

Fission fragment yields: Overview of recent measurements

ENST Workshop: Dynamics of Nuclear Fission

December 2024, Saclay

Pierre Morfouace^{1,2}

1 CEA, DAM, DIF, 91297 Arpajon, France 2 Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France

Outlook

1. Motivations

• Why do we measure fission fragment yields?

2

- 2. Direct kinematics
	- **Activation technique**
	- "In-flight" methods
- 3. Inverse kinematics
	- **GSI/SOFIA**
	- fusion/fission
	- VAMOS
- 4. Conclusion

1 Motivations

XXXXXXXXXXXXXXXXXXXXXX

Fission fragments: definition

- Primary fission fragments : before prompt neutron emission
- **Secondary fission fragments**: after neutron evaporation → *independent yields*
- **Fission products :** after β-decay→ *cumulative yields*

Why measuring fission fragments?

- **Important fondamental questions/open questions**
	- \sim The fission yields are the signatures of the underlying nuclear structure effects in the fission process.
	- \sim These yields provide crucial information about reaction mechanisms, energy dissipation, and the underlying dynamics of the process.
	- ✔ What shell effetcts at stake ?
	- \sim Shell effect damping with excitation energy.
	- ✔ Excitation energy sharing, deformation at scission.
	- \sim Fission recycling in r-process.

● **Important for nuclear applications**

- ✔ Defense
- \sim Burnup, reactor simulation
- \sim Gen-IV using fast neutrons

Z **Direct kinematics**

XXXXXXXXXXXXXXXXXXXXXX

Direct kinematics: Activation

Activation technique

- \cdot Neutron energy well defined \rightarrow Excitation energy well defined.
- ✔ Irradiation of an actinide sample from neutron flux of known energy.
- ✔ Radiochemistry and/or gamma spectropscopy.
- ✔ Access to cumulative yield.
- ✔ Try shorter run cycle to measure short-lived fragments

M. B. Chadwick *et al.* Nuclear Data Sheets **111** (2010) 2923-2964

J. Laurec *et al.* Nuclear Data Sheets **111** (2010) 2965-2980

M. E. Gooden *et al.* Nuclear Data Sheets **131** (2016) 319-356

M. E. Gooden *et al.* Phys. Rev. C **109** 04460 (2024)

Direct kinematics: Activation, recent measurements at TUNL 6.0

In flight method : neutron capture on actinide target

- ✔ Gamma spectroscpy after few days of irradiation
- \cdot Rather thick target
- ✔ Obsolute cumulative fission product yields.
- \sim Different neutron energies \rightarrow Evolution of fragment yields

Fragment Mass (amu)

Light

"In-flight" methods : 2E-2v methods

In flight method : neutron induced fission on actinides.

- ✔ Detect both fragments in coincidence.
- ✔ Measure their energy typically in ionization chamber.
- ✔ Measure time-of-flight.
- ✔ Historically the Cosi Fan Tutte provided a lot of excellent data.
- ✔ Other 2E-2v spectrometers
	- ➢ Spider C. Arnold *et al.* NIM A **764** (2014)
	- ➢ Verdi S. Oberstedt *et al.* EPJ Web of Conferences Vol. 8 (EDP Sciences) p. 03005
	- ➢ FALSTAFF D. Doré *at al.* Nuclear Data Sheets **119** (2014) 346-348

"In-flight" methods: FALSTAFF 2E-2v

FALSTAFF goals :

- ✔ Detect both fragments in coincidence.
- ✔ Measure their kinetic energy.
- ✔ Identify their mass. Mass before neutron evaporation obained via the 2V method.
- ✔ Spatial resolution around 2 mm.
- ✔ Timing resolution around 120 ps.

D. Doré *at al.* Nuclear Data Sheets **119** (2014) 346-348 Q. Deshayes *et al.* EPJ Web of Conferences **239** 05012 (2020)

"In-flight" methods: FALSTAFF 2E-2v

FALSTAFF goals :

- ✔ Detect both fragments in coincidence.
- ✔ Measure their kinetic energy.
- ✔ Identify their mass. Mass before neutron evaporation obained via the 2V method.
- ✔ Spatial resolution around 2 mm.
- ✔ Timing resolution around 120 ps.
- ✔ Provide information on their nuclear charges.
- ✔ Future experiments at NFS to measure the evolution of yields as a function of the neutron energy.

D. Doré *at al.* Nuclear Data Sheets **119** (2014) 346-348 Q. Deshayes *et al.* EPJ Web of Conferences **239** 05012 (2020)

"In-flight" methods: Z measurement

In flight method : neutron capture on actinide target

- ✔ Neutron induced fission (often thermal).
- ✔ Knowledge of the excitation energy degree of freedom.
- ✗ Measure of the charge above 40 impossible.
	- ➔ Example : Lohengrin spectrometer at ILL \rightarrow charge up to Z \approx 40.
- \sim Needs target \rightarrow access to quasi-stable elements
- ✔ Partial isotopic yields. D. Rochman *et al.* Nucl. Phys. A **710** 3-28 (2002)

"In-flight" methods: The Lohengrin spectrometer

Lohengrin spectrometer

- \cdot Thermal neutron induced fission
- \cdot Precise measurement of fission product mass yields Y(A)
	- ➔ Selection with mass over ionic charge A/q
	- ➔ Selection with kinetic energy over ionic charge E/q
- \cdot Measurement of fission product isotopic yields $P(Z)$
	- ➔ Using High purity Germanium detectors .
	- ✗ Results are dependent on the knowledge of nuclear strucutre (decay scheme...)

"In-flight" methods: The Lohengrin spectrometer

Lohengrin spectrometer recent results S. Julien-Laferrière PhD Thesis

- \sim On ²⁴¹Pu(n_{th,}f)
- \cdot Few data exist for ²⁴¹Pu because complicated to make a target.
- \cdot But important for burn up.
- \sim GEF underestimate the symmetry region

"In-flight" methods: The Lohengrin spectrometer

Lohengrin spectrometer recent results S. Julien-Laferrière PhD Thesis

- \sim On ²⁴¹Pu(n_{th,}f)
- \sim GEF underestimate the symmetry region
- \sim Extraction of isotopic yields for some masses usin $H PGe \rightarrow$ Rely on known nuclear structure decay schemes.

Multi-nucleon reaction in direct kinematics

Nishio experiments

- \sim 180 beam of 157 MeV on 232Th target.
- Depending on the transfer channel different fissioning system accessible !
	- ➔ Detection of the ejectile in the silicon detector.
	- ➔ Characterization of the fissioning system
	- ➔ Excitation energy with the missing mass technique
- \sim Identification of the fragment mass with the MWPC
	- \rightarrow Resolution σ = 6.5 uma

Multi-nucleon reaction in direct kinematics

Nishio experiments

- ✔ Numerous fissioning systems accessible.
- \sim Evolution with E^{*} (10 MeV bins)
	- ➔ Probing the shell effect damping.
	- ➔ Mass distribution only.
	- ➔ No Z information.

Direct kinamtics: conclusion

A lot of different experimental approches

- ➔ With neutron beam
	- \sim Lot of data.
	- \cdot Knowledge of the excitation energy degree of freedom.
	- \sim Activation technique \rightarrow cumulative yields.
	- ✔ 2E-2v spectrometers.
	- ✔ Logengrin spectrometer.
	- ✗ Limited Z information.
- ➔ Multi-nucleon transfer
	- ✔ Multiple fissioning systems accessible.
	- \cdot Probing the shell damping with E^{*}.
	- ✔ Only mass distribtuion with limited resolution.
	- ✗ No Z information.

W WY

3 Inverse kinematics

XXXXXXXXXXXXXXXXXXXXXX

- Primary beam of 238 U at 1 GeV/u.
- Fragmentation of 238 U on a Be target and production of cocktail beams with a selection in (Brho, ΔE).
- Transportation through the FRS of the cocktail beams to the experimental cave.

- Pioneer experiment 25 years ago by K.-H. Schmidt K.-H. Schmidt et al. Nucl. Phys. A 665 (2000) 221
- Fragment charge distribution measured of numerous fissioning systems
- Important results: stabilization of $Z_H = 54$

- Coulomb induced fission of the relativistic beams (around 750 MeV/u)
	- ✔ Large cross section (around 2-3 barns).
	- \times <E*> around 14 MeV.

- Coulomb induced fission of the relativistic beams (around 750 MeV/u)
	- ✔ Large cross section (around 2-3 barns).
	- \times <E*> around 14 MeV.
- Both fission fragments are identified in coincidence in the SOFIA spectrometer (both charge and masse)

- Coulomb induced fission of the relativistic beams (around 750 MeV/u)
	- ✔ Large cross section (around 2-3 barns).
	- \times <E*> around 14 MeV.
- Both fission fragments are identified in coincidence in the SOFIA spectrometer (both charge and masse)
	- $·$ $ΔZ = 0.31$ charge unit
	- \angle \triangle A = 0.55 to 0.80 mass unit

The SOFIA experiments

E. Pellereau *et al.* Phys. Rev. C **95**, 054603 (2017) J-.F. Martin *et al.* Phys. Rev. C **104**, 044602 (2021) A. Chatillon *et al.* Phys. Rev. C **99**, 054628 (2019) A. Chatillon *et al.* Phys. Rev. Lett. **124**, 202502 (2020) A. Chatillon *et al.* Phys. Rev. C **106**, 024618 (2022)

 1.46

1.48

SOFIA: Ac

54.

 $\widehat{\vec{N}}$ 53.5 53

52.5

39.5

38.5 38 $\widehat{\mathcal{R}}$ 37.5

> 36.5 36 35.5 35

 $Th -$

Pa

 11 44 K.-H. Schmidt: Ac \div

 $Th -$

Pa o

 $H \rightarrow 0$

1.5 1.52 1.54 1.56

 $N_{\rm CN}/Z_{\rm CN}$ ratio of the compound nucleus

1.58

CONTRACTOR

The SOFIA experiments

E. Pellereau *et al.* Phys. Rev. C **95**, 054603 (2017) J-.F. Martin *et al.* Phys. Rev. C **104**, 044602 (2021) A. Chatillon *et al.* Phys. Rev. C **99**, 054628 (2019) A. Chatillon *et al.* Phys. Rev. Lett. **124**, 202502 (2020) A. Chatillon *et al.* Phys. Rev. C **106**, 024618 (2022)

W

The SOFIA experiments

Fission yields to probe fission modes

S. Steinhauser *et al.* Thesis work

N W

Fission yields to probe fission modes

S. Steinhauser *et al.* Thesis work

W

Fission yields to probe fission modes

➔ **What mechanism responsible of this new asymmetric split ?** ➔ **What shell effect ?** ➔ **What are the boundaries?**

➔ **...**

N W

Trigged a lot of experimental activities

- **β-decay delayed fission**
	- ➔ Only a few nuclei accessible with this technique
	- $\rightarrow \,$ We need $\emph{Q}_{\rm \beta}$ of the order B $_{\rm f}$
	- ➔ Probe low energy fission
	- ➔ Measure mass ratio M1/M2.

A. N. Andreyev *et al*. Phys. Rev. Lett. **105**, 252502 (2010) L. Ghys **et al.** Phys. Rev. C **90** 041301R (2014)

Trigged a lot of experimental activities

- **Fusion-fission**
	- ➔ A selection of beam and target to access neutron-deficient systems.
	- ➔ Large excitation energy => vanishing of structure effects
	- \rightarrow Only mass distribution with a resoltuion of $\sigma \approx 3$ -5 u.

K. Nishio *et al.* Phys. Lett. B **748**, 89-94 (2015)

E_{lab}=197.2 MeV

180

90

 $36Ar + 144Sm$ -> 180 Hg*

 $E^* = 65.5$ MeV (41.2 MeV)

Fusion-fission experiments

● **Fusion-fission**

- → Three different experiments studying ¹⁷⁸Pt
	- ➔ Tsekhanovich et al
		- \sim 142Nd target and 36Ar beam at 155, 170 and 180 MeV at JAEA.
		- ✔ FFMD measured using two-arms (microchannel plate + MWPC) → **Fitted with 2 modes.**

N W

Fusion-fission experiments

- **Fusion-fission**
	- \cdot Three different experiments studying 178 Pt
		- ➔ Tsekhanovich et al
			- \sim 142Nd target and 36Ar beam at 155, 170 and 180 MeV at JAEA.
			- \sim FFMD measured using two-arms (microchannel plate + MWPC) → **Fitted with 2 modes.**

- ➔ Kozulin et al
	- \sim 142Nd target and 36Ar beam at 172, 192 and 212 MeV at Dubna.
	- \cdot FFMD measured with CORSET spectromter → **Fitted with 4 modes.**

Fusion-fission experiments

- ➔ Kozulin et al
	- \sim 144 Sm target and 34 S beam at 146 MeV at ANU.
	- \cdot FFMD measured with CUBF fission spectromter → **Best fitted with 3 modes.**

B.M.A. *et al.* Phys. Lett. B **837**, 137655 (2023)

- Fusion-fission is an interesting tool to probe fission modes in neutron-deficent region.
- But only FFMD is measured with resolution of 3 to 5 uma.
- Known excitation energy but high
- Gaussian fit to extract different fission modes
- 3 experiments \rightarrow 3 different interpretations

Trigged a lot of experimental activities

- **Fusion-fission so study ¹⁷⁸Hg at GANIL**
	- ➔ Mass distribution + charge distribution of the light fragment.
	- ➔ Large excitation energy => vanishing of shell effects.
	- ➔ Evidence of proton shell effect ?

W

New SOFIA experiment in 2021

- **100 fissioning systems in one experiment !**
- **Establishing a connection between the neutron-deficient subleab region and the actinide region.**
- ✗ No control of the excitation energy event by event

N W

Global view of the studied systems

- 100 fissioning systems in one experiment
	- ✔ 12 FRS settings
	- \cdot From 175 Pt up to 220 Th
	- ✔ Very exotic systems
	- ✔ Bridge between the neutron-deficeint sub-lead region and the actinide region.

Fission yields

- Selection of a given fission system (here ^{189}Pb)
- Event selection « Coulomb excitation » ($Z_{\text{sum}} = Z_{\text{beam}}$)
- Nuclear subtracted charge distribution of the Coulomb-induced fission
- Extraction of the fission charge yields for 100 fissioning systems in a systematic and coherent way.

Y(Z) (%)

Charge yields

 $\underline{\text{ca}}$

W

Multi-nucleon transfer experiment with VAMOS

- New opportunites to study fission using heavy ion reactions
	- ✔ **Fusion/Fission (VAMOS)**
	- ✔ **Transfer induced fission (VAMOS+PISTA)**
- Inverse kinematics
	- \cdot Using a ²³⁸U beam at 6 MeV/u.
	- \cdot The boost provide the capability of fission-fragments nuclear charge identification.
	- ✔ Coulomb energies provide low angular straggling and small boost \rightarrow enable good volicty resolution in the center of mass.
- Use of surrogate reaction
	- ✔ Access to « exotic » fissioning system, not possible in n-induced fission
	- ✔ Explore the impact of the incoming channel into the final fission fragment distributions.

What can be done at GANIL with VAMOS

VAMOS : Charge and mass identification

• Detection of the fission fragment few tens of nanoseconds after fission.

A rich activity with SPIDER and VAMOS

The coupling of SPIDER and VAMOS provided a lot of data, but with a limited resolution in excitation energy.

- ✔ M. Caamano et al. PRC 88, 024605 (2013)
- ✔ C. Rodriguez-Tajes et al. PRC 89, 024614 (2014)
- ✔ Ramos et al. PRC 97, 054612 (2018)
- ✔ Ramos et al. PRL 123, 092503 (2019)
- ✔ Ramos et al. PRC 99, 024615 (2019)

✔

...

A rich activity with SPIDER and VAMOS

- Direct measurement of isotopic fission yields for different fissioning system, with different excitation energy
- \cdot Evidence of shell effect around Z=50 looking at the nuclear charge polarization.
- Structural effects that disappear at higher excitation energy.
- Need a better characterization of the fissioning system in A, Z **and E*.**

Major upgrade : PISTA, a CEA-DAM/GANIL collaboration

PISTA : 8 telescopes in a petal shape

• **ΔE first stage**

- 100 um thick
- 91 horizontal strips
- Dynamic range : 0-60 MeV

• **E second stage**

- \cdot 1 mm thick
- 57 vertical strips
- Dynamic range : 0-200 MeV

Goal : Probe the evolution of fission yields as a function of excitation energy.

Major upgrade : PISTA, a CEA-DAM/GANIL collaboration

What's new with PISTA (compared to SPIDER)?

- \checkmark Angular coverage : 30-60 deg
- \checkmark Better identification of the ejectile
- \checkmark High granularity means better resolution in E* (FMHW = 700 keV)
- \checkmark Dedicated electronics capable of sustaining higher count rate.
- **Overall, a much better characterization of the fissioning system (A,Z,E*)**

Major upgrade : PISTA

PISTA analysis done by Lucas Bégué-Guillou

Fission yields with VAMOS

- **Mass distribution**
	- ✔ Typical resolution of ΔA/A=0.8%
	- \sim For a given excitation energy range (bin of 1 MeV) we get the mass yield using a multi-gaussian fit.
	- ✔ Same work for different excitation energy
		- \rightarrow Yield evolution

4 Conclusion

XXXXXXXXXXXXXXXXXXXXXX

Conclusion

- Measurement of fission yields is challenging
	- ✔ Different experimental approaches exist and are complementary.
- Direct kinematics techniques provide a data especially for mass distribution and neutron multiplicities.
	- \cdot charge distribution limited to Z<38 with.
	- ✔ Gamma spectroscopy can be also used to for isotope identification. But relies on known nuclear structure properties.
- Inverse kinematics techniques allow the measurements of both charge and mass.
	- ✔ The kinematic boost enables the measurement of the fission fragment charge.
	- ✔ Access exotic systems.
- **Overall, the ensemble of measured data are very useful for theoreticians to constrain the development of nuclear fission models.**

N BOR

Thank you!