WOUTER RYSSENS

(id)

Andy Sproles, ORNL

The fission properties of BSkG2the BSkG models

W. Ryssens G. Grams, M. Bender, G. Scamps and S. Goriely

17th of December 2024

wryssens@ulb.be

In memory of Kris Heyde (1942 - 2024)

K Heyde From Nucleons to the Atomic Nucleus Perspectives in Nuclear Physics

Springer

and Enlarged Edition

The nuclear chart and the processes traversing it

- ~7000 nuclei
- **many** reactions

The nuclear chart and the processes traversing it

- Predictions needed for
 - ~7000 nuclei
 - many reactions

among which <u>rates + fragments</u> for:

- spontaneous fission
- induced fission
- beta-delayed fission

The nuclear chart and the processes traversing it

- Predictions needed for
 - ~7000 nuclei
 - many reactions

among which <u>rates + fragments</u> for:

- spontaneous fission
- induced fission
- beta-delayed fission

We need structure models that are

- 1. predictive....
- 2. but complete!

Table 3 Rms deviations (σ) and mean ($\tilde{\epsilon}$) errors ($\delta E_X = E_X^{emp} - E_X^{calc}$) for the height of the primary (E_I) and secondary (E_{II}) barriers, the excitation energy of the isomer (E_{iso}) and the barrier difference ($E_I - E_{II}$) for various models

Model	Fit	Tria	axial	$N_{\rm b}$	Niso	$E_{\rm I}$		E_{II}		Eiso		$(E_{\rm I} -$	$E_{\rm II}$)	References
		Ι	0	~		σ	$\bar{\epsilon}$	σ	ē	σ	$\bar{\epsilon}$	σ	$\bar{\epsilon}$	
BSkG1	N	Y	Y	45	28	0.88	+0.80	0.87	+0.71	1.00	+0.67	0.56	+0.09	
BSkG2	Y	Y	Y	45	28	0.44	+0.24	0.47	+0.10	0.49	-0.36	0.53	+0.14	
BSk14	Y	Ν	Ν	45	28	0.60	-0.27	0.69	+0.20	1.05	+0.34	0.76	-0.47	[35]
BCPM	Ν	Ν	Ν	45	28	1.42	-1.07	0.72	-0.30	0.52	+0.09	1.22	-0.77	[106]
SkSC4	Ν	Ν	Ν	45	0	0.57	+0.04	2.03	+1.78	_	-	2.15	-1.74	[31]
FRLDM	Y	Y	Ν	45	28	0.81	+0.22	1.41	+0.66	1.02	-0.91	0.88	-0.44	[103]
YPE+WS	Y	Y	Ν	45	28	0.82	-0.66	0.84	-0.40	0.38	+0.07	0.72	-0.26	[110]
D1M	Y	Y	N	14	8	0.53	+0.23	0.43	+0.06	0.99	+0.50	0.47	+0.17	[57]
UNEDF1	Y	Y	Ν	10	4	0.72	-0.67	0.79	-0.41	0.16	-0.06	0.83	-0.26	[73]
	Y	Y	Y	12	8	0.71	-0.52	0.65	-0.28	0.69	-0.36	0.71	-0.24	[45]
SkM*	Y	Y	Ν	10	0	1.92	-1.86	1.93	-1.84	_	·· <u>·</u> ··	0.57	-0.01	[73]
SkI3	Ν	Ν	Ν	7	8	3.99	-3.59	1.59	-1.44	1.04	+0.35	2.51	-2.15	[81]
	Ν	Ν	Ν	14	0	3.26	-2.50	_		_		-		[111]
SkI4	Ν	Ν	Ν	7	8	4.35	-4.27	3.65	-3.49	0.95	-0.22	1.02	-0.78	[81]
SLy6	Ν	Ν	Ν	7	8	4.23	-3.90	2.19	-2.08	1.24	-1.28	2.24	-1.82	[81]
	Ν	Ν	Ν	14	0	3.89	-3.31		-	-	-	_	-	[111]
SV-bas	Ν	Ν	Ν	14	0	1.88	-1.10			_	· · _ ·			[111]
SV-min	Ν	Ν	Ν	14	0	1.61	-0.50	-	-	-	-	-	-	[111]
NL-Z2	Ν	Ν	Ν	7	8	1.73	-0.93	1.28	+1.19	1.81	+1.91	2.68	-2.12	[81]
NL3	Ν	Ν	Ν	7	8	2.18	-1.26	1.03	+0.62	0.49	+0.39	2.73	-1.88	[81]
NL3*	Ν	Ν	Ν	14	0	2.16	-2.03	_	_	_	$\sim -$	-	-	[112]
PC-PK1	Ν	Ν	Ν	14	0	1.84	-1.53	1.01	-0.60		-	1.43	-0.93	[43]
	Ν	Y	Y	14	0	0.37	+0.18	0.82	+0.13	_	11 <u>-</u> 11	0.73	+0.05	[43]
DD-ME2	Ν	Ν	Ν	14	0	3.35	-3.17	- <u></u>	-	_	-	_	_	[112]
DD-PC1	Ν	Ν	Ν	14	0	2.45	-1.76	-	-	-	-	-	-	[112]

Table 3 Rms deviations (σ) and mean ($\tilde{\epsilon}$) errors ($\delta E_X = E_X^{emp} - E_X^{calc}$) for the height of the primary (E_I) and secondary (E_{II}) barriers, the excitation energy of the isomer (E_{iso}) and the barrier difference ($E_I - E_{II}$) for various models

Model	Fit	Tria	ixial	$N_{\rm b}$	Niso	$E_{\rm I}$		E_{II}		Eiso	~	$(E_{\rm I} -$	$E_{\rm II}$)	References
		Ι	0	-		σ	ē	σ	ē	σ	ē	σ	$\bar{\epsilon}$	
BSkG1	N	Y	Y	45	28	0.88	+0.80	0.87	+0.71	1.00	+0.67	0.56	+0.09	
BSkG2	Y	Y	Y	45	28	0.44	+0.24	0.47	+0.10	0.49	-0.36	0.53	+0.14	
BSk14	Y	Ν	Ν	45	28	0.60	-0.27	0.69	+0.20	1.05	+0.34	0.76	-0.47	[35]
BCPM	Ν	Ν	Ν	45	28	1.42	-1.07	0.72	-0.30	0.52	+0.09	1.22	-0.77	[106]
SkSC4	N	Ν	N	45	0	0.57	+0.04	2.03	+1.78	_	_	2.15	-1.74	[31]
FRLDM	Y	Y	Ν	45	28	0.81	+0.22	1.41	+0.66	1.02	-0.91	0.88	-0.44	[103]
YPE+WS	Y	Y	Ν	45	28	0.82	-0.66	0.84	-0.40	0.38	+0.07	0.72	-0.26	[110]
D1M	Y	Y	N	14	8	0.53	+0.23	0.43	+0.06	0.99	+0.50	0.47	+0.17	[57]
UNEDF1	Y	Y	Ν	10	4	0.72	-0.67	0.79	-0.41	0.16	-0.06	0.83	-0.26	[73]
	Y	Y	Y	12	8	0.71	-0.52	0.65	-0.28	0.69	-0.36	0.71	-0.24	[45]
SkM*	Y	Y	Ν	10	0	1.92	-1.86	1.93	-1.84	_	·· <u>··</u> ··	0.57	-0.01	[73]
SkI3	Ν	Ν	Ν	7	8	3.99	-3.59	1.59	-1.44	1.04	+0.35	2.51	-2.15	[81]
	Ν	Ν	Ν	14	0	3.26	-2.50	-	_	-	-			[111]
SkI4	Ν	Ν	Ν	7	8	4.35	-4.27	3.65	-3.49	0.95	-0.22	1.02	-0.78	[81]
SLy6	Ν	Ν	Ν	7	8	4.23	-3.90	2.19	-2.08	1.24	-1.28	2.24	-1.82	[81]
	Ν	Ν	Ν	14	0	3.89	-3.31	-	-	-	-	-	-	[111]
SV-bas	Ν	Ν	Ν	14	0	1.88	-1.10	_	<u>11-1</u> 3	_			<u></u>	[111]
SV-min	Ν	Ν	Ν	14	0	1.61	-0.50	-	—	-	-	-	-	[111]
NL-Z2	Ν	Ν	Ν	7	8	1.73	-0.93	1.28	+1.19	1.81	+1.91	2.68	-2.12	[81]
NL3	Ν	Ν	Ν	7	8	2.18	-1.26	1.03	+0.62	0.49	+0.39	2.73	-1.88	[81]
NL3*	Ν	Ν	Ν	14	0	2.16	-2.03	_	-	_	_	-		[112]
PC-PK1	Ν	Ν	Ν	14	0	1.84	-1.53	1.01	-0.60	-	-	1.43	-0.93	[43]
	Ν	Y	Y	14	0	0.37	+0.18	0.82	+0.13	_		0.73	+0.05	[43]
DD-ME2	Ν	Ν	Ν	14	0	3.35	-3.17		-	_	-		-	[112]
DD-PC1	Ν	Ν	Ν	14	0	2.45	-1.76	-	-	-	-	-	-	[112]

Table 3 Rms deviations (σ) and mean ($\tilde{\epsilon}$) errors ($\delta E_X = E_X^{emp} - E_X^{calc}$) for the height of the primary (E_I) and secondary (E_{II}) barriers, the excitation energy of the isomer (E_{iso}) and the barrier difference ($E_I - E_{II}$) for various models

Model	Fit	Tria	ixial	Nb	Niso	$E_{\rm I}$		E_{II}		Eiso		$(E_{\rm I} -$	$E_{\rm II}$)	References
		Ι	0	-		σ	ē	σ	ē	σ	$\bar{\epsilon}$	σ	$\bar{\epsilon}$	
BSkG1	Ν	Y	Y	45	28	0.88	+0.80	0.87	+0.71	1.00	+0.67	0.56	+0.09	
BSkG2	Y	Y	Y	45	28	0.44	+0.24	0.47	+0.10	0.49	-0.36	0.53	+0.14	
BSk14	Y	Ν	Ν	45	28	0.60	-0.27	0.69	+0.20	1.05	+0.34	0.76	-0.47	[35]
BCPM	Ν	Ν	Ν	45	28	1.42	-1.07	0.72	-0.30	0.52	+0.09	1.22	-0.77	[106]
SkSC4	N	Ν	N	45	0	0.57	+0.04	2.03	+1.78	_	_	2.15	-1.74	[31]
FRLDM	Y	Y	Ν	45	28	0.81	+0.22	1.41	+0.66	1.02	-0.91	0.88	-0.44	[103]
YPE+WS	Y	Y	Ν	45	28	0.82	-0.66	0.84	-0.40	0.38	+0.07	0.72	-0.26	[110]
D1M	Y	Y	N	14	8	0.53	+0.23	0.43	+0.06	0.99	+0.50	0.47	+0.17	[57]
UNEDF1	Y	Y	Ν	10	4	0.72	-0.67	0.79	-0.41	0.16	-0.06	0.83	-0.26	[73]
	Y	Y	Y	12	8	0.71	-0.52	0.65	-0.28	0.69	-0.36	0.71	-0.24	[45]
SkM*	Y	Y	Ν	10	0	1.92	-1.86	1.93	-1.84	_	···	0.57	-0.01	[73]
SkI3	Ν	Ν	Ν	7	8	3.99	-3.59	1.59	-1.44	1.04	+0.35	2.51	-2.15	[81]
	Ν	Ν	Ν	14	0	3.26	-2.50	-	-	-	-	-	-	[111]
SkI4	Ν	Ν	Ν	7	8	4.35	-4.27	3.65	-3.49	0.95	-0.22	1.02	-0.78	[81]
SLy6	Ν	Ν	Ν	7	8	4.23	-3.90	2.19	-2.08	1.24	-1.28	2.24	-1.82	[81]
	Ν	Ν	Ν	14	0	3.89	-3.31	-	-	-	-	-	-	[111]
SV-bas	Ν	Ν	Ν	14	0	1.88	-1.10	_	177	_		-	<u></u>	[111]
SV-min	Ν	Ν	Ν	14	0	1.61	-0.50	-	-	-	-	-	-	[111]
NL-Z2	Ν	Ν	Ν	7	8	1.73	-0.93	1.28	+1.19	1.81	+1.91	2.68	-2.12	[81]
NL3	Ν	Ν	Ν	7	8	2.18	-1.26	1.03	+0.62	0.49	+0.39	2.73	-1.88	[81]
NL3*	Ν	Ν	Ν	14	0	2.16	-2.03	_	_	_	_	_	-	[112]
PC-PK1	Ν	Ν	Ν	14	0	1.84	-1.53	1.01	-0.60	-	-	1.43	-0.93	[43]
	Ν	Y	Y	14	0	0.37	+0.18	0.82	+0.13		11 <u>_</u> 1	0.73	+0.05	[43]
DD-ME2	Ν	Ν	Ν	14	0	3.35	-3.17		-	_	-	_	<u> </u>	[112]
DD-PC1	Ν	Ν	Ν	14	0	2.45	-1.76	-	-	-	-	-	-	[112]

Table 3 Rms deviations (σ) and mean ($\tilde{\epsilon}$) errors ($\delta E_X = E_X^{emp} - E_X^{calc}$) for the height of the primary (E_I) and secondary (E_{II}) barriers, the excitation energy of the isomer (E_{iso}) and the barrier difference ($E_I - E_{II}$) for various models

Model	Fit	Tria	axial	$N_{\rm b}$	Niso	$E_{\rm I}$		E_{II}		Eiso		$(E_{\rm I} -$	$E_{\rm II})$	References
		Ι	0	-		σ	ē	σ	ē	σ	$\bar{\epsilon}$	σ	$\overline{\epsilon}$	
BSkG1	Ν	Y	Y	45	28	0.88	+0.80	0.87	+0.71	1.00	+0.67	0.56	+0.09	
BSkG2	Y	Y	Y	45	28	0.44	+0.24	0.47	+0.10	0.49	-0.36	0.53	+0.14	
BSk14	Y	Ν	Ν	45	28	0.60	-0.27	0.69	+0.20	1.05	+0.34	0.76	-0.47	[35]
BCPM	Ν	Ν	Ν	45	28	1.42	-1.07	0.72	-0.30	0.52	+0.09	1.22	-0.77	[106]
SkSC4	Ν	Ν	Ν	45	0	0.57	+0.04	2.03	+1.78	_	_	2.15	-1.74	[31]
FRLDM	Y	Y	Ν	45	28	0.81	+0.22	1.41	+0.66	1.02	-0.91	0.88	-0.44	[103]
YPE+WS	Y	Y	Ν	45	28	0.82	-0.66	0.84	-0.40	0.38	+0.07	0.72	-0.26	[110]
D1M	Y	Y	N	14	8	0.53	+0.23	0.43	+0.06	0.99	+0.50	0.47	+0.17	[57]
UNEDF1	Y	Y	Ν	10	4	0.72	-0.67	0.79	-0.41	0.16	-0.06	0.83	-0.26	[73]
	Y	Y	Y	12	8	0.71	-0.52	0.65	-0.28	0.69	-0.36	0.71	-0.24	[45]
SkM*	Y	Y	Ν	10	0	1.92	-1.86	1.93	-1.84	_	·· <u>·</u> ··	0.57	-0.01	[73]
SkI3	Ν	Ν	Ν	7	8	3.99	-3.59	1.59	-1.44	1.04	+0.35	2.51	-2.15	[81]
	Ν	Ν	Ν	14	0	3.26	-2.50	_		-	-			[111]
SkI4	Ν	Ν	Ν	7	8	4.35	-4.27	3.65	-3.49	0.95	-0.22	1.02	-0.78	[81]
SLy6	Ν	Ν	Ν	7	8	4.23	-3.90	2.19	-2.08	1.24	-1.28	2.24	-1.82	[81]
	Ν	Ν	Ν	14	0	3.89	-3.31	—	_	_	_	_	_	[111]
SV-bas	Ν	Ν	Ν	14	0	1.88	-1.10		17 <u>-</u> 17		<u>~_</u> *			[111]
SV-min	Ν	Ν	Ν	14	0	1.61	-0.50	-	-	-	-	-	-	[111]
NL-Z2	Ν	Ν	Ν	7	8	1.73	-0.93	1.28	+1.19	1.81	+1.91	2.68	-2.12	[81]
NL3	Ν	Ν	Ν	7	8	2.18	-1.26	1.03	+0.62	0.49	+0.39	2.73	-1.88	[81]
NL3*	Ν	Ν	Ν	14	0	2.16	-2.03	-	-	_	-	-	-	[112]
PC-PK1	Ν	Ν	Ν	14	0	1.84	-1.53	1.01	-0.60	-	-	1.43	-0.93	[43]
	Ν	Y	Y	14	0	0.37	+0.18	0.82	+0.13	_	10 <u>—</u> 11	0.73	+0.05	[43]
DD-ME2	Ν	Ν	Ν	14	0	3.35	-3.17		-	_	_	_		[112]
DD-PC1	Ν	Ν	Ν	14	0	2.45	-1.76	-	-	-	-	_	-	[112]

 BSkG1: G. Scamps et al., EPJA 57, 333 (2021).
 BSkG2: W. Ryssens et al., EPJA 58, 246 (2022). W. Ryssens et al., EPJA 59, 96 (2023).
 BSkG3: G. Grams et al., EPJA 59, 270 (2023).
 BSkG4: G. Grams et al., arXiv:2411.08007 (2024).

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

Rms σ	BSkG1	BSkG2	BSkG3	BSkG4
Masses [MeV]	0.741		50-0 - 102/55- 35	
$S_n [\text{MeV}]$	0.466			
Radii [fm]	0.024			
Prim. barriers [MeV]				
Sec. barriers [MeV]				
Fission isomers [MeV]				
Max. NS mass $[M_{\odot}]$	and the second second	28 mil 17 1		

 BSkG1: G. Scamps et al., EPJA 57, 333 (2021).
 BSkG2: W. Ryssens et al., EPJA 58, 246 (2022). W. Ryssens et al., EPJA 59, 96 (2023).
 BSkG3: G. Grams et al., EPJA 59, 270 (2023).
 BSkG4: G. Grams et al., arXiv:2411.08007 (2024).

BSkG1

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

Rms σ	BSkG1	BSkG2	BSkG3	BSkG4
Masses [MeV]	0.741	0.678	00-1-142-005-05-	
$S_n [\text{MeV}]$	0.466	0.500		
Radii [fm]	0.024	0.027		
Prim. barriers [MeV]	0.88	0.44		
Sec. barriers [MeV]	0.87	0.47		
Fission isomers [MeV]	1.0	0.49		
Max. NS mass $[M_{\odot}]$				

- <u>complete</u> time-reversal breaking
- fit to 45 reference fission barriers + 28 fission isomers

 BSkG1: G. Scamps et al., EPJA 57, 333 (2021).
 BSkG2: W. Ryssens et al., EPJA 58, 246 (2022). W. Ryssens et al., EPJA 59, 96 (2023).
 BSkG3: G. Grams et al., EPJA 59, 270 (2023).
 BSkG4: G. Grams et al., arXiv:2411.08007 (2024).

BSkG1

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

Rms σ	BSkG1	BSkG2	BSkG3	BSkG4
Masses [MeV]	0.741	0.678	0.631	
$S_n \; [\text{MeV}]$	0.466	0.500	0.442	
Radii [fm]	0.024	0.027	0.024	
Prim. barriers [MeV]	0.88	0.44	0.33	
Sec. barriers [MeV]	0.87	0.47	0.51	
Fission isomers [MeV]	1.0	0.49	0.34	
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3	

BSkG2

- <u>complete</u> time-reversal breaking
- fit to 45 reference fission barriers
 + 28 fission isomers

- extended Skyrme EDF form
- supports massive neutron stars

BSkG1

- fitted to 2457 masses
- fitted to 884 charge radii
- includes triaxial deformation

 BSkG1: G. Scamps et al., EPJA 57, 333 (2021).
 BSkG2: W. Ryssens et al., EPJA 58, 246 (2022). W. Ryssens et al., EPJA 59, 96 (2023).
 BSkG3: G. Grams et al., EPJA 59, 270 (2023).
 BSkG4: G. Grams et al., arXiv:2411.08007 (2024).

BSkG4

- pairing reproduces advanced INM calculations
- ideal for TD simulations in NS crust

Rms σ	BSkG1	BSkG2	BSkG3	BSkG4
Masses [MeV]	0.741	0.678	0.631	0.633
$S_n [\text{MeV}]$	0.466	0.500	0.442	0.402
Radii [fm]	0.024	0.027	0.024	0.025
Prim. barriers [MeV]	0.88	0.44	0.33	0.36
Sec. barriers [MeV]	0.87	0.47	0.51	0.53
Fission isomers [MeV]	1.0	0.49	0.34	0.33
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3	2.3

BSkG2

- <u>complete</u> time-reversal breaking
- fit to 45 reference fission barriers
 + 28 fission isomers

- extended Skyrme EDF form
- supports massive neutron stars

Fission barriers

W. R. et al., EPJA **59**, 96 (2023). S. Bara et al. & A. Sánchez-Fernández et al., in preparation.

.... odd-mass and odd-odds!

Blocked PES

- lowest E solution at every point
- perturbative inertia's ill-defined for odd-mass and odd-odds
- but can be "massaged"

W. R. et al., EPJA **59**, 96 (2023).

.... odd-mass and odd-odds!

Blocked PES

- lowest E solution at every point
- perturbative inertia's ill-defined for odd-mass and odd-odds
- but can be "massaged"

MOCCa

- gradient solver => stable blocking
- predictor-corrector technique
 => simultaneous constraints
- heavy-ball method => raw speed

Impact of triaxial deformation

Inner barriers

- <u>all</u> triaxial
- effect increases with N
- remarkably insensitive to Z

Impact of triaxial deformation

Inner barriers

- <u>all</u> triaxial
- effect increases with N
- remarkably insensitive to Z

Outer barriers

- <u>all</u> octupole + triaxial
- effect increases with N
- somewhat sensitive to Z

Impact of time-odd terms

Rms σ	BSkG1	BSkG2	BSkG3	BSkG4
Masses [MeV]	0.741	0.678	0.631	0.633
$S_n [\text{MeV}]$	0.466	0.500	0.442	0.402
Radii [fm]	0.024	0.027	0.024	0.025
Prim. barriers [MeV]	0.88	0.44	0.33	0.36
Sec. barriers [MeV]	0.87	0.47	0.51	0.53
Fission isomers [MeV]	1.0	0.49	0.34	0.33
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3	2.3

Ingredients

1. coordinate space representation

Rms σ	BSkG1	BSkG2	BSkG3	BSkG4
Masses [MeV]	0.741	0.678	0.631	0.633
$S_n [\text{MeV}]$	0.466	0.500	0.442	0.402
Radii [fm]	0.024	0.027	0.024	0.025
Prim. barriers [MeV]	0.88	0.44	0.33	0.36
Sec. barriers [MeV]	0.87	0.47	0.51	0.53
Fission isomers [MeV]	1.0	0.49	0.34	0.33
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3	2.3

Ingredients

- 1. coordinate space representation
- 2. COM-correction

Rms σ	BSkG1	BSkG2	BSkG3	BSkG4
Masses [MeV]	0.741	0.678	0.631	0.633
$S_n [\text{MeV}]$	0.466	0.500	0.442	0.402
Radii [fm]	0.024	0.027	0.024	0.025
Prim. barriers [MeV]	0.88	0.44	0.33	0.36
Sec. barriers [MeV]	0.87	0.47	0.51	0.53
Fission isomers [MeV]	1.0	0.49	0.34	0.33
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3	2.3

Ingredients

- 1. coordinate space representation
- 2. COM-correction
- 3. collective corrections refit

Rms σ	BSkG1	BSkG2	BSkG3	BSkG4
Masses [MeV]	0.741	0.678	0.631	0.633
$S_n [\text{MeV}]$	0.466	0.500	0.442	0.402
Radii [fm]	0.024	0.027	0.024	0.025
Prim. barriers [MeV]	0.88	0.44	0.33	0.36
Sec. barriers [MeV]	0.87	0.47	0.51	0.53
Fission isomers [MeV]	1.0	0.49	0.34	0.33
Max. NS mass $[M_{\odot}]$	1.8	1.8	2.3	2.3

Ingredients

- 1. coordinate space representation
- 2. COM-correction
- 3. collective corrections refit
- 4. triaxiality

Model ingredients

Mean-field energy

- Usual terms
- 1-body COM correction
- ~ 16 parameters
- treated self-consistently

Model ingredients

Mean-field energy

- Usual terms
- 1-body COM correction
- ~ 16 parameters
- treated self-consistently

Collective corrections

- rotational correction
- vibrational correction
- 2-body COM correction
- treated <u>semi-variationally</u>

Center-of-mass-correction

M. Bender et al., Eur. Phys. J. A **7**, 467–478 (2000) P. Da Costa et al., PRC **109**, 034316 (2024).

surface tension a_{surf} determines barriers but...

Center-of-mass-correction

surface tension a_{surf} determines barriers but...

Fission fitting

1. Fit to non-fission observables

Rms σ	BSkG1	BSkG2
Masses [MeV]	0.741	0.678
$S_n [{ m MeV}]$	0.466	0.500
Radii [fm]	0.024	0.027
Prim. barriers [MeV]	0.88	0.44
Sec. barriers [MeV]	0.87	0.47
Fission isomers [MeV]	1.0	0.49
Max. NS mass $[M_{\odot}]$	1.8	1.8

Fission fitting

- 1. Fit to non-fission observables
- 2. Refit 5 collective parameters to fission (requires no MOCCa calculations)

Rms σ	BSkG1	BSkG2
Masses [MeV]	0.741	0.678
$S_n [{ m MeV}]$	0.466	0.500
Radii [fm]	0.024	0.027
Prim. barriers [MeV]	0.88	0.44
Sec. barriers [MeV]	0.87	0.47
Fission isomers [MeV]	1.0	0.49
Max. NS mass $[M_{\odot}]$	1.8	1.8

Fission fitting

- 1. Fit to non-fission observables
- 2. Refit 5 collective parameters to fission (requires no MOCCa calculations)

Rms σ	BSkG1	BSkG2
Masses [MeV]	0.741	0.678
$S_n [{ m MeV}]$	0.466	0.500
Radii [fm]	0.024	0.027
Prim. barriers [MeV]	0.88	0.44
Sec. barriers [MeV]	0.87	0.47
Fission isomers [MeV]	1.0	0.49
Max. NS mass $[M_{\odot}]$	1.8	1.8

Fission fitting

- 1. Fit to non-fission observables
- 2. Refit 5 collective parameters to fission (requires no MOCCa calculations)
- 3. Check non-fission observables; go to 1 if necessary
- fit is fine-tuning, no dramatic changes

Triaxiality = ...

..... getting everything simultaneously

• different impact on different quantities

Triaxiality = ...

..... getting everything simultaneously

- different impact on different quantities
- differential quantities especially sensitive

Triaxiality (somehow) included No triaxiality

Model	Fit	Triaxial		$N_{\rm b}$	Niso	E_{I}		E_{II}		$E_{\rm iso}$		$(E_{\rm I}-E_{\rm II})$		References
		Ι	0	-		σ	$\bar{\epsilon}$	σ	$\bar{\epsilon}$	σ	$\bar{\epsilon}$	σ	$\bar{\epsilon}$	
BSkG1	N	Y	Y	45	28	0.88	+0.80	0.87	+0.71	1.00	+0.67	0.56	+0.09	
BSkG2	Y	Y	Y	45	28	0.44	+0.24	0.47	+0.10	0.49	-0.36	0.53	+0.14	
BSk14	Y	Ν	Ν	45	28	0.60	-0.27	0.69	+0.20	1.05	+0.34	0.76	-0.47	[35]
BCPM	Ν	Ν	Ν	45	28	1.42	-1.07	0.72	-0.30	0.52	+0.09	1.22	-0.77	[106]
SkSC4	Ν	Ν	N	45	0	0.57	+0.04	2.03	+1.78	_	_	2.15	-1.74	[31]
FRLDM	Y	Y	Ν	45	28	0.81	+0.22	1.41	+0.66	1.02	-0.91	0.88	-0.44	[103]
YPE+WS	Y	Y	Ν	45	28	0.82	-0.66	0.84	-0.40	0.38	+0.07	0.72	-0.26	[110]
D1M	Y	Y	N	14	8	0.53	+0.23	0.43	+0.06	0.99	+0.50	0.47	+0.17	[57]
UNEDF1	Y	Y	Ν	10	4	0.72	-0.67	0.79	-0.41	0.16	-0.06	0.83	-0.26	[73]
	Y	Y	Y	12	8	0.71	-0.52	0.65	-0.28	0.69	-0.36	0.71	-0.24	[45]
SkM*	Y	Y	N	10	0	1.92	-1.86	1.93	-1.84	_	·······	0.57	-0.01	[73]
SkI3	Ν	Ν	N	7	8	3.99	-3.59	1.59	-1.44	1.04	+0.35	2.51	-2.15	[81]
	Ν	Ν	Ν	14	0	3.26	-2.50	_		-		1000		[111]
SkI4	Ν	Ν	N	7	8	4.35	-4.27	3.65	-3.49	0.95	-0.22	1.02	-0.78	[81]
SLy6	Ν	Ν	N	7	8	4.23	-3.90	2.19	-2.08	1.24	-1.28	2.24	-1.82	[81]
	Ν	Ν	Ν	14	0	3.89	-3.31		-	-	-	-	-	[111]
SV-bas	Ν	Ν	N	14	0	1.88	-1.10		<u> </u>	_			_	[111]
SV-min	Ν	Ν	Ν	14	0	1.61	-0.50	-	-	-	-	-	-	[111]
NL-Z2	N	Ν	Ν	7	8	1.73	-0.93	1.28	+1.19	1.81	+1.91	2.68	-2.12	[81]
NL3	Ν	Ν	N	7	8	2.18	-1.26	1.03	+0.62	0.49	+0.39	2.73	-1.88	[81]
NL3*	Ν	Ν	N	14	0	2.16	-2.03	_	-	-	-	-	-	[112]
PC-PK1	Ν	Ν	Ν	14	0	1.84	-1.53	1.01	-0.60	-	_	1.43	-0.93	[43]
	Ν	Y	Y	14	0	0.37	+0.18	0.82	+0.13	_		0.73	+0.05	[43]
DD-ME2	N	Ν	Ν	14	0	3.35	-3.17		-	_	-	-	<u></u>	[112]
DD-PC1	Ν	Ν	Ν	14	0	2.45	-1.76	-	_	-	_	-	-	[112]

Table 3 Rms deviations (σ) and mean ($\tilde{\epsilon}$) errors ($\delta E_X = E_X^{emp} - E_X^{calc}$) for the height of the primary (E_I) and secondary E_{II}) barriers, the excitation energy of the isomer (E_{iso}) and the barrier difference ($E_I - E_{II}$) for various models

The BSkG models

Now:

- **excellent** ground state properties
- **simultaneous** reproduction of static fission properties within 500 keV
 - coordinate space representation
 - realistic surface properties through COM correction
 - fine-tuning of collective corrections
 - triaxial deformation of inner and outer barriers

The BSkG models

Now:

- **excellent** ground state properties
- **simultaneous** reproduction of static fission properties within 500 keV
 - coordinate space representation
 - realistic surface properties through COM correction
 - fine-tuning of collective corrections
 - triaxial deformation of inner and outer barriers

Soon:

• database with ~3000 fission paths in 'poor-mans 3D'

The BSkG models

Now:

- **excellent** ground state properties
- **simultaneous** reproduction of static fission properties within 500 keV
 - coordinate space representation
 - realistic surface properties through COM correction
 - fine-tuning of collective corrections
 - triaxial deformation of inner and outer barriers

Soon:

• database with ~3000 fission paths in 'poor-mans 3D'

Less soon:

- associated fission fragment yields
- include actual fission observables in parameter adjustment

The BSkG models

Now:

- **excellent** ground state properties
- simultaneous reproduction of static fission properties within 500 keV
 - coordinate space representation
 - realistic surface properties through COM correction
 - fine-tuning of collective corrections
 - triaxial deformation of inner and outer barriers

Soon:

database with ~3000 fission paths in 'poor-mans 3D'

Less soon:

- associated fission fragment yields
- include actual fission observables in parameter adjustment

Model construction

- COM correction => undefined in time-dependent approaches
- No COM correction => bad surface properties
- This is an issue since time-dependent <-> static approaches
 - \circ fission of odd-mass and odd-odd nuclei
 - dynamics in neutron star crust

o

..... all the wonderful work!

N. Chamel S. Goriely G. Grams A. Sanchez-Fernandez

M. Bender G. Scamps

and several experimental teams!

..... all the wonderful work!

N. Chamel S. Goriely G. Grams A. Sanchez-Fernandez

M. Bender

S. Bara

and several experimental teams!

..... the computing time!

..... all the wonderful work!

N. Chamel S. Goriely G. Grams A. Sanchez-Fernandez

KU LEUVEN

M. Bender

S. Bara

and several experimental teams!

..... the computing time!

..... the funding!

.... your attention!

..... all the wonderful work!

N. Chamel S. Goriely G. Grams A. Sanchez-Fernandez

KU LEUVEN

M. Bender

S. Bara

and several experimental teams!

..... the computing time!

..... the funding!

.... your attention!

Fig. 4 The total energy E_{tot} (top panel) and the mean-field energy E_{HFB} (bottom panel) of ²⁴⁰Pu at (fixed) elongation $\beta_{20} = 1.30$, normalized to their respective minima, as a function of β_{22} and β_{30} . Respective minima are indicated by black stars and contour lines are 100 keV apart

Table 2 Rms $\sigma(O)$ and mean deviations $\bar{\epsilon}(O)$ of the BSkG1 and BSkG2 models, with respect to RIPL-3 reference values for the primary and secondary barriers [38] and isomer excitation energies from Ref. [67] for different subsets of nuclei: even-even nuclei, odd-mass nuclei with odd Z, odd-mass nuclei with odd N and odd-odd nuclei. M indicates the number of empirical values available for each subset. All energies are expressed in MeV

		М	BSkG	1	BSkG2		
11.			σ	ē	σ	ē	
Even-even	$E_{\rm I}$	14	0.94	+0.90	0.45	+0.31	
	E_{II}	14	0.83	+0.67	0.46	+0.01	
	E_{iso}	8	0.63	+0.52	0.53	-0.38	
Odd-Z	E_{I}	6	0.66	+0.52	0.41	-0.03	
	$E_{\rm II}$	6	0.69	+0.62	0.28	+0.10	
	E_{iso}	4	0.66	+0.62	0.40	-0.29	
Odd-N	E_{I}	17	0.96	+0.87	0.5	+0.34	
	$E_{\rm II}$	17	0.93	+0.72	0.55	+0.12	
	E_{iso}	12	1.35	+0.85	0.46	-0.35	
Odd-odd	E_{I}	8	0.73	+0.67	0.28	+0.13	
	E_{II}	8	0.95	+0.84	0.43	+0.24	
	$E_{\rm iso}$	4	0.62	+0.50	0.57	-0.43	
Total	E_{I}	45	0.88	+0.80	0.44	+0.24	
	$E_{\rm II}$	45	0.87	+0.71	0.47	+0.10	
	E_{iso}	28	1.00	+0.67	0.49	-0.36	

Fig. 6 Difference between calculated and reference values for the primary barrier heights (top panel), secondary barrier heights (middle) and isomer excitation *energies* (bottom panel), using BSkG1 (blue open circles) and BSkG2 (red filled squares). Positive (negative) values for all three differences mean that calculated results are smaller (larger) than the reference values