Measurement of prompt fission γ-rays with the VESPA setup

(Measurement of the prompt neutrons and gamma rays)

- V. Piau⁽¹⁾, S. Oberstedt², A. Göök⁽²⁾, A. Oberstedt³, A. Chebboubi $^{\texttt{1}}, \,$ O. Litaize $^{\texttt{1}}$
- 1 CEA Cadarache (SPRC/LEPh), France
- 2 EC-JRC Geel, Belgium
- 3 ELI-NP, IFIN-HH, Romania

Outline

1. Introduction

2. The VESPA setup

- **Description of the detectors**
- Unfolding the prompt fission gamma-ray spectrum
- 3. Measurement of prompt fission gamma-rays and neutrons
	- Mass- and TKE-dependent average gamma multiplicity and total energy from VESPA
	- **Prompt fission neutron measurements**
	- **About mass resolution**
	- Angular distribution of gamma-rays
	- Identification and analysis of isomers

4. Summary

Why measuring prompt fission neutrons/γ-rays?

- Nuclear data for nuclear energy applications
	- Neutron energy and multiplicity \rightarrow nuclear reactor
	- γ-ray energy \rightarrow γ heating
	- Yields of secondary fission fragments (post-neutron)

- Understanding the fission process
	- Angular momentum generation
	- Excitation energy sharing

Müller et al., Phys. Rev. C 29, 885 (1984)

Neutron/gamma emission in fission

Microscopic description of fission (TDHFB, TDGCM, ...)

Cumulative fission yields

Neutron/gamma emission in fission

Late emission γ-rays \rightarrow isomers ($\tau \gtrsim \sigma_t$)

Experimental time spectrum – γ-rays

Prompt peak + neutrons (inelastic scattering) + isomers

The VErsatile SPectrometer Array (VESPA)

1 Twin Frisch-grid Ionization Chamber → Fission fragments 8 LaBr₃(Ce) scintillators \rightarrow Prompt fission gamma-rays

-
-
- 7 Organic scintillators → Prompts fission neutrons

Twin Frisch-grid Ionization Chamber

- **Manufactured by JRC Geel** \triangleright see A. Göök et al., Nucl. Instr. Meth. A 830, 366 (2016)
- **Simultaneous measurement of FFs kinetic energies** \rightarrow 2E method to extract the mass of the fragments
- **Angle determination from electron drift-time**

LaBr₃(Ce) scintillators

Energy and time resolution

Organic scintillators

Liquid & stilbene: low-Z material, fast decay constant

Sensitive to neutrons and gamma-rays

0.9

Data unfolding

The emission spectrum is folded by the experimental setup (smearing, partial energy deposit,…):

□ The response matrix can be estimated from Geant4 simulation of the setup (see next slide)

- □ Several unfolding techniques are available. We use the iterative method (EM algorithm), see *D'Agostini, Nucl. Instr. Meth. A 362, 487 (1995)*
- \Box III-posed problem (inverse problem) \rightarrow regularization is necessary. (e.g., number of iterations)

Geant4 simulation of VESPA

Response matrix construction

Primary event definition Photon emission $E_v \in [0.05, 16]$ MeV

Doppler effect Photon emitted by a moving fission fragment

Interaction with the setup

- Geometrical description of the setup
- Physical models

Folding the results

Taking into account the experimental energy resolution of the detectors

CERN, Geant4 Collaboration

Simlation originally developed by A. Göök (2019/2020)

VESPA – Prompt Fission Gamma-ray Spectra

Unfolded prompt fission γ-rays spectrum (PFGS) of ²⁵²Cf

- Average γ-ray multiplicity from A11218 (\pm 3 ns, 80 keV \rightarrow 8 MeV): \overline{M}_{γ} = 8.37 \pm 0.08
- Average total γ-ray energy from A11218 (\pm 3 ns, 80 keV \rightarrow 8 MeV): $E_{\gamma, tot}$ = 6.89 \pm 0.07 MeV

VESPA – Prompt Fission Gamma-ray Spectra

Unfolded prompt fission y-rays spectrum (PFGS) of $252Cf -$ comparison

- A. Oberstedt *et al.*, Phys. Rev. C 92, 014618 (2015) \rightarrow JRC Geel (LaBr₃)
- L. Qi *et al.*, Phys. Rev. C 98, 014612 (2018) \rightarrow ALTO, nu-ball array (LaBr₃)

Coincidence condition between FF and prompt γ-rays

Fission fragments are detected in the IC

 \blacksquare 2E method \rightarrow pre-neutron masses and TKE

Gamma-rays from both fragments are detected in the $LaBr₃$ **Cannot be easily disentangled**

There are two methods to separate these contributions:

- Lead collimator
- \triangleright Weighting method

Johansson, Nclear Physics A 60, 378 (1964)

The weighting method

80% of the prompt γ-ray yield is emitted within 0.1 ns after scission (Skarsvåg, 1975)

- \rightarrow Fragments are not stopped while emitting y-rays
- \rightarrow Thus, they undergo Doppler effect
	- Doppler shift: $E_{lab} \neq E_{cm}$

Analysis procedure : weighting method

- Maier Leibnitz *et al.*, Physics and Chemistry of Fission II, 143 (1965)
- The Doppler effect creates an anisotropy of the γ-ray emission in the lab frame

$$
\alpha_N(\theta) = \frac{N_\gamma^{lab}(\theta) - N_\gamma^{lab}(\theta + \pi)}{N_\gamma^{lab}(\theta) + N_\gamma^{lab}(\theta + \pi)} \simeq 2\beta \cos\theta \quad \longrightarrow \quad 2\beta
$$

• The average multiplicity of the prompt fission γ-rays can be obtained as:

Analysis procedure : weighting method

- Maier Leibnitz *et al.*, Physics and Chemistry of Fission II, 143 (1965)
- The Doppler effect creates an anisotropy of the γ-ray emission in the lab frame

$$
\alpha_E(\theta) = \frac{E_\gamma^{lab}(\theta) - E_\gamma^{lab}(\theta + \pi)}{E_\gamma^{lab}(\theta) + E_\gamma^{lab}(\theta + \pi)} \approx 3\beta \cos\theta \implies 3\beta
$$

◦ The average total energy of the prompt fission γ-rays can be obtained as:

The VESPA measurement

- 3 detectors aligned with the IC
- A11218 (3.5'' x 8'')
- IKDA (3'' x 3'')
- A14400 (3'' x 3'')

- Emission angle relative to the detector : $\cos(\theta) > 0.9 \implies |\theta| \le 26^{\circ}$)
- Coincidence window : ± 3 ns
	- Reject events due to inelastic scattering of prompt neutrons in detectors material
	- Reject events due to the decay of isomers

Mass- and TKE- dependent measured spectra

 \rightarrow unfolding \rightarrow $n_{\gamma}(A, TKE)$ and $e_{\gamma}(A, TKE)$

Travar et al., Phys. Lett. B 817 136293 (2021)

Mass-dependent γ-ray multiplicity and energy

Travar et al., Phys. Lett. B 817 136293 (2021)

TKE-dependent γ-ray multiplicity and energy

TKE-dependent γ-ray multiplicity

Prompt fission γ-ray multiplicity - ²⁵²Cf

Comparison with recent experiment @ANL with FS-3 array

- 40 trans-stilbene detectors (organic scintillators)
- Twin Frisch-grid ionization chamber loaded with ²⁵²Cf

Marin et al., Nucl. Instr. Meth. A 1048, 168027 (2023)

Prompt fission γ-ray multiplicity - ²⁵²Cf

Comparison with recent experiment @ANL with FS-3 array

Prompt fission neutron multiplicity

Neutron and γ-ray measurements face similar challenges:

- γ-ray contamination (especially at low energy where PSD is less efficient)
- Response function: scattering & absorption of neutrons → unfolding
- Emission by both fragments
- Doppler effect → kinematic boost

Prompt fission neutron multiplicity - ²⁵²Cf(sf)

Al-Adili et al., Phys. Rev. C 102, 064610 (2020) Göök et al., Phys. Rev. C 90, 064611 (2014)

About mass resolution

VESPA mass resolution is ~5u (FWHM) from IC + 2E method

It can be applied to calculations, e.g., FIFRELIN

 \rightarrow See A. Chebboubi talk for more details about FIFRELIN calculations

Folding method:

- Event-wise convolution $\rightarrow A' = A + \mathcal{G}(0,\sigma)$ where $\mathcal G$ is a random number (Gaussian)
- \rightarrow convolution of $M_{\gamma}(A) \times Y(A)$ and $Y(A)$ distributions

$$
M'_{\gamma} = \frac{\left[M_{\gamma}(A) \times Y(A)\right]'}{Y\prime(A)}
$$

About mass resolution

VESPA mass resolution is ~5u (FWHM) from IC + 2E method

Angular distribution of γ-rays

- Multipolarity of transitions
- \rightarrow See A. Chebboubi talk

- \rightarrow Interesting fission observable
- \rightarrow Can be measured using the VESPA setup
- Angle from the IC
- 3 γ-rays detectors are facing the IC

Gamma-Gamma coincidences of late-emission γ-rays

◦ t>35 ns to avoid neutron contamination

Gamma-Gamma coincidences of late-emission γ-rays

◦ t>35 ns to avoid neutron contamination

Mass distribution

- Double Gaussian distributions (FWHM~5u) \rightarrow the isomer and its complementary fragment
- If not an isomer \rightarrow post-neutron mass distribution, e.g. $81Br$ from LaBr₃

Gamma-Gamma coincidences of late-emission γ-rays

◦ t>35 ns to avoid neutron contamination

Mass distribution

- Double Gaussian distributions \rightarrow the isomer and its complementary fragment
- If not an isomer \rightarrow post-neutron mass distribution, e.g. $81Br$ from LaBr₃

Time distribution

Exponential decay \rightarrow half-life of the isomer

◦ t>35 ns to avoid neutron contamination Mass distribution

Isomers

- Double Gaussian distributions \rightarrow the isomer and its complementary fragment
- If not an isomer \rightarrow post-neutron mass distribution, e.g. $81Br$ from LaBr₃

Time distribution

- Exponential decay \rightarrow half-life of the isomer
- Not valid if there are more than one isomeric state

Gamma-Gamma coincidences of late-emission γ-rays

 \rightarrow Dedicated method (multiple isomer analysis) for consecutive isomeric states

Gamma-Gamma coincidences of late-emission γ-rays

◦ t>35 ns to avoid neutron contamination

Mass distribution

- Double Gaussian distributions \rightarrow the isomer and its complementary fragment
- If not an isomer \rightarrow post-neutron mass distribution, e.g. $81Br$ from LaBr₃

Time distribution

- Exponential decay \rightarrow half-life of the isomer
- Not valid if there are more than one isomeric state
- \rightarrow Dedicated method (multiple isomer analysis) for consecutive isomeric states

New short-lived isomeric states have been found with VESPA in ⁹⁴Rb, ¹⁰⁸Tc, and 147 Ce. V. Piau *et al.*, accepted in Eur. Phys. J. A

Summary

The VESPA setup was used to **measure prompt fission y-rays** using $\text{LaBr}_3(\text{Ce})$ scintillation detectors and a twin Ionization chamber.

- Prompt Fission Gamma-ray Spectra (PFGS) up to 10 MeV
- Mass- and TKE-dependent prompt fission γ-ray multiplicity and total energy
- Isomeric half-lives of fission fragments

These results are consistent with recent independent measurements.

Prompt fission neutrons and γ-rays, especially when correlated to fission fragments properties, are of great interest to better understand the underlying mechanisms of the fission process, and to constraint nuclear models used in calculation codes, like FIFRELIN

 \rightarrow see next talk: A. Chebboubi

VESPA is dead, long live VESPA 2.0 !

S. Oberstedt, private commnication (2024)

Twin Frisch-grid ionization chamber

+ 30 gamma-rays detectors

- 15 $CeBr₃$ (2" x 2")
- 10 LaBr₃:Ce $(2'' \times 2'')$
- 2 LaBr₃:Ce $(3'' \times 3'')$
- 1 LaBr₃:Ce (3.5" x 8")
- 2 LaBr₃:CeSr $(2'' \times 3'')$
- + 1 HPGe (near future)

@17 cm from the source

²⁴⁸Cm source (sf)

- \triangleright Study PFGS properties
- \triangleright Angular distributions & correlations
- \triangleright Double and triple gamma-ray coincidences for isomer yields, prompt isotopic yields
- \rightarrow PhD thesis of Alan Danilo (CEA)