Fully Microscopic Description of Fission with Three Degrees of Freedom

ESNT Workshop, Dec. 16-19 2024

Marc Verriere, Nicolas Schunck

Lawrence Livermore
National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

We describe the fission process using a fully microscopic approach.

We simulate the time-evolution of the deformations leading to the formation of the fragments.

Our approach consists in projecting the dynamics on a few relevant collective degrees of freedom.

Our approach consists in projecting the dynamics on

Our approach consists in projecting the dynamics on

Our approach consists in projecting the dynamics on

Solve the Schrödinger equation on the collective subspace:

 $\forall \mathbf{q}, \langle \mathbf{q} | i\hbar \frac{d}{dt} - \hat{H} | GCM(t) \rangle = 0$ Hill-Wheeler-Griffin (non-local, ill-defined)

Our approach consists in projecting the dynamics on a few relevant collective degrees of freedom.

Solve the Schrödinger equation on the collective subspace:

 $\forall \mathbf{q}, \langle \mathbf{q} | i\hbar \frac{d}{dt} - \hat{H} | GCM(t) \rangle = 0$ Hill-Wheeler-Griffin (non-local, ill-defined)

'Use Gaussian Overlap Approximation: ' (reduce HWG to a well-defined local Schrodinger-like equation on the collective space) **Proposition** P Replace $f(\boldsymbol{q},t)$ by $g(\boldsymbol{q},t)$ (same information)

Our theoretical framework leads to Schrodinger-like equation.

Equation describing the fission dynamics at a microscopic level with quantum effects:

- local **complex-valued** diffusion equation with real-valued -dependent coefficients, and.
- : collective degrees of freedom describing the nucleus' deformation (2-D \rightarrow 3-D).
- : nucleus' probability amplitude to be in at time (complex-valued).

We add an absorption term to limit our description to the area of interest.

Equation describing the fission dynamics at a microscopic level with quantum effects:

- local **complex-valued** diffusion equation with real-valued -dependent coefficients, and.
- : collective degrees of freedom describing the nucleus' deformation (2-D \rightarrow 3-D).
- : nucleus' probability amplitude to be in at time (complex-valued).

We developed a new solver, FIDELIS, able to tackle three collective degrees of freedom.

$$
i\,\hbar\frac{\partial\,g(\,{\bm q}\,,t\,)}{\partial\,t\,} \!=\!\! \left[-\frac{\hbar^2}{2}\,{\gamma\,}^{-\!\frac{1}{2}}\!\left({\bm q}\right) \!\nabla\cdot{\gamma\,}^{\!\frac{1}{2}}\!\left({\bm q}\right) B\!\left({\bm q}\right) \!\nabla\!+\!V\!\left({\bm q}\right) \!-\!i A\!\left({\bm q}\right) \right] \!g\!\left({\bm q}\,,t\,\right)
$$

1. We discretize the collective space using the Finite Element Method with MFEM.

2. We developed a high-order () numerical time-discretization scheme.

3. We revamped our approach to predict the fission fragment properties.

FIDELIS: **FI**nite-element **DE**scription of **L**arge-amplitude collective motion **I**n microscopic **S**ystems

1. We discretize the collective space using the Finite Element Method with MFEM.

$$
i\,\hbar\frac{\partial\,g(\,\bm{q}\,,t\,)}{\partial\,t\,} \!\!=\!\! \left[-\frac{\hbar^2}{2}\,\gamma^{\!-\! \frac{1}{2}}\!(\bm{q})\nabla\cdot\gamma^{\frac{1}{2}}\!(\bm{q})\,B(\bm{q})\nabla \!+\!V(\bm{q})\!-\!iA(\,\bm{q})\right]\!g\left(\!\left.\left.\bm{q}\right.\right)\right]
$$

2. We developed a high-order time-discretization scheme. $\frac{\partial G(t)}{\partial t}$

cheme.

\n
$$
i \hbar M \frac{\partial G(t)}{\partial t} = (K - i A) G(t)
$$

First-order linear differential equation:

- Inverting is **expensive**,
- and are **not sparse**,
- Inverting is **not stable**.

→ Only compute the action of .

2. We developed a high-order time-discretization scheme. $\frac{\partial G(t)}{\partial t}$

cheme.

\n
$$
i \hbar M \frac{\partial G(t)}{\partial t} = (K - i A) G(t)
$$

First-order linear differential equation:

- Inverting is **expensive**,
- and are **not sparse**,
- Inverting is **not stable**.

→ Only compute the action of .

Evolution operator (non-unitary):

For small , we can approximate by:

The Baker-Campbell-Hausdorff formula gives:

Evolution of the wavefunction after one timestep:

Evolution operator (non-unitary):

For small , we can approximate by:

The Baker-Campbell-Hausdorff formula gives:

Evolution of the wavefunction after one timestep:

Multiplicative scaling at each iteration, nonunitary operation

Evolution operator (non-unitary):

For small , we can approximate by:

The Baker-Campbell-Hausdorff formula gives:

Evolution of the wavefunction after one timestep:

Multiplicative scaling at each iteration, nonunitary operation W.f. after absorption Absorbed part of the w.f.

Evolution operator (non-unitary):

For small , we can approximate by:

The Baker-Campbell-Hausdorff formula gives:

Absorbed part of the wavefunction:

Probability density to be absorbed in at time given by

Potentia

ene

Probability to be absorbed in :

Probability to measure a fragment with particles at a given :

 \rightarrow Probability of a fragment with particles:

Partial assembly w/ MFEM \rightarrow **kernels** loaded at the same time!

We generated a 3D potential energy surface using a Skyrme functional on 240Pu and transformed it into a MFEM mesh.

Finally, we extracted fission fragment mass and charge yields using our new pipeline.

Our (very) preliminary results are encouraging, but further work is needed.

These preliminary results are promising, and we are working on many further improvements.

- Improve the handling of the potential energy landscape (interpolation).
- Define the initial state from the eigenstates of the extrapolated potential wells.
- Variable order of the time-propagation approach.

• …

- Enable extrapolation of the potential energy landscape.
- Couple Fidelis with particle-number projection in the fragments.
- Study the impact of three degrees of freedom on several fissioning systems.
- Determine fission observables using a Gogny interaction.
- Package the library (Tests, CMake, Pybind11, Doxygen, etc).

