Microscopic description of collective inertia and fission path for spontaneous fission

Kouhei Washiyama (CCS, Univ. Tsukuba, Japan)

Collaborators: Takashi Nakatsukasa, Nobuo Hinohara (CCS, Univ. Tsukuba)

Spontaneous fission—subbarrier fission

Collective inertia

Density functional theory for fission

Result: Fission for one dimension

On-going: Fission for two dimensions

ESNT workshop: Dynamics of Nuclear Fission, Dec. 16-19, 2024@ CEA Saclay, France

Introduction: Fission and r-process

Nucleosynthesis network calculation under the r-process environment

 $(T = 0.9 \text{ GK}, n_n = 1.0 \times 10^{28} \text{ cm}^{-3})$

S.A. Giuliani, G. Martinez-Pinedo, L.M. Robledo, PRC 97, 034323 (2018)

BCPM DFT

Spontaneous fission half-life

Neutron-induced reactions

 α decay rate

Correction to inertia

$$\mathcal{M}_r = \alpha \mathcal{M}$$

Description of spontaneous fission based on DFT

Sadhukhan et al, PRC88, 064314 (2013), etc.

Fission barrier

Spontaneous fission

Tunneling in quantum many-body system WKB approximation Fission half-life $T_{1/2} = \ln 2/(nP)$ $P = \frac{1}{1 + \exp(2S)}$

Action S

$$S = \int_{s_1}^{s_2} ds \sqrt{2M(s)(V(s) - E)}/\hbar$$

- V Potential
- **M** Collective inertia

Fission observable

- Fission half-life
- Mass distribution

Collective inertia characterizes the kinetic

energy

Goal: correctly evaluate collective inertia *M* for fission half-life

$$S = \int_{s_1}^{s_2} ds \sqrt{2M(s)(V(s) - E)}/\hbar$$

- To develop the method for not only collective potential (fission barrier) but also collective inertia along a fission path
- To include dynamical effects of fission on collective inertia

Nuclear density functional theory (DFT)

Quantum many-body system

Bender, Heenen, Reinhard, Rev. Mod. Phys. 75 (2003) 121 Nakatsukasa, Matsuyanagi, Matsuo, Yabana, RMP88(2016) 045004

 \rightarrow non-interacting reference system in one-body potential

DFT is an exact theory Its functional form is unknown Gogny, Skyrme, Covariant, etc. $\mathcal{E}(\rho,\kappa,\kappa^*)$

Good description for

- ✓ Ground state property
- ✓ Shell effect
- ✓ Deformation

https://www-phynu.cea.fr/science_en_ligne/carte_potentiels_ microscopiques/carte_potentiel_nucleaire_eng.htm

Collective inertia in density functional theory (DFT)

DFT + Cranking approximation

Skyrme, Gogny, Relativistic EDFsSadhukhan et al, PRC84
Giuliani and Robledo, FLow computation costProblem: Neglect dynamical effects (time-odd terms)

Prochniak et al., NPA730 (2004) 59 Delaroche et al., PRC81 (2010) 014303 Baran et al., PRC84, 054321 (2011) Sadhukhan et al, PRC88, 064314 (2013) Giuliani and Robledo, PLB 787, 134 (2018)

$$\mathcal{M}^{\rm PC} = \frac{1}{2} [M^{(1)}]^{-1} M^{(3)} [M^{(1)}]^{-1}$$
$$M_{ij}^{(n)} = \sum_{\mu < \nu} \frac{\langle \phi(s) | \hat{s}_i | \mu \nu \rangle \langle \mu \nu | \hat{s}_j^{\dagger} | \phi(s) \rangle}{(E_{\mu} + E_{\nu})^n}$$

Note: Dynamical effects reproduce the collective inertia for translational motion

Perturbative cranking approximation

$$\mathcal{M}^{\rm PC} = \frac{1}{2} [M^{(1)}]^{-1} M^{(3)} [M^{(1)}]^{-1}$$
$$M_{ij}^{(n)} = \sum_{\mu < \nu} \frac{\langle \phi(s) | \hat{s}_i | \mu \nu \rangle \langle \mu \nu | \hat{s}_j^{\dagger} | \phi(s) \rangle}{(E_{\mu} + E_{\nu})^n}$$

s : collective variables ϕ : constrained HFB states $|\mu\nu\rangle = a^{\dagger}_{\mu}a^{\dagger}_{\nu}|\phi(s)\rangle$

DFT + Cranking approximation

Skyrme, Gogny, Relativistic EDFs Low computation cost

Problem: Neglect dynamical effects (time-odd terms)

Our method: Local QRPA

Hinohara et al., PRC84 (2011) 061302; 85 (2012) 024323 Sato, Hinohara, NPA849 (2011) 53 Yoshida, Hinohara, PRC83 (2011) 061302

Include dynamical effects by QRPA

High computation cost

Finite amplitude method

Nakatsukasa et al., PRC76, 024318(2007) Avogadro & Nakatsukasa, PRC84, 014314(2011)

Prochniak et al., NPA730 (2004) 59 Delaroche et al., PRC81 (2010) 014303 Baran et al., PRC84, 054321 (2011) Sadhukhan et al, PRC88, 064314 (2013) Giuliani and Robledo, PLB 787, 134 (2018)

$$\mathcal{M}^{\rm PC} = \frac{1}{2} [M^{(1)}]^{-1} M^{(3)} [M^{(1)}]^{-1}$$
$$M^{(n)}_{ij} = \sum_{\mu < \nu} \frac{\langle \phi(s) | \hat{s}_i | \mu \nu \rangle \langle \mu \nu | \hat{s}_j^{\dagger} | \phi(s) \rangle}{(E_{\mu} + E_{\nu})^n}$$

$$T = \frac{1}{2}M\left(\frac{dQ_{20}}{dt}\right)^2 \qquad Q_{\lambda\mu} = r^{\lambda}Y_{\lambda\mu} \qquad \text{Collective surface vibrations}$$

QRPA: linear response to an external field

Response (strength, frequency)

Inertia associated with collective coordinates

Local QRPA

Local QRPA for vibrational mass at each CHFB state

$$\begin{split} \delta\langle\phi(s)|[\hat{H}_{\mathrm{M}}(s),\hat{Q}^{i}(s)]-\frac{1}{i}\hat{P}^{i}(s)|\phi(s)\rangle &= 0\\ \delta\langle\phi(s)|[\hat{H}_{\mathrm{M}}(s),\frac{1}{i}\hat{P}^{i}(s)]-C_{i}(s)\hat{Q}^{i}(s)|\phi(s)\rangle &= 0\\ s: \text{deformation parameters} \end{split}$$

▶ Low-lying collective modes
 Eigen-frequency Q̂ⁱ, P̂ⁱ, C_i = Ω_i²
 ▶ M(s) Collective inertia for
 quadrupole vibration

$$\begin{split} &\frac{\partial s_m}{\partial q^i} = \langle \phi(s) | [\hat{s}_m, \frac{1}{i} \hat{P}_i] | \phi(s) \rangle \\ &M(s) = \frac{\partial q^1}{\partial s_1} \frac{\partial q^1}{\partial s_1} \qquad s_1 = r^2 Y_{20} \end{split}$$

Hinohara et al., PRC82 (2010) 064313

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} Q^i \\ -Q^{i*} \end{pmatrix} = \frac{1}{i} \begin{pmatrix} P^i \\ -P^{i*} \end{pmatrix}$$
$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} P^i \\ -P^{i*} \end{pmatrix} = iC_i \begin{pmatrix} Q^i \\ -Q^{i*} \end{pmatrix}$$

at deformation s

Finite amplitude method (FAM)

Nakatsukasa et al., PRC76 (2007) 024318 Avogadro & Nakatsukasa, PRC84, 014314

- ✓ Small computational cost
- ✓ equivalent to QRPA response

Calculation set-up

Constrained HFB along the fission path

- Constrained on Q₂₀
- Fix Q₃₀=0
- \rightarrow symmetric fission path only

Box: 26 fm x 26 fm x 39 fm Volume pairing, SkM* EDF $E_{QP} \approx 60 \text{ MeV}$

Local QRPA on constrained HFB states

Select the most collective mode among QRPA solutions

Washiyama, Hinohara, Nakatsukasa, PRC103, 014306 (2021)

Computation time: (1000 hours+500 hours) x 50 states

This research used computational resources of OFP & Wisteria/BDEC-01 Odyssey (Univ. Tokyo), provided by the Multidisciplinary Cooperative Research Program in CCS, Univ. Tsukuba.

Local QRPA = QRPA on top of constrained DFT state

Eigen-frequency \leftrightarrow Curvature of the potential

Select the most collective mode from many QRPA solutions in $\omega^2 < 16 \text{ MeV}^2$

Select the smallest collective inertia *M* = the largest strength

Result: Collective inertia along fission path

- Mass symmetric fissionToo high second barrier
- ✓ Large change in *M* by QRPA
- ✓ Smooth in cranking M

Action integral S

$$S = \int_{s_1}^{s_2} ds \sqrt{2M(s)(V(s) - E)} / \hbar$$
QRPA $S = 82.0$ M
Cranking $S = 62.0$

60000 CPU hours OpenMP + MPI

Result: Collective inertia and pairing gap

15

10

5

0

0.12

1.0 M²-7 p⁻⁷ p.0.0 0.06 M² 0.04

0.02

0

0

50

100

150

 $Q_{20}[b]$

200

250

V [MeV]

Result: Collective inertia and eigen-frequency

Result: Comparison to previous work: ²⁵⁶Fm case

16/25

Non-perturbative cranking approximation

Baran et al., PRC84, 054321 (2011)

- Peak structure
- Larger inertia in QRPA

$$\begin{split} & \mathsf{non-perturbative \ cranking} \\ & \frac{F^i}{\dot{s}_i} = U^{\dagger} \frac{\partial \rho}{\partial s_i} V^* + U^{\dagger} \frac{\partial \kappa}{\partial s_i} U^* - V^{\dagger} \frac{\partial \rho^*}{\partial s_i} U^* - V^{\dagger} \frac{\partial \kappa^*}{\partial s_i} V^*, \end{split}$$

Experimental data of fission in the actinoid region

Mass distribution of fission fragments

Asymmetric fission

Symmetric fission

Mass symmetric fission in Fm isotopes with N \geq 158

Calculation without Q_{30} may be sufficient for fission half-life

M.R. Lane et al., PRC53, 2893 (1996)

Result: fission barrier, collective inertia in Fm

- Ground state Q~ 30 b (β~0.26)
- 258Fm > 260Fm > 262Fm > 264Fm

SkM* + volume pairing 25x25x35 fm³, dx=1.0 fm

18/25

Washiyama, EPJ Web of Conf. 306, 01026 (2024)

Data from N. E. Holden and D. C. Hoffman, Pure Appl. Chem. 72, 1525 (2000) $T_{1/2} = \ln 2/(nP)$ $n = 10^{20.38} \text{ s}^{-1} \qquad P = \frac{1}{1 + \exp(2S)}$

> A. Baran, Phys. Lett. B 76, 8 (1978) Sadhukhan et al, PRC88, 064314 (2013), etc.

Larger $V \otimes M \rightarrow$ longer half-life

Difference in inertia \rightarrow Half-life

Overestimation Triaxial shape Zero-point correction

Washiyama, EPJ Web of Conf. 306, 01026 (2024)

Data from N. E. Holden and D. C. Hoffman, Pure Appl. Chem. 72, 1525 (2000)

$$S = \int_{s_1}^{s_2} ds \ \sqrt{2M(s)(V(s) - E)}/\hbar$$

 $E \to E + E_0$

Zero-point correction $E_0 = 0.5$ MeV \rightarrow Decrease half-life

 Fission half-life is sensitive to fission barrier, collective inertia, and zero-point correction energy On going work,

Spontaneous fission in two-dimensional collective space —Determination of the fission path and fission half-life

Fission in multi-dimensional collective space

22/25

Description of SF in ²⁶⁴Fm

Sadhukhan et al, PRC88, 064314 (2013)

Fission path = Minimizing the action

$$S = \int_{s_1}^{s_2} ds \sqrt{2M(s)(V(s) - E)}/\hbar$$

Multi-dimensional case

$$\mathcal{M}_{\mathrm{eff}}(s) = \sum_{ij} \mathcal{M}_{ij} \frac{dq_i}{ds} \frac{dq_j}{ds}$$

Inertia tensor

Fission in multi-dimensional collective space

Fission path = Minimizing the action

$$S = \int_{s_1}^{s_2} ds \sqrt{2M(s)(V(s) - E)}/\hbar$$

Spontaneous fission path strongly depends on the choice of collective inertia

Result: Fission barrier and collective inertia

24/25

Result: Fission barrier and collective inertia

24/25

Summary

Spontaneous fission by DFT

Description of collective inertia by DFT + Local QRPA

Correct description on dynamical residual effects Pronounced peaks at g.s. and fission isomer $M_{QRPA} > M_{cranking}$

Fission half-life in Fm isotopes

Strong dependence of choice of inertia Zero-point correction

On-going works

Fission paths in multidimensional space

