Construction of continuous collective energy landscape

An opportunity for TDGCM approach to describe scission and include dissipation

N. Pillet CEA DAM DIF <u>PhD work of P. Carpentier</u>

Collaborators: R. Bernard, N. Dubray, D. Lacroix, D. Regnier, L. Robledo, W. Younes

Dynamics of nuclear fission, ESNT workshop, December 16th-19th 2024

Content

- I. Nuclear fission dynamics within TDGCM approach
- II. Building continuous adiabatic and excited HFB vacua with overlap constraints in the variational principle
- III. Application to ²⁴⁰Pu fission along the asymmetric path including intrinsic excitations
- **IV. Conclusions and Perspectives**

Physica Scripta. Vol. 10 A, 118-121, 1974

Quantum Theory of Dissipation for Nuclear' Collective Motion

Arthur K. Kerman and Steven E. Koonin²

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology Cambridge, Massachusetts

Received November 30, 1974

Abstract

Quantum theory of dissipation for nuclear collective motion. A. K. Kerman and S. E. Koonin (Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA).

Physica Scripta (Sweden) 10 A, 118-121, 1974.

We present a theory of energy dissipation in heavy ion and fission processes. Beginning with the time-independent coupled channels generator coordinate equations, a statistical treatment leads to a quantal equation in the collective coordinates and excitation energy. Assumptions of adiabaticity lead to a momentum coupled Schroedinger-like equation for the statistical wavefunction. This equation describes, in a statistical manner, quantum mechanical collective motion, including dissipation. Therefore, average inelastic cross sections or fragment excitation energies may be obtained. Of course, phenomenologically known functions such as the nuclear mass parameter or potential energy surface can be simply utilized. The new dissipation function (like all the others) is determined by averages of microscopically calculable quantities. Numerical results for a model calculation exhibiting the structure of the equation are presented.

Of course, there will still be some redundancy in the basis, which will appear, as usual, in the treatment of the overlap matrix. By varying the f_n of eq. (1) so as to minimize the expectation value of the many body hamiltonian H, we obtain matrix integral equations of the form

Emergence of two ways of solving

this Time-dependent Hill-Wheeler equation for fission:

- Statistical treatment of intrinsic excitations with Tdependent HFB (grand-canonical ensemble)
 D. Vretenar et al. (2022)
- Explicit treatment of discrete intrinsic excitations for low energy fission: Schrödinger Collective-Intrinsic Model (SCIM) R. Bernard et al. (2011)
- [high energy fission: K. Dietrich, JJ. Niez and JF Berger, Nucl. Phys. A 832 (2010), "Microscopic transport theory of nuclear process"
 =>Rigorous equation of motion+ Markov approx.]

Adiabatic PES (HFB states, 2 CT HO basis, D1S)

Main degrees of freedom in fission

- Collective deformations
- Superfluidity
- Shell effects
- Intrinsic excitations (pair breaking phenomenon):

Sudden drop of TKE (F. Vives et al., Nucl.Phys. A662 (2000))

Odd-even staggering

(SOFIA data, P. Morfouace et al.)

¹⁸⁹Pb

20-(%) (Z) 10-190Pb (%) (Z) 10-30-35-40-45-50 Proton Number Z

Pair breaking energy: 2.3MeV

Schrödinger Collective-Intrinsic Model (SCIM) \circ Trial wave function : $|\Psi_{SCIM}\rangle = \int dqf(q)|\Phi(q)\rangle + \sum_{i=1,N} \int dqf_i(q)|\Phi^{(i)}(q)\rangle$

• Energy minimization expressed with center of mass $\overline{q} = (q+q')/2$ and relative s=(q-q')/2 coordinates:

$$\delta(\frac{1}{2^n}\sum_j\sum_i\int d\bar{q}\int ds f_j^*(\bar{q}-s)\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle f_i(\bar{q}+s)\rangle = 0$$
Taylor
$$\implies \delta(\frac{1}{2^n}\sum_j\sum_i\int ds\int d\bar{q}f_j^*(\bar{q})e^{s\frac{\partial}{\partial q}}\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle e^{s\frac{\partial}{\partial q}}f_i(\bar{q})) = 0$$
expansion

Non local equation!

Schrödinger Collective-Intrinsic Model (SCIM) \circ Trial wave function : $|\Psi_{SCIM}\rangle = \int dqf(q)|\Phi(q)\rangle + \sum_{i=1,N} \int dqf_i(q)|\Phi^{(i)}(q)\rangle$

• Energy minimization expressed with center of mass $\overline{q} = (q+q')/2$ and relative s = (q-q')/2 coordinates:

$$\delta(\frac{1}{2^n}\sum_j\sum_i\int d\bar{q}\int ds f_j^*(\bar{q}-s)\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle f_i(\bar{q}+s)\rangle = 0$$
Taylor
$$\implies \delta(\frac{1}{2^n}\sum_j\sum_i\int ds\int d\bar{q}f_j^*(\bar{q})e^{s\frac{\partial}{\partial q}}\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle e^{s\frac{\partial}{\partial q}}f_i(\bar{q})) = 0$$
expansion

• Non-locality in "s" fully treated with the Symmetric Ordered Products of Operators (SOPO) technics

$$\begin{cases} \mathcal{H}_{ji}(\bar{q},s) = \langle \Phi^{(j)}(\bar{q}-s) | \hat{H} & |\Phi^{(i)}(\bar{q}+s) \rangle \\ \mathcal{N}_{ji}(\bar{q},s) = \langle \Phi^{(j)}(\bar{q}-s) | \Phi^{(i)}(\bar{q}+s) \rangle \\ |AB|^{(n)} = \sum_{k=0}^{n} \binom{n}{k} B^{k} A B^{n} \end{cases} \begin{cases} e^{s\frac{\partial}{\partial q}} \mathcal{H}_{ji}(\bar{q},s) e^{s\frac{\partial}{\partial q}} = \sum_{k=0}^{+\infty} \frac{1}{k!} [\mathcal{H}_{ji}(\bar{q},s)(s\frac{\partial}{\partial q})]^{(k)} \\ e^{s\frac{\partial}{\partial q}} \mathcal{N}_{ji}(\bar{q},s) e^{s\frac{\partial}{\partial q}} = \sum_{k=0}^{+\infty} \frac{1}{k!} [\mathcal{N}_{ji}(\bar{q},s)(s\frac{\partial}{\partial q})]^{(k)} \end{cases}$$

Schrödinger Collective-Intrinsic Model (SCIM) \circ Trial wave function : $|\Psi_{SCIM}\rangle = \int dqf(q)|\Phi(q)\rangle + \sum_{i=1,N}\int dqf_i(q)|\Phi^{(i)}(q)\rangle$

• Energy minimization expressed with center of mass $\overline{q} = (q+q')/2$ and relative s = (q-q')/2 coordinates:

$$\delta(\frac{1}{2^n}\sum_j\sum_i\int d\bar{q}\int ds f_j^*(\bar{q}-s)\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle f_i(\bar{q}+s)) = 0$$
Taylor
expansion
$$\rightarrow \delta(\frac{1}{2^n}\sum_j\sum_i\int ds \int d\bar{q} f_j^*(\bar{q})e^{s\frac{\partial}{\partial q}}\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle e^{s\frac{\partial}{\partial q}}f_i(\bar{q})) = 0$$

• Non-locality in "s" fully treated with the Symmetric Ordered Products of Operators (SOPO) technics

$$\begin{cases} e^{s\frac{\partial}{\partial q}}\mathcal{H}_{ji}(\bar{q},s)e^{s\frac{\partial}{\partial q}} = \sum_{k=0}^{+\infty}\frac{1}{k!}[\mathcal{H}_{ji}(\bar{q},s)(s\frac{\partial}{\partial q})]^{(k)} & \text{ 's' dependence in SOPO} \\ e^{s\frac{\partial}{\partial q}}\mathcal{N}_{ji}(\bar{q},s)e^{s\frac{\partial}{\partial q}} = \sum_{k=0}^{+\infty}\frac{1}{k!}[\mathcal{N}_{ji}(\bar{q},s)(s\frac{\partial}{\partial q})]^{(k)} & \text{ Moments of operators} \end{cases}$$

$$\mathcal{H}_{ji}^{(p)}(\bar{q}) = \int ds \mathcal{H}_{ji}(\bar{q}, s) s^p$$
$$\mathcal{N}_{ji}^{(p)}(\bar{q}) = \int ds \mathcal{N}_{ji}(\bar{q}, s) s^p$$

Schrödinger Collective-Intrinsic Model (SCIM) \circ Trial wave function : $|\Psi_{SCIM}\rangle = \int dqf(q)|\Phi(q)\rangle + \sum_{i=1,N} \int dqf_i(q)|\Phi^{(i)}(q)\rangle$

• Energy minimization expressed with center of mass $\overline{q} = (q+q')/2$ and relative s = (q-q')/2 coordinates:

$$\delta(\frac{1}{2^n}\sum_j\sum_i\int d\bar{q}\int ds f_j^*(\bar{q}-s)\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle f_i(\bar{q}+s)\rangle = 0$$

Hor
ision $\longrightarrow \delta(\frac{1}{2^n}\sum_j\sum_i\int ds\int d\bar{q}f_j^*(\bar{q})e^{s\frac{\partial}{\partial q}}\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle e^{s\frac{\partial}{\partial q}}f_i(\bar{q})) = 0$

Taylor expansion

o Non-locality in "s" fully treated with the Symmetric Ordered Products of Operators (SOPO) technics

$$\begin{cases} e^{s\frac{\partial}{\partial q}}\mathcal{H}_{ji}(\bar{q},s)e^{s\frac{\partial}{\partial q}} = \sum_{k=0}^{+\infty}\frac{1}{k!}[\mathcal{H}_{ji}(\bar{q},s)(s\frac{\partial}{\partial q})]^{(k)} \\ e^{s\frac{\partial}{\partial q}}\mathcal{N}_{ji}(\bar{q},s)e^{s\frac{\partial}{\partial q}} = \sum_{k=0}^{+\infty}\frac{1}{k!}[\mathcal{N}_{ji}(\bar{q},s)(s\frac{\partial}{\partial q})]^{(k)} \\ \end{bmatrix} \\ \end{cases}$$
By integrating within the SOPO
$$\begin{cases} \mathcal{H}_{ji}(\bar{q}) = \sum_{k=0}^{+\infty}\frac{1}{k!}[\mathcal{H}_{ji}^{(p)}(\bar{q})\frac{\partial}{\partial q})]^{(k)} \\ \mathcal{N}_{ji}(\bar{q}) = \sum_{k=0}^{+\infty}\frac{1}{k!}[\mathcal{N}_{ji}^{(p)}(\bar{q})\frac{\partial}{\partial q})]^{(k)} \\ \end{bmatrix} \\ \end{cases}$$
Special norm and Hamiltonian kernels Moments of operators 9

• Energy minimization expressed with center of mass $\overline{q} = (q+q')/2$ and relative s = (q-q')/2 coordinates:

$$\delta(\frac{1}{2^n}\sum_j\sum_i\int d\bar{q}\int ds f_j^*(\bar{q}-s)\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle f_i(\bar{q}+s)\rangle = 0$$
Taylor
$$\implies \delta(\frac{1}{2^n}\sum_j\sum_i\int ds\int d\bar{q}f_j^*(\bar{q})e^{s\frac{\partial}{\partial q}}\langle\Phi^{(j)}(\bar{q}-s)|\hat{H}-E|\Phi^{(i)}(\bar{q}+s)\rangle e^{s\frac{\partial}{\partial q}}f_i(\bar{q})) = 0$$
expansion

• Hill-Wheeler equation including intrinsic excitations :

$$\mathcal{H}_{SCIM}g = Eg$$

with

$$\begin{cases} \mathcal{H}_{SCIM} = \bar{\mathcal{N}}^{-1/2} \bar{\mathcal{H}} \bar{\mathcal{N}}^{-1/2} \\ g = \bar{\mathcal{N}}^{1/2} f \end{cases}$$

Local equation!

Non-locality absorbed in special norm and Hamiltonian kernels

10

Schrödinger Collective-Intrinsic Model (SCIM)

Collective-Intrinsic Hamiltonian at second order in SOPO

 $\mathcal{H}_{SCIM}(\bar{q}) = V(\bar{q}) + \left[D(\bar{q})\frac{\partial}{\partial q}\right]^{(1)} + \left[B(\bar{q})\frac{\partial}{\partial q}\right]^{(2)}$

- \circ Zero order: potential V(\overline{q})
- First order: "dissipation" tensor $D(\overline{q})$
- Second order: inertia tensor $B(\overline{q})$
- Time-dependent Schrödinger equation with intrinsic excitations

Trial Wave function:

$$\begin{split} |\Psi_{SCIM}(t)\rangle &= \int dq f(q,t) |\Phi(q)\rangle + \sum_{i=1,N} \int dq f_i(q,t) |\Phi^{(i)}(q)\rangle \\ \mathcal{H}_{SCIM}(t) &= i\hbar \frac{\partial}{\partial t} g(t) \end{split}$$

- Schrödinger equation:
- Continuous and regular overlaps required for the Norm and Hamiltonian moment kernels to be continuous and regular (strong hypothesis of the SCIM!)

Discontinuity issues in the adiabatic states

- **Discontinuities in energy** ٠
 - Origin: HFB solver a non-ideal minimizer that can fall 0 in local minima
 - Solved numerically by a retro-propagation algorithm 0 based on the overlap wave functions

Discontinuities in states

- Reduction of the collective space to few multipoles 0
- Signed by the overlap of neighbor wave functions in 0 the PES
- More delicate to solve \cap

Discontinuity and irregularity issues in 2QP states

- Non self-consistent 2QP excitations
 - Original proposal of the SCIM
 - Time-even $|\Phi_{ij}\rangle = \alpha_{ij}(\xi_i^+ \bar{\xi}_j^+ + \xi_j^+ \bar{\xi}_i^+) |\Phi\rangle$
 - Followed by continuity

$$|\langle \Phi_{ij}(q)|\Phi_{ij}(q+\delta q)\rangle| = \max_{i'j'} |\langle \Phi_{ij}(q)|\Phi_{i'j'}(q+\delta q)\rangle|$$

- Minimizing average particle number breaking
- Not suitable

Particle number PAV for adiabatic and 2QP states

- Solve the energy problems
- Creates ambiguous mixing

 \circ 2QP states produced by VAP also not suitable¹³

- 2QP excited states strongly irregular
 - Even built from regular adiabatic states
 - Existence of numerous level repulsions along the path
 - Makes the SCIM unusable in practice
- Need of another way of producing excited states!

ed asymmetric naths in ²⁴⁰Pu

HFB approach under overlap constraints

$$\hat{H}_{c} = \hat{H} + \sum_{\alpha} \lambda_{\alpha} \hat{Q}_{\alpha} + \sum_{\beta} \gamma_{\beta} |\Phi_{\beta}\rangle \langle \Phi_{\beta}|$$

- 3 protocols: Link, Drop and Continuous Deflation

 continuous adiabatic path
 - o continuous and orthogonal excited states
- Continuity: Link and Drop protocols

 $|\langle \Phi_i(q)|\Phi_i(q+\delta q)\rangle| \sim 1$

Orthogonality: Continuous Deflation protocol

 $|\langle \Phi_i(q)|\Phi_i(q+\delta q)\rangle| \sim \mathbf{0}$

• Gradient method well-suited for these constraints

P. Carpentier, N. Pillet, D. Lacroix, N. Dubray and D. Regnier, Phys. Rev. Lett.133, 152501 (2024)

Link protocol:

- **Objective:** To connect continuously 2 HFB vacua, A and B
- **Principle:** To create a set of HFB vacua $\{C_i\}$ such that the overlap squared between two adjacent states is equal to a fixed value $x_0 \approx 1$
- $_{\odot}$ Shortest path ensured by a maximization of the overlap between $\{C_i\}$ and B

Adiabatic states (CHICON)

Link

-1785 (a)

Drop protocol:

- Objective: To create a continuous and regular path of HFB vacua along an energy descent
- **Principle:** Starting from an HFB vacua "A", creation of HFB states $\{C_i\}$ following an energy descent whose overlap squared between two adjacent states is equal to $x_0 \approx 1$

From the ground state of ²⁴⁰Pu towards scission and beyond:

- o a new continuous and regular path
- o description of two fragments well-separated
- o relaxation of fragments
- Connection to the Coulomb valley

New collective variable c_#

 Index of the states generated by the Link and Drop protocols naturally provides a new collective coordinate c_#, canceling out the irregularities of the kernels:

$$\forall c_{\#}, c'_{\#}, \ \langle \Phi(c_{\#}) | \Phi(c_{\#} \pm 1) \rangle = \langle \Phi(c'_{\#}) | \Phi(c'_{\#} \pm 1) \rangle$$

- \circ neighbors states are distant from a constant overlap x_0
- c_# not a trivial coordinate as Q₂₀(c_#) is a non-linear function: different slope before and after saddle
- Distance between the states generated by the Link and Drop methods in line with the GOA predictions
- Collective space dimension left unchanged

P. Carpentier, N. Pillet, D. Lacroix, N. Dubray and D. Regnier, Phys. Rev. Lett.133, 152501 (2024)

Where is scission?

- Chemical potentials peak at $c_{\#} = 495$ ($Q_{20} \sim 13000 \text{ fm}^2$)
- Maximum of neutron necking at c_# = 495

20

Particle distribution of the light fragment

- C. Simenel, PRL 105, 192701 (2010)
- Particle number projection
- Neutrons
 - \circ Peak at N_I=64 (exp. 60)
 - Sharper distribution close to scission
- Protons
 - Peak at Z_I =42 (exp. 40)
 - Odd-even staggering close to scission

Intrinsic excitations	?	
Deformation energy	26.7 MeV	
TXE	?	

Pre-scission	?
Post-scission (Interaction energy)	152.5 (178.7) MeV
TKE	?

Static energy balance at scission

• W. Younes and D. Gogny, PRL 107, 132501 (2011)

$$E = E^{(l)} + E^{(r)} + E_{int}$$

Deformation energy

$$E_{def} = E^{(r)}(495) - E^{(r)}(+\infty) + E^{(l)}(495) - E^{(l)}(+\infty)$$

Post-scission kinetic energy

$$E_{int} = E_{int}(Nucl) + E_{int}(Coul)$$

Adiabatic ZPE and collective mass of SCIM: Good agreement with exact GOA

Continuous Deflation protocol:

- Objective: To create variational excited HFB vacua above the continuous adiabatic path
- $\circ~$ **Principle:** For each state $A_i,$ an excited state D_i is built imposing
 - ♣ an overlap $x_1 \approx 0$ with A_i to obtain orthogonality
 - ♣ an overlap $x_0 \approx 1$ with D_{i-1} to obtain continuity

Adiabatic and excited asymmetric paths in ²⁴⁰Pu

Content of excited HFB vacua: mixing of 2n-QP

• 2-QP component :

$$\sigma^{(2)} = \sum_{ij} |\langle \Phi^* | \xi_i^+ \bar{\xi}_j^+ | \Phi \rangle|^2$$

• 4-QP component:

$$\sigma^{(4)} = \frac{1}{2} \sum_{\alpha\beta} \sum_{ij, (\Omega_{\alpha\beta}, \tau_{\alpha\beta}) \neq (\Omega_{ij}, \tau_{ij})} |\langle \Phi^* | \xi^+_{\alpha} \bar{\xi}^+_{\beta} \xi^+_i \bar{\xi}^+_j | \Phi \rangle|^2 + \frac{1}{4} \sum_{\alpha\beta} \sum_{ij, (\Omega_{\alpha\beta}, \tau_{\alpha\beta}) = (\Omega_{ij}, \tau_{ij})} |\langle \Phi^* | \xi^+_{\alpha} \bar{\xi}^+_{\beta} \xi^+_i \bar{\xi}^+_j | \Phi \rangle|^2$$

- Intrinsic excitations:
 - Configuration mixing changing with c#
 - Dominant 2-QP and 4-QP components but not only
 - Pair breaking mechanism included

Particle distribution of the light fragment

Neutrons

- Peak at N=64 for adiabatic state (exp. N=60)
- No odd-even staggering
- Increase of odd components with the excited states: pair breaking
- Enlargement of distribution with excitations

Protons

- \circ Peak at Z=42 for adiabatic state (exp. Z=40)
- Odd-even staggering in both adiabatic and few excited states
- Increase of the odd components with the excited states (excepted the 9/2 state)

Neutron intrinsic excitations:

- $\circ~$ Local ratio $r\rho~$ higher than in the adiabatic state
- Differences from one excited state to another
- $\circ\,$ Differences in the separation: the greater the maximum of r ρ the later the separation

	$n_{1/2}$	$n_{3/2}$	$n_{5/2}$	$n_{7/2}$	$n_{9/2}$
$c_{\#} = 485$	5.56	8.62	5.65	4.66	7.65
$c_{\#}=495$	10.40	12.38	11.30	8.73	14.22
$c_{\#} = 505$	20.21	9.23	20.48	9.41	29.13

Proton intrinsic excitations:

- \circ local ratio rp quite similar to the adiabatic state and smaller between pre-fragment than in the adiabatic state
- Neutron necking clearly visible only in the 9/2 state
- \circ $\,$ More proton in the neck than in the adiabatic case

- \circ Q_{neck} (neutron)> Q_{neck} (proton)
- Neutron intrinsic excitation with a total Q_{neck} larger than the one of the proton intrinsic excitations
- Neutron intrinsic excitations hold prefragments together in the scission area
- Neutron as the ultimate glue
- Results in agreement with the recent study of I. Abdurrahman et al. using TDDFT approach

I.Abdurrahman et al., PRL 132, 242501 (2024)

III. Application to ²⁴⁰Pu fission along the asymmetric path including intrinsic excitations

Schrödinger equation handled numerically

$$\mathcal{H}_{SCIM} \boldsymbol{g}(t) = i\hbar \frac{\partial}{\partial t} \boldsymbol{g}(t)$$

- Crank-Nicolson method
- Initial state built in the ground state well
- Initial average energy **E**₀= first barrier top
- Initial energy standard deviation = 0.5 MeV
- Absorption is added after scission

$$\mathcal{H}_{SCIM}(\bar{q}) = V(\bar{q}) + \left[D(\bar{q})\frac{\partial}{\partial q}\right]^{(1)} + \left[B(\bar{q})\frac{\partial}{\partial q}\right]^{(2)}$$

III. Application to ²⁴⁰Pu fission along the asymmetric path including intrinsic excitations

Probability fluxes extracted from a continuity equation

$$\phi(c_s, t_f) = \int_0^{t_f} \mathrm{d}t \frac{\mathrm{dP}(c_\# > c_s)}{\mathrm{d}t}(t)$$

- \circ t_f = 7.90 10⁻²⁰ s
- Averaged over **[445,545]**
- Neutron > Proton

	1/2	3/2	5/2	7/2	Adiabatic
Neutron	41.5 %	<mark>20.3</mark> %	-	0.0 %	45.0.0/
Proton	2.1 %	-	17.5 %	2.8 %	15.8 %

III. Application to ²⁴⁰Pu fission along the asymmetric path including intrinsic excitations

With the intrinsic excitations

- Enlargement of the distribution on the neutron side
- Smoothing of the odd-even staggering on the proton side

III. Application to ²⁴⁰Pu fission along the asymmetric path including intrinsic excitations

Intrinsic excitations	7.6 MeV
Deformation energy	26.7 MeV
<u>TXE</u> : Exp.= ~ 30 MeV	34.3 MeV

Pre-scission	25.8 MeV		
Post-scission (Interaction energy)	152,5 (178.7) MeV		
<u>TKE</u> : Exp.= ~ 181.2 MeV	178.3 (204.5) MeV		

cea

Energy balance at scission

Intrinsic excitation energy
 E^{*}

$$E^* = \frac{1}{101} \sum_{i} \sum_{c_{\#}=455}^{545} \phi_i(c_{\#}, t_f) \Delta E_i(c_{\#})$$

Post-scission kinetic energy

$$E_{PS} = E_0 - (E_{HFB}(495) + E^*)$$

IV. Conclusions and Perspectives

Conclusions:

- First application of SCIM on the asymmetric path of ²⁴⁰Pu
- Need of continuity et regularity
- Creation of new protocols based on overlap constraints (Link, Drop, Continuous deflation) pour définir des états compatible with the SCIM and dynamics in general
- o Importance to include intrinsic excitations within the description of fission

0 ...

Perpspectives:

- Improvement of energy balance by improving the fragment separation
- $\circ~$ Improvement of energy balance by considering intrinsic excitations
- $\circ~$ Application of 1D SCIM to other systems (in progress)
- $\circ~$ Better understanding of the Deflation method
- $\circ~$ Study of half-lives

¹⁸⁰Hg with Link+Drop