Measurement of prompt fission γ-rays with the VESPA setup

(Measurement of the prompt neutrons and gamma rays)

- V. Piau⁽¹⁾, S. Oberstedt², A. Göök⁽²⁾, A. Oberstedt³, A. Chebboubi¹, O. Litaize¹
- 1 CEA Cadarache (SPRC/LEPh), France
- 2 EC-JRC Geel, Belgium

ESNT Workshop: Dynamics of Nuclear Fission

3 - ELI-NP, IFIN-HH, Romania

Outline

1. Introduction

2. The VESPA setup

- Description of the detectors
- Unfolding the prompt fission gamma-ray spectrum
- **3**. Measurement of prompt fission gamma-rays and neutrons
 - Mass- and TKE-dependent average gamma multiplicity and total energy from VESPA
 - Prompt fission neutron measurements
 - About mass resolution
 - Angular distribution of gamma-rays
 - Identification and analysis of isomers

4. Summary

Why measuring prompt fission neutrons/γ-rays?

- Nuclear data for nuclear energy applications
 - Neutron energy and multiplicity \rightarrow nuclear reactor
 - γ -ray energy $\rightarrow \gamma$ heating
 - Yields of secondary fission fragments (post-neutron)

- Understanding the fission process
 - Angular momentum generation
 - Excitation energy sharing

Müller et al., Phys. Rev. C 29, 885 (1984)

Neutron/gamma emission in fission

Microscopic description of fission (TDHFB, TDGCM, ...)

Cumulative fission yields

Neutron/gamma emission in fission

Late emission γ -rays \rightarrow isomers ($\tau \gtrsim \sigma_t$)

Experimental time spectrum – γ-rays

Prompt peak + neutrons (inelastic scattering) + isomers

The VErsatile SPectrometer Array (VESPA)

- 1 Twin Frisch-grid Ionization Chamber 8 LaBr₃(Ce) scintillators
- 7 Organic scintillators

- → Fission fragments
 - \rightarrow Prompt fission gamma-rays
- \rightarrow Prompts fission neutrons

Twin Frisch-grid Ionization Chamber

- Manufactured by JRC Geel
 > see A. Göök et al., Nucl. Instr. Meth. A 830, 366 (2016)
- Simultaneous measurement of FFs kinetic energies

 → 2E method to extract the mass of the fragments
- Angle determination from electron drift-time

LaBr₃(Ce) scintillators

Energy and time resolution

Organic scintillators

Liquid & stilbene: low-Z material, fast decay constant

Sensitive to neutrons and gamma-rays

Data unfolding

The emission spectrum is folded by the experimental setup (smearing, partial energy deposit,...):

unfolding

□ The response matrix can be estimated from **Geant4 simulation** of the setup (see next slide)

- Several unfolding techniques are available. We use the iterative method (EM algorithm), see D'Agostini, Nucl. Instr. Meth. A 362, 487 (1995)
- \Box III-posed problem (inverse problem) \rightarrow regularization is necessary. (e.g., number of iterations)

Geant4 simulation of VESPA

Response matrix construction

Primary event definition Photon emission $E_{\gamma} \in [0.05, 16]$ MeV

Doppler effect Photon emitted by a moving fission fragment

Interaction with the setup

- Geometrical description of the setup
- Physical models

Folding the results Taking into account the experimental energy resolution of the detectors

CERN, Geant4 Collaboration

Simulation originally developed by A. Göök (2019/2020)

VESPA – Prompt Fission Gamma-ray Spectra

Unfolded prompt fission γ-rays spectrum (PFGS) of ²⁵²Cf

- Average γ -ray multiplicity from A11218 (± 3 ns, 80 keV \rightarrow 8 MeV): $\overline{M}_{\gamma} = 8.37 \pm 0.08$
- Average total γ-ray energy from A11218 (± 3 ns, 80 keV \rightarrow 8 MeV): $E_{\gamma,tot} = 6.89 \pm 0.07$ MeV

VESPA – Prompt Fission Gamma-ray Spectra

Unfolded prompt fission γ-rays spectrum (PFGS) of ²⁵²Cf – comparison

- A. Oberstedt et al., Phys. Rev. C 92, 014618 (2015) \rightarrow JRC Geel (LaBr₃)
- L. Qi et al., Phys. Rev. C 98, 014612 (2018) \rightarrow ALTO, nu-ball array (LaBr₃)

Coincidence condition between FF and prompt γ -rays

Fission fragments are detected in the IC

• 2E method \rightarrow pre-neutron masses and TKE

Gamma-rays from both fragments are detected in the LaBr₃

cannot be easily disentangled

There are two methods to separate these contributions:

- Lead collimator
- Weighting method

Johansson, Nuclear Physics A 60, 378 (1964)

The weighting method

80% of the prompt γ-ray yield is emitted within 0.1 ns after scission (Skarsvåg, 1975)

- \rightarrow Fragments are not stopped while emitting γ -rays
- \rightarrow Thus, they undergo Doppler effect
 - Doppler shift: $E_{lab} \neq E_{cm}$

Analysis procedure : weighting method

- Maier Leibnitz et al., Physics and Chemistry of Fission II, 143 (1965)
- The Doppler effect creates an anisotropy of the γ-ray emission in the lab frame

$$\alpha_{N}(\theta) = \frac{N_{\gamma}^{lab}(\theta) - N_{\gamma}^{lab}(\theta + \pi)}{N_{\gamma}^{lab}(\theta) + N_{\gamma}^{lab}(\theta + \pi)} \simeq 2\beta \cos\theta \quad \xrightarrow[\theta \to 0]{} 2\beta$$

• The average multiplicity of the prompt fission γ-rays can be obtained as:

Analysis procedure : weighting method

- Maier Leibnitz et al., Physics and Chemistry of Fission II, 143 (1965)
- The Doppler effect creates an anisotropy of the γ-ray emission in the lab frame

$$\alpha_{E}(\theta) = \frac{E_{\gamma}^{lab}(\theta) - E_{\gamma}^{lab}(\theta + \pi)}{E_{\gamma}^{lab}(\theta) + E_{\gamma}^{lab}(\theta + \pi)} \simeq 3\beta \cos\theta \quad \xrightarrow[\theta \to 0]{} 3\beta$$

The average total energy of the prompt fission γ-rays can be obtained as:

The VESPA measurement

- 3 detectors aligned with the IC
- A11218 (3.5'' x 8'')
- IKDA (3'' x 3'')
- A14400 (3" x 3")

Time and angular cuts

- Emission angle relative to the detector : $\cos(\vartheta) > 0.9 \iff |\vartheta| \le 26^{\circ}$)
- Coincidence window : ± 3 ns
 - Reject events due to inelastic scattering of prompt neutrons in detectors material
 - Reject events due to the decay of isomers

Mass- and TKE- dependent measured spectra

 \rightarrow unfolding $\rightarrow n_{\gamma}(A, TKE)$ and $e_{\gamma}(A, TKE)$

Travar et al., Phys. Lett. B 817 136293 (2021)

Mass-dependent γ-ray multiplicity and energy

Travar et al., Phys. Lett. B 817 136293 (2021)

	Light Fragments	Heavy Fragments	Total
Multiplicity	4.53 ± 0.03	3.83 ± 0.03	8.36 ± 0.02
Total energy (MeV)	3.88 ± 0.03	3.01 ± 0.03	6.89 ± 0.02

TKE-dependent γ-ray multiplicity and energy

	Light Fragments	Heavy Fragments	Total
Multiplicity	4.53 ± 0.03	3.83 ± 0.03	8.36 ± 0.02
Total energy (MeV)	3.88 ± 0.03	3.01 ± 0.03	6.89 ± 0.02

TKE-dependent γ-ray multiplicity

	Light Fragments	Heavy Fragments	Total
Multiplicity	4.53 ± 0.03	3.83 ± 0.03	8.36 ± 0.02
Total energy (MeV)	3.88 ± 0.03	3.01 ± 0.03	6.89 ± 0.02

Prompt fission γ-ray multiplicity - ²⁵²Cf

Comparison with recent experiment @ANL with FS-3 array

- 40 trans-stilbene detectors (organic scintillators)
- Twin Frisch-grid ionization chamber loaded with ²⁵²Cf

Marin et al., Nucl. Instr. Meth. A 1048, 168027 (2023)

Prompt fission γ-ray multiplicity - ²⁵²Cf

Comparison with recent experiment @ANL with FS-3 array

Prompt fission neutron multiplicity

Neutron and γ-ray measurements face similar challenges:

- γ-ray contamination (especially at low energy where PSD is less efficient)
- Response function: scattering & absorption of neutrons \rightarrow unfolding
- Emission by **both fragments**
- Doppler effect → kinematic boost

Prompt fission neutron multiplicity - ²⁵²Cf(sf)

Al-Adili et al., Phys. Rev. C 102, 064610 (2020) Göök et al., Phys. Rev. C 90, 064611 (2014)

About mass resolution

VESPA mass resolution is ~5u (FWHM) from IC + 2E method

It can be applied to calculations, e.g., FIFRELIN

 \rightarrow See A. Chebboubi talk for more details about FIFRELIN calculations

Folding method:

- Event-wise convolution $\rightarrow A' = A + \mathcal{G}(0,\sigma)$ where \mathcal{G} is a random number (Gaussian)
- \rightarrow convolution of $M_{\gamma}(A) \times Y(A)$ and Y(A) distributions

$$M_{\gamma}' = \frac{\left[M_{\gamma}(A) \times Y(A)\right]'}{Y'(A)}$$

About mass resolution

VESPA mass resolution is ~5u (FWHM) from IC + 2E method

Angular distribution of γ-rays

- \rightarrow Interesting fission observable
- \rightarrow Can be measured using the VESPA setup
- Angle from the IC
- \circ 3 $\gamma\text{-rays}$ detectors are facing the IC

 θ (degrees)

180

Gamma-Gamma coincidences of late-emission γ-rays

t>35 ns to avoid neutron contamination

Gamma-Gamma coincidences of late-emission y-rays

t>35 ns to avoid neutron contamination

Mass distribution

- Double Gaussian distributions (FWHM~5u) → the **isomer** and its **complementary fragment**
- If not an isomer \rightarrow post-neutron mass distribution, e.g. ⁸¹Br from LaBr₃

Gamma-Gamma coincidences of late-emission γ-rays

t>35 ns to avoid neutron contamination

Mass distribution

- Double Gaussian distributions \rightarrow the isomer and its complementary fragment
- If not an isomer \rightarrow post-neutron mass distribution, e.g. ⁸¹Br from LaBr₃

Time distribution

• Exponential decay \rightarrow half-life of the isomer

Gamma-Gamma coincidences of late-emission y-rays

t>35 ns to avoid neutron contamination

Mass distribution

- Double Gaussian distributions \rightarrow the isomer and its complementary fragment
- If not an isomer \rightarrow post-neutron mass distribution, e.g. ⁸¹Br from LaBr₃

Time distribution

- Exponential decay \rightarrow half-life of the isomer
- Not valid if there are more than one isomeric state
- \rightarrow Dedicated method (multiple isomer analysis) for consecutive isomeric states

Gamma-Gamma coincidences of late-emission γ-rays

t>35 ns to avoid neutron contamination

Mass distribution

- Double Gaussian distributions \rightarrow the isomer and its complementary fragment
- If not an isomer \rightarrow post-neutron mass distribution, e.g. ⁸¹Br from LaBr₃

Time distribution

- Exponential decay \rightarrow half-life of the isomer
- Not valid if there are more than one isomeric state
- → Dedicated method (multiple isomer analysis) for consecutive isomeric states

New short-lived isomeric states have been found with VESPA in ⁹⁴Rb, ¹⁰⁸Tc, and ¹⁴⁷Ce. V. Piau *et al.*, accepted in Eur. Phys. J. A

Summary

The VESPA setup was used to measure prompt fission γ -rays using LaBr₃(Ce) scintillation detectors and a twin Ionization chamber.

- Prompt Fission Gamma-ray Spectra (PFGS) up to 10 MeV
- Mass- and TKE-dependent prompt fission γ-ray multiplicity and total energy
- Isomeric half-lives of fission fragments

These results are consistent with recent independent measurements.

Prompt fission neutrons and γ-rays, especially when **correlated to fission fragments** properties, are of great interest to **better understand the underlying mechanisms of the fission process**, and to constraint nuclear models used in calculation codes, like FIFRELIN

→ see next talk: A. Chebboubi

VESPA is dead, long live VESPA 2.0 !

S. Oberstedt, private communication (2024)

Twin Frisch-grid ionization chamber

- + 30 gamma-rays detectors
 - 15 CeBr₃ (2" x 2")
 - 10 LaBr₃:Ce (2" x 2 ")
 - 2 LaBr₃:Ce (3'' x 3'')
 - 1 LaBr₃:Ce (3.5" x 8")
 - 2 LaBr₃:CeSr (2" x 3")
 - + 1 HPGe (near future)

@17 cm from the source

²⁴⁸Cm source (sf)

- Study PFGS properties
- > Angular distributions & correlations
- Double and triple gamma-ray coincidences for isomer yields, prompt isotopic yields
- \rightarrow PhD thesis of Alan Danilo (CEA)