J. Chen
- (2) September 2019 July 2022: Master of Science in Theoretical Physics (Nuclear Physics), Southwest University. Supervisor: Professor Z. P. Li

Gender: male

(3) September 2015 - July 2019: Bachelor of Science in Physics, Sichuan Normal University.

Thanks for your attention!

Y. J. Chen, Y. Su, Z.Y. Li D. Vretenar & T. Nikşic M. S. Smith J. Zhao S. Y. Chen, M. H. Zhou, S. Y. Zhuo CIAE University of Zagreb ORNL Pengcheng Lab. Southwest University

含弘光大 维征闲来 特立西南 學灯天下