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Fission fragments: definition

● Primary fission fragments : before prompt neutron emission 

● Secondary fission fragments: after neutron evaporation → independent yields

● Fission products : after β-decay→ cumulative yields
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Why measuring fission fragments?

● Important fondamental questions/open questions
✔ The fission yields are the signatures of the underlying nuclear structure effects in the fission 

process.
✔ These yields provide crucial information about reaction mechanisms, energy dissipation, and the 

underlying dynamics of the process.
✔ What shell effetcts at stake ?
✔ Shell effect damping with excitation energy.
✔ Excitation energy sharing, deformation at scission.
✔ Fission recycling in r-process.

● Important for nuclear applications
✔ Defense
✔ Burnup, reactor simulation
✔ Gen-IV using fast neutrons
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Direct kinematics2
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Direct kinematics: Activation

235U
n

E
n

236U

Activation technique
✔ Neutron energy well defined → Excitation energy well 

defined.

✔ Irradiation of an actinide sample from neutron flux of 
known energy.

✔ Radiochemistry and/or gamma spectropscopy.

✔ Access to cumulative yield.

✔ Try shorter run cycle to measure short-lived fragments

M. B. Chadwick et al. Nuclear Data Sheets 111 (2010) 2923-2964
J. Laurec et al. Nuclear Data Sheets 111 (2010) 2965-2980
M. E. Gooden et al. Nuclear Data Sheets 131 (2016) 319-356
M. E. Gooden et al. Phys. Rev. C 109 04460 (2024)

239Pu(n,f)
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Direct kinematics: Activation, recent measurements 
at TUNL

M. E. Gooden et al. Phys. Rev. C 109 04460 (2024)

In flight method : neutron capture on actinide target
✔ Gamma spectroscpy after few days of irradiation
✔ Rather thick target
✔ Obsolute cumulative fission product yields.
✔ Different neutron energies → Evolution of fragment yields
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“In-flight” methods : 2E-2v methods
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In flight method : neutron induced fission on actinides.

✔ Detect both fragments in coincidence.

✔ Measure their energy typically in ionization chamber.

✔ Measure time-of-flight.

✔ Historically the Cosi Fan Tutte provided a lot of excellent data.

A. Oed et al. Nucl. Instr. and Meth. In Physics Research 219  (1984)
N. Boucheneb et al. Nuclear Physics A 535 (1991)

Resolution 0.5 uma
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“In-flight” methods : 2E-2v methods
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In flight method : neutron induced fission on actinides.

✔ Detect both fragments in coincidence.

✔ Measure their energy typically in ionization chamber.

✔ Measure time-of-flight.

✔ Historically the Cosi Fan Tutte provided a lot of excellent data.

✔ Other 2E-2v spectrometers
➢ Spider  C. Arnold et al. NIM A 764 (2014)

➢ Verdi S. Oberstedt et al. EPJ Web of Conferences Vol. 8 (EDP Sciences) p. 03005

➢ FALSTAFF D. Doré at al. Nuclear Data Sheets 119 (2014) 346-348
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“In-flight” methods: FALSTAFF 2E-2v

FALSTAFF goals :
✔ Detect both fragments in coincidence.
✔ Measure their kinetic energy.
✔ Identify their mass. Mass before neutron 

evaporation obained via the 2V method.
✔ Spatial resolution around 2 mm.
✔ Timing resolution around 120 ps.

D. Doré at al. Nuclear Data Sheets 119 (2014) 346-348
Q. Deshayes et al. EPJ Web of Conferences 239 05012 (2020)

SED
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“In-flight” methods: FALSTAFF 2E-2v

FALSTAFF goals :
✔ Detect both fragments in coincidence.
✔ Measure their kinetic energy.
✔ Identify their mass. Mass before neutron 

evaporation obained via the 2V method.
✔ Spatial resolution around 2 mm.
✔ Timing resolution around 120 ps.
✔ Provide information on their nuclear charges.
✔ Future experiments at NFS to measure the 

evolution of yields as a function of the neutron 

energy.

D. Doré at al. Nuclear Data Sheets 119 (2014) 346-348
Q. Deshayes et al. EPJ Web of Conferences 239 05012 (2020)

SED
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“In-flight” methods: Z measurement  
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In flight method : neutron capture on 
actinide target
✔ Neutron induced fission (often thermal).
✔ Knowledge of the excitation energy degree of 

freedom.
✗ Measure of the charge above 40 impossible.

➔ Example : Lohengrin spectrometer at ILL 
→ charge up to Z ≈ 40.

✔ Needs target → access to quasi-stable 
elements

✔ Partial isotopic yields. D. Rochman et al. Nucl. Phys. A 710 3-28 (2002)
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“In-flight” methods: The Lohengrin spectrometer 

A. Chebboubi PhD Thesis

Lohengrin spectrometer
✔ Thermal neutron induced fission
✔ Precise measurement of fission product mass yields Y(A)

➔ Selection with mass over ionic charge A/q
➔ Selection with kinetic energy over ionic charge E/q

✔ Measurement of fission product isotopic yields P(Z)
➔ Using High purity Germanium detectors .
✗ Results are dependent on the knowledge of nuclear strucutre 

(decay scheme...)



15

“In-flight” methods: The Lohengrin spectrometer 

S. Julien-Laferrière PhD ThesisLohengrin spectrometer recent results
✔ On 241Pu(nth,f)
✔ Few data exist for 241Pu because 

complicated to make a target.
✔ But important for burn up.
✔ GEF underestimate the symmetry 

region
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“In-flight” methods: The Lohengrin spectrometer 

S. Julien-Laferrière PhD ThesisLohengrin spectrometer recent results
✔ On 241Pu(nth,f)
✔ GEF underestimate the symmetry region
✔ Extraction of isotopic yields for some masses using 

HPGe → Rely on known nuclear structure decay 
schemes.
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Multi-nucleon reaction in direct kinematics

Nishio experiments
✔ 18O beam of 157 MeV on 232Th target.
✔ Depending on the transfer channel different 

fissioning system accessible !
➔ Detection of the ejectile in the silicon 

detector.
➔ Characterization of the fissioning system
➔ Excitation energy with the missing mass 

technique
✔ Identification of the fragment mass with the 

MWPC
➔ Resolution σ = 6.5 uma

R. Leguillon et al. Phys. Lett. B 761 125-130 (2016)
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Multi-nucleon reaction in direct kinematics

Nishio experiments
✔ Numerous fissioning systems 

accessible.
✔ Evolution with E* (10 MeV bins)

➔ Probing the shell effect damping.
➔ Mass distribution only.
➔ No Z information.
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Direct kinamtics: conclusion

A lot of different experimental approches
➔ With neutron beam

✔ Lot of data.
✔ Knowledge of the excitation energy degree of freedom.
✔ Activation technique → cumulative yields.
✔ 2E-2v spectrometers.
✔ Logengrin spectrometer.
✗ Limited Z information.

➔ Multi-nucleon transfer
✔ Multiple fissioning systems accessible.
✔ Probing the shell damping with E*.
✔ Only mass distribtuion with limited resolution.
✗ No Z information.
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Inverse kinematics3
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The inverse kinematics at relativistic energies

● Primary beam of 238U at 1 GeV/u.

● Fragmentation of 238U on a Be target and production 

of cocktail beams with a selection in (Brho, ΔE).

● Transportation through the FRS of the cocktail 

beams to the experimental cave. 
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The inverse kinematics at relativistic energies

● Pioneer experiment 25 years ago by K.-H. Schmidt 
K.-H. Schmidt et al. Nucl. Phys. A 665 (2000) 221

● Fragment charge distribution measured of numerous 

fissioning systems

● Important results: stabilization of ZH=54
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The inverse kinematics at relativistic energies

● Coulomb induced fission of the relativistic beams (around 750 

MeV/u)

✔ Large cross section (around 2-3 barns).

✗ <E*> around 14 MeV.
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The inverse kinematics at relativistic energies

● Coulomb induced fission of the relativistic beams (around 750 
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● Both fission fragments  are identified in coincidence in the 

SOFIA spectrometer (both charge and masse)
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The inverse kinematics at relativistic energies

● Coulomb induced fission of the relativistic beams (around 750 

MeV/u)

✔ Large cross section (around 2-3 barns).

✗ <E*> around 14 MeV.

● Both fission fragments  are identified in coincidence in the 

SOFIA spectrometer (both charge and masse)

✔ ΔZ = 0.31 charge unit

✔ ΔA = 0.55 to 0.80 mass unit
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K.-H. Schmidt et al. NPA 665 (2000) 221

SOFIA

In this region : Z≈54 (Xe) stabilisation

The SOFIA experiments

E. Pellereau et al. Phys. Rev. C 95, 054603 (2017)
J-.F. Martin et al. Phys. Rev. C 104, 044602 (2021)
A. Chatillon et al. Phys. Rev. C 99, 054628 (2019)
A. Chatillon et al. Phys. Rev. Lett. 124, 202502 (2020)
A. Chatillon et al. Phys. Rev. C 106, 024618 (2022)
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K.-H. Schmidt et al. NPA 665 (2000) 221

SOFIA

The SOFIA experiments

E. Pellereau et al. Phys. Rev. C 95, 054603 (2017)
J-.F. Martin et al. Phys. Rev. C 104, 044602 (2021)
A. Chatillon et al. Phys. Rev. C 99, 054628 (2019)
A. Chatillon et al. Phys. Rev. Lett. 124, 202502 (2020)
A. Chatillon et al. Phys. Rev. C 106, 024618 (2022)

A new compact symmetric fission 
mode in neutron-deficient Th.
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SOFIA

The SOFIA experiments

A. Chatillon et al. Phys. Rev. Lett. 124, 202502 (2020)

A new compact symmetric fission 
mode in neutron-deficient Th.



29

S. Steinhauser et al. Thesis work

K.-H. Schmidt et al. NPA 665 (2000) 221

SOFIA

Fission yields to probe fission modes
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S. Steinhauser et al. Thesis work

A. N. Andreyev et al. Phys. Rev. 
Lett. 105, 252502 (2010)

K.-H. Schmidt et al. NPA 665 (2000) 221

SOFIA

Fission yields to probe fission modes
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➔ What mechanism responsible of this 
new asymmetric split ?
➔ What shell effect ?

➔ What are the boundaries?
➔ ...

A new island of asymmetric fission ?

Fission yields to probe fission modes
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Trigged a lot of experimental activities

● β-decay delayed fission
➔ Only a few nuclei accessible with this technique
➔ We need Q

β
 of the order B

f

➔ Probe low energy fission
➔ Measure mass ratio M1/M2.

A. N. Andreyev et al. Phys. Rev. Lett. 105, 252502 (2010)
L. Ghys et al. Phys. Rev. C 90 041301R (2014)

180Tl 194At 196At 202Fr
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● Fusion-fission
➔ A selection of beam and target to access 

neutron-deficient systems.
➔ Large excitation energy => vanishing of 

structure effects
➔ Only mass distribution with a resoltuion of σ ≈ 3-

5 u.

K. Nishio et al. Phys. Lett. B 748, 89-94 (2015)

E. Prasad et al. Phys. Lett. B 811, 135941 (2020) E. Prasad et al. Phys. Rev. C 91, 064605 (2015)

Trigged a lot of experimental activities
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● Fusion-fission
➔ Three different experiments studying 178Pt

➔ Tsekhanovich et al
✔ 142Nd target and 36Ar beam at 155, 170 and 

180 MeV at JAEA.
✔ FFMD measured using two-arms (micro-

channel plate + MWPC) → Fitted with 2 
modes.

I. Tsekhanovich et al. Phys. Lett. B 790, 583-588 (2019)

Fusion-fission experiments
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● Fusion-fission
 Three different experiments studying 178Pt

➔ Tsekhanovich et al
✔ 142Nd target and 36Ar beam at 155, 170 and 

180 MeV at JAEA.
✔ FFMD measured using two-arms (micro-

channel plate + MWPC) → Fitted with 2 
modes.

E. M. Kozulin et al. Phys. Rev. C 105, 014607 (2022)
I. Tsekhanovich et al. Phys. Lett. B 790, 583-588 (2019)

➔ Kozulin et al
✔ 142Nd target and 36Ar beam at 172, 192 

and 212 MeV at Dubna.
✔ FFMD measured with CORSET 

spectromter → Fitted with 4 modes.

Fusion-fission experiments
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B.M.A. et al. Phys. Lett. B 837, 137655 (2023)

Fusion-fission experiments

➔ Kozulin et al
✔ 144Sm target and 34S beam at 146 MeV 

at ANU.
✔ FFMD measured with CUBE fission 

spectromter → Best fitted with 3 
modes.

● Fusion-fission is an interesting tool to probe fission modes in 
neutron-deficent region.

● But only FFMD is measured with resolution of 3 to 5 uma.
● Known excitation energy but high
● Gaussian fit to extract different fission modes 
● 3 experiments → 3 different interpretations
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● Fusion-fission so study 178Hg at GANIL
➔ Mass distribution + charge distribution of the 

light fragment.
➔ Large excitation energy => vanishing of shell 

effects.
➔ Evidence of proton shell effect ?

C. Schmitt et al. Phys. Rev. Lett. 126, 132502 (2021)

Trigged a lot of experimental activities
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● 100 fissioning systems in one experiment !
● Establishing a connection between the neutron-deficient 

subleab region and the actinide region.
✗ No control of the excitation energy event by event

New SOFIA experiment in 2021
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Global view of the studied systems

● 100 fissioning systems in one experiment

✔ 12 FRS settings

✔ From 175Pt up to 220Th

✔ Very exotic systems

✔ Bridge between the neutron-deficeint sub-lead 

region and the actinide region.
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Fission yields

● Selection of a given fission system (here 189Pb)

● Event selection « Coulomb excitation » (Z
sum

 = Z
beam

)

● Nuclear subtracted charge distribution of the 

Coulomb-induced fission

● Extraction of the fission charge yields for 100 

fissioning systems in a systematic and coherent 

way.
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Charge yields

First experimental evidence of Z=36 
stabilization in the light fragment !
P. Morfouace et al. Submitted
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Multi-nucleon transfer experiment with VAMOS

● New opportunites to study fission using heavy ion 

reactions
✔ Fusion/Fission (VAMOS)
✔ Transfer induced fission (VAMOS+PISTA)

● Inverse kinematics
✔ Using a 238U beam at 6 MeV/u.
✔ The boost provide the capability of fission-fragments 

nuclear charge identification.
✔ Coulomb energies provide low angular straggling and 

small boost → enable good volicty resolution in the 

center of mass.

● Use of surrogate reaction
✔ Access to « exotic » fissioning system, not possible in 

n-induced fission
✔ Explore the impact of the incoming channel into the 

final fission fragment distributions.
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What can be done at GANIL with VAMOS
• Inverse kinematics using a beam of 238U 

around Coulomb barrier
 Access to fissioning system heavier 

than 238U

• Transfer-induced fission reaction
 Selection of the fissioning system
 Measurement of the excitation energy 

event by event

• Gamma-ray spectrometer
 Probe the excitation energy sharing 

between the fission fragments
 Evaluate the excitation probability of 

the target-like nuclei

238U @ 6 

MeV/u

VAMOS
 Direct and complete isotopic 

fission fragment yields Y(A,Z)
 Precise center-of-mass fission 

fragment velocities

SPIDER → PISTA
 Characterization of the 

fissioning system
 A, Z
 (Elab,lab) -> E*

VAMOS second arm
 Total kinetic energies 
 2v measurement

Recoil

238U
12C

240Pu 242Pu

10Be 8Be -> 2α

+2p +α

14C

236U -2n
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VAMOS : Charge and mass identification

Typical resolution of ΔZ/Z=1.5% Typical resolution of ΔA/A=0.8%

● Detection of the fission fragment few tens of nanoseconds after fission.
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A rich activity with SPIDER and VAMOS

The coupling of SPIDER and VAMOS provided a lot of data, but with a 
limited resolution in excitation energy.
✔ M. Caamano et al. PRC 88, 024605 (2013)
✔ C. Rodriguez-Tajes et al. PRC 89, 024614 (2014)
✔ Ramos et al. PRC 97, 054612 (2018)
✔ Ramos et al. PRL 123, 092503 (2019)
✔ Ramos et al. PRC 99, 024615 (2019)
✔ ...

● ΔE = 70 um thickness
● E = 1 mm thickness
● 1,5 mm strips
● 22.5 deg sectors
● Angular coverage : 30 – 47 deg
● Excitation energy resoltuion : FWHM = 

2.9 MeV.
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A rich activity with SPIDER and VAMOS

● Direct measurement of isotopic fission yields for 
different fissioning system, with different excitation 
energy

● Evidence of shell effect around Z=50 looking at the 
nuclear charge polarization.

● Structural effects that disappear at higher excitation 
energy.

● Need a better characterization of the fissioning system 
in A, Z and E*.



Major upgrade : PISTA, a CEA-DAM/GANIL collaboration

PISTA :  8 telescopes in a petal shape

• ΔE first stage
 100 um thick
 91 horizontal strips
 Dynamic range : 0-60 MeV

• E second stage
 1 mm thick
 57 vertical strips
 Dynamic range : 0-200 MeV

Goal : Probe the evolution of fission yields as a function of 
excitation energy.



Major upgrade : PISTA, a CEA-DAM/GANIL collaboration

What’s new with PISTA (compared to SPIDER)?

 Angular coverage : 30-60 deg

 Better identification of the ejectile

 High granularity means better resolution in E* 

(FMHW = 700 keV)

 Dedicated electronics capable of sustaining 

higher count rate.

 Overall, a much better characterization of the 

fissioning system (A,Z,E*)



Major upgrade : PISTA

PISTA 2023 experimentOld generation SPIDER

9Be 10Be

11B
12C

14C

PISTA analysis done by Lucas Bégué-Guillou



Fission yields with VAMOS
● Mass distribution

✔ Typical resolution of ΔA/A=0.8%
✔ For a given excitation energy range (bin 

of 1 MeV) we get the mass yield using a 
multi-gaussian fit.

✔ Same work for different excitation energy 
→ Yield evolution

PR
E
LIM

IN
A
R
Y

99Mo
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Conclusion4
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Conclusion

● Measurement of fission yields is challenging
✔ Different experimental approaches exist and are complementary.

● Direct kinematics techniques provide a data especially for mass distribution and neutron 

multiplicities.
✔ charge distribution limited to Z<38 with.
✔ Gamma spectroscopy can be also used to for isotope identification. But relies on known 

nuclear structure properties.

● Inverse kinematics techniques allow the measurements of both charge and mass.
✔ The kinematic boost enables the measurement of the fission fragment charge.
✔ Access exotic systems.

● Overall, the ensemble of measured data are very useful for theoreticians to constrain the 

development of nuclear fission models.



Thank you!
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