

Fission fragment yields: Overview of recent measurements

ENST Workshop: Dynamics of Nuclear Fission

December 2024, Saclay

Pierre Morfouace^{1,2}

¹ CEA, DAM, DIF, 91297 Arpajon, France
 ² Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France

Outlook

1. Motivations

- Why do we measure fission fragment yields?
- 2. Direct kinematics
 - Activation technique
 - "In-flight" methods
- 3. Inverse kinematics
 - GSI/SOFIA
 - fusion/fission
 - VAMOS
- 4. Conclusion

Motivations

Fission fragments: definition

- Primary fission fragments : before prompt neutron emission
- Secondary fission fragments: after neutron evaporation → *independent yields*
- **Fission products :** after β -decay \rightarrow *cumulative yields*

Why measuring fission fragments?

- Important fondamental questions/open questions
 - The fission yields are the signatures of the underlying nuclear structure effects in the fission process.
 - These yields provide crucial information about reaction mechanisms, energy dissipation, and the underlying dynamics of the process.
 - What shell effetcts at stake ?
 - Shell effect damping with excitation energy.
 - Excitation energy sharing, deformation at scission.
 - Fission recycling in r-process.

• Important for nuclear applications

- Defense
- Burnup, reactor simulation
- Gen-IV using fast neutrons

Direct kinematics

Direct kinematics: Activation

Activation technique

- Neutron energy well defined \rightarrow Excitation energy well defined.
- Irradiation of an actinide sample from neutron flux of known energy.
- Radiochemistry and/or gamma spectropscopy.
- Access to cumulative yield.
- Try shorter run cycle to measure short-lived fragments

M. B. Chadwick *et al.* Nuclear Data Sheets **111** (2010) 2923-2964

- J. Laurec et al. Nuclear Data Sheets 111 (2010) 2965-2980
- M. E. Gooden et al. Nuclear Data Sheets **131** (2016) 319-356
- M. E. Gooden et al. Phys. Rev. C 109 04460 (2024)

Direct kinematics: Activation, recent measurements at TUNL

In flight method : neutron capture on actinide target

- Gamma spectroscpy after few days of irradiation
- Rather thick target
- Obsolute cumulative fission product yields.
- ✓ Different neutron energies \rightarrow Evolution of fragment yields

N. Boucheneb et al. Nuclear Physics A 535 (1991)

Fragment Mass (amu)

Light

~

r

~

"In-flight" methods : 2E-2v methods

In flight method : neutron induced fission on actinides.

- Detect both fragments in coincidence.
- Measure their energy typically in ionization chamber.
- Measure time-of-flight.
- Historically the Cosi Fan Tutte provided a lot of excellent data.
- Other 2E-2v spectrometers
 - Spider C. Arnold *et al.* NIM A 764 (2014)
 - Verdi S. Oberstedt et al. EPJ Web of Conferences Vol. 8 (EDP Sciences) p. 03005
 - FALSTAFF D. Doré at al. Nuclear Data Sheets 119 (2014) 346-348

"In-flight" methods: FALSTAFF 2E-2v

FALSTAFF goals :

- Detect both fragments in coincidence.
- Measure their kinetic energy.
- Identify their mass. Mass before neutron evaporation obained via the 2V method.
- Spatial resolution around 2 mm.
- Timing resolution around 120 ps.

D. Doré *at al.* Nuclear Data Sheets **119** (2014) 346-348 Q. Deshayes *et al.* EPJ Web of Conferences **239** 05012 (2020)

"In-flight" methods: FALSTAFF 2E-2v

FALSTAFF goals :

- Detect both fragments in coincidence.
- Measure their kinetic energy.
- Identify their mass. Mass before neutron evaporation obained via the 2V method.
- Spatial resolution around 2 mm.
- Timing resolution around 120 ps.
- Provide information on their nuclear charges.
- Future experiments at NFS to measure the evolution of yields as a function of the neutron energy.

D. Doré *at al.* Nuclear Data Sheets **119** (2014) 346-348 Q. Deshayes *et al.* EPJ Web of Conferences **239** 05012 (2020)

"In-flight" methods: Z measurement

In flight method : neutron capture on actinide target

- Neutron induced fission (often thermal).
- Knowledge of the excitation energy degree of freedom.
- Measure of the charge above 40 impossible.
 - → Example : Lohengrin spectrometer at ILL → charge up to $Z \approx 40$.
- \checkmark Needs target \rightarrow access to quasi-stable elements
- Partial isotopic yields.

D. Rochman et al. Nucl. Phys. A 710 3-28 (2002)

"In-flight" methods: The Lohengrin spectrometer

Lohengrin spectrometer

- Thermal neutron induced fission
- Precise measurement of fission product mass yields Y(A)
 - → Selection with mass over ionic charge A/q
 - Selection with kinetic energy over ionic charge E/q
- Measurement of fission product isotopic yields P(Z)
 - → Using High purity Germanium detectors.
 - Results are dependent on the knowledge of nuclear strucutre (decay scheme...)

"In-flight" methods: The Lohengrin spectrometer

Lohengrin spectrometer recent results

- On ²⁴¹Pu(n_{th},f)
- Few data exist for ²⁴¹Pu because complicated to make a target.
- But important for burn up.
- GEF underestimate the symmetry region

S. Julien-Laferrière PhD Thesis

"In-flight" methods: The Lohengrin spectrometer

Lohengrin spectrometer recent results

On ²⁴¹Pu(n_{th},f)

16000

14000

12000

8000

6000

4000

400

Ncoun

- GEF underestimate the symmetry region
- ✓ Extraction of isotopic yields for some masses usin HPGe → Rely on known nuclear structure decay schemes.

A = 140 q = 22

E_k = 64 MeV

140Cs

1000

y energy [keV]

1200

140Cs

600

⁴¹Ar

40 19

140 54 Xe

Multi-nucleon reaction in direct kinematics

Nishio experiments

- \sim ¹⁸O beam of 157 MeV on ²³²Th target.
- Depending on the transfer channel different fissioning system accessible !
 - Detection of the ejectile in the silicon detector.
 - Characterization of the fissioning system
 - Excitation energy with the missing mass technique
- Identification of the fragment mass with the MWPC
 - → Resolution σ = 6.5 uma

Multi-nucleon reaction in direct kinematics

Nishio experiments

- Numerous fissioning systems accessible.
- Evolution with E* (10 MeV bins)
 - Probing the shell effect damping.
 - Mass distribution only.
 - No Z information.

Direct kinamtics: conclusion

A lot of different experimental approches

- With neutron beam
 - Lot of data.
 - Knowledge of the excitation energy degree of freedom.
 - \checkmark Activation technique \rightarrow cumulative yields.
 - 2E-2v spectrometers.
 - Logengrin spectrometer.
 - Limited Z information.
- → Multi-nucleon transfer
 - Multiple fissioning systems accessible.
 - Probing the shell damping with E*.
 - Only mass distribution with limited resolution.
 - No Z information.

3 Inverse kinematics

- Primary beam of ²³⁸U at 1 GeV/u.
- Fragmentation of 238 U on a Be target and production of cocktail beams with a selection in (Brho, Δ E).
- Transportation through the FRS of the cocktail beams to the experimental cave.

- Pioneer experiment 25 years ago by K.-H. Schmidt K.-H. Schmidt et al. Nucl. Phys. A 665 (2000) 221
- Fragment charge distribution measured of numerous fissioning systems
- Important results: stabilization of Z_H =54

- Coulomb induced fission of the relativistic beams (around 750 MeV/u)
 - Large cross section (around 2-3 barns).
 - * <E*> around 14 MeV.

- Coulomb induced fission of the relativistic beams (around 750 MeV/u)
 - Large cross section (around 2-3 barns).
 - * <E*> around 14 MeV.
- Both fission fragments are identified in coincidence in the SOFIA spectrometer (both charge and masse)

- Coulomb induced fission of the relativistic beams (around 750 MeV/u)
 - Large cross section (around 2-3 barns).
 - * <E*> around 14 MeV.
- Both fission fragments are identified in coincidence in the SOFIA spectrometer (both charge and masse)
 - $\checkmark \Delta Z = 0.31$ charge unit
 - \checkmark ΔA = 0.55 to 0.80 mass unit

The SOFIA experiments

E. Pellereau *et al.* Phys. Rev. C **95**, 054603 (2017)
J-.F. Martin *et al.* Phys. Rev. C **104**, 044602 (2021)
A. Chatillon *et al.* Phys. Rev. C **99**, 054628 (2019)
A. Chatillon *et al.* Phys. Rev. Lett. **124**, 202502 (2020)
A. Chatillon *et al.* Phys. Rev. C **106**, 024618 (2022)

1.48

SOFIA: Ac

54.5

(^HZ^H 53.5 53

52.5

39.5

38.5 38 \overrightarrow{D} 37.5

36.5 36 35.5 35 1.46

Th -

Pa 🔹

-

11

K.-H. Schmidt: Ac ----

Th ----

Pa o

U -0-

1.5 1.52 1.54 1.56

 $N_{\rm CN}/Z_{\rm CN}$ ratio of the compound nucleus

1.58

The SOFIA experiments

E. Pellereau *et al.* Phys. Rev. C **95**, 054603 (2017)
J-.F. Martin *et al.* Phys. Rev. C **104**, 044602 (2021)
A. Chatillon *et al.* Phys. Rev. C **99**, 054628 (2019)
A. Chatillon *et al.* Phys. Rev. Lett. **124**, 202502 (2020)
A. Chatillon *et al.* Phys. Rev. C **106**, 024618 (2022)

The SOFIA experiments

Fission yields to probe fission modes

S. Steinhauser et al. Thesis work

Fission yields to probe fission modes

S. Steinhauser et al. Thesis work

Fission yields to probe fission modes

 What mechanism responsible of this new asymmetric split ?
 What shell effect ?
 What are the boundaries?

→

Trigged a lot of experimental activities

- β-decay delayed fission
 - Only a few nuclei accessible with this technique
 - We need Q_{β} of the order B_{f}
 - → Probe low energy fission
 - → Measure mass ratio M1/M2.

A. N. Andreyev *et al.* Phys. Rev. Lett. **105**, 252502 (2010) L. Ghys **et al.** Phys. Rev. C **90** 041301R (2014)

Trigged a lot of experimental activities

- Fusion-fission
 - A selection of beam and target to access neutron-deficient systems.
 - Large excitation energy => vanishing of structure effects
 - → Only mass distribution with a resoltuion of $\sigma \approx$ 3-5 u.

K. Nishio et al. Phys. Lett. B 748, 89-94 (2015)

E_{lab}=197.2 MeV

180

90

 $^{36}Ar + ^{144}Sm -> ^{180}Hg^*$

E* = 65.5 MeV (41.2 MeV)

Fusion-fission experiments

• Fusion-fission

- → Three different experiments studying ¹⁷⁸Pt
 - Tsekhanovich et al
 - \sim ^{142}Nd target and ^{36}Ar beam at 155, 170 and 180 MeV at JAEA.
 - ✓ FFMD measured using two-arms (microchannel plate + MWPC) \rightarrow Fitted with 2 modes.

Fusion-fission experiments

- **Fusion-fission** •
 - Three different experiments studying ¹⁷⁸Pt
 - Tsekhanovich et al
 - \sim ¹⁴²Nd target and ³⁶Ar beam at 155, 170 and 180 MeV at JAEA.
 - FFMD measured using two-arms (microchannel plate + MWPC) \rightarrow Fitted with 2 modes.

- Kozulin et al
 - \sim ¹⁴²Nd target and ³⁶Ar beam at 172, 192 and 212 MeV at Dubna.
 - FFMD measured with CORSET spectromter \rightarrow **Fitted with 4 modes.**

Fusion-fission experiments

- → Kozulin et al
 - ¹⁴⁴Sm target and ³⁴S beam at 146 MeV at ANU.
 - ✓ FFMD measured with CUBE fission spectromter → Best fitted with 3 modes.

B.M.A. et al. Phys. Lett. B 837, 137655 (2023)

- Fusion-fission is an interesting tool to probe fission modes in neutron-deficent region.
- But only FFMD is measured with resolution of 3 to 5 uma.
- Known excitation energy but high
- Gaussian fit to extract different fission modes
- 3 experiments \rightarrow 3 different interpretations

Trigged a lot of experimental activities

- Fusion-fission so study ¹⁷⁸Hg at GANIL
 - Mass distribution + charge distribution of the light fragment.
 - Large excitation energy => vanishing of shell effects.
 - → Evidence of proton shell effect ?

New SOFIA experiment in 2021

- 100 fissioning systems in one experiment !
- Establishing a connection between the neutron-deficient subleab region and the actinide region.
- * No control of the excitation energy event by event

Global view of the studied systems

- 100 fissioning systems in one experiment
 - 12 FRS settings
 - ✓ From ¹⁷⁵Pt up to ²²⁰Th
 - Very exotic systems
 - Bridge between the neutron-deficeint sub-lead region and the actinide region.

Fission yields

- Selection of a given fission system (here ¹⁸⁹Pb)
- Event selection « Coulomb excitation » ($Z_{sum} = Z_{beam}$)
- Nuclear subtracted charge distribution of the Coulomb-induced fission
- Extraction of the fission charge yields for 100 fissioning systems in a systematic and coherent way.

Y(Z) (%)

Charge yields

Multi-nucleon transfer experiment with VAMOS

- New opportunites to study fission using heavy ion reactions
 - Fusion/Fission (VAMOS)
 - Transfer induced fission (VAMOS+PISTA)
- Inverse kinematics
 - \checkmark Using a ^{238}U beam at 6 MeV/u.
 - The boost provide the capability of fission-fragments nuclear charge identification.
 - \checkmark Coulomb energies provide low angular straggling and small boost \rightarrow enable good volicty resolution in the center of mass.
- Use of surrogate reaction
 - Access to « exotic » fissioning system, not possible in n-induced fission
 - Explore the impact of the incoming channel into the final fission fragment distributions.

What can be done at GANIL with VAMOS

VAMOS : Charge and mass identification

• Detection of the fission fragment few tens of nanoseconds after fission.

A rich activity with SPIDER and VAMOS

The coupling of SPIDER and VAMOS provided a lot of data, but with a limited resolution in excitation energy.

- M. Caamano et al. PRC 88, 024605 (2013)
- C. Rodriguez-Tajes et al. PRC 89, 024614 (2014)
- Ramos et al. PRC 97, 054612 (2018)
- Ramos et al. PRL 123, 092503 (2019)
- Ramos et al. PRC 99, 024615 (2019)

· ...

A rich activity with SPIDER and VAMOS

- Direct measurement of isotopic fission yields for different fissioning system, with different excitation energy
- Evidence of shell effect around Z=50 looking at the nuclear charge polarization.
- Structural effects that disappear at higher excitation energy.
- Need a better characterization of the fissioning system in A, Z and E*.

Major upgrade : PISTA, a CEA-DAM/GANIL collaboration

PISTA: 8 telescopes in a petal shape

• ΔE first stage

- 100 um thick
- 91 horizontal strips
- Dynamic range : 0-60 MeV

• E second stage

- 1 mm thick
- 57 vertical strips
- Dynamic range : 0-200 MeV

Major upgrade : PISTA, a CEA-DAM/GANIL collaboration

What's new with PISTA (compared to SPIDER)?

- ✓ Angular coverage : 30-60 deg
- ✓ Better identification of the ejectile
- High granularity means better resolution in E* (FMHW = 700 keV)
- Dedicated electronics capable of sustaining higher count rate.
- Overall, a much better characterization of the fissioning system (A,Z,E*)

Major upgrade : PISTA

PISTA analysis done by Lucas Bégué-Guillou

Fission yields with VAMOS

- Mass distribution
 - $\, {\scriptstyle \checkmark}\,$ Typical resolution of $\Delta A/A{=}0.8\%$
 - For a given excitation energy range (bin of 1 MeV) we get the mass yield using a multi-gaussian fit.
 - Same work for different excitation energy
 - \rightarrow Yield evolution

Conclusion

Conclusion

- Measurement of fission yields is challenging
 - Different experimental approaches exist and are complementary.
- Direct kinematics techniques provide a data especially for mass distribution and neutron multiplicities.
 - charge distribution limited to Z<38 with.
 - Gamma spectroscopy can be also used to for isotope identification. But relies on known nuclear structure properties.
- Inverse kinematics techniques allow the measurements of both charge and mass.
 - $\boldsymbol{\checkmark}$ The kinematic boost enables the measurement of the fission fragment charge.
 - Access exotic systems.
- Overall, the ensemble of measured data are very useful for theoreticians to constrain the development of nuclear fission models.

Thank you!