Induced Nuclear Fission Dynamics

Dario Vretenar University of Zagreb

Microscopic Models

The time-dependent generator coordinate method (TDGCM)

$$|\Psi(t)\rangle = \int_{\boldsymbol{q}\in E} \mathrm{d}\boldsymbol{q} |\phi(\boldsymbol{q})\rangle f(\boldsymbol{q},t).$$

 \Rightarrow represents the nuclear wave function by a superposition of generator states that are functions of collective coordinates.

⇒ a fully quantum mechanical approach but only takes into account collective degrees of freedom in the adiabatic approximation.

 \Rightarrow no dissipation mechanism.

TDGCM in the Gaussian overlap approximation (TDGCM+GOA)

Example

Time-dependent Schroedinger-like equation for fission dynamics (axial quadrupole and octupole deformation parameters as collective degrees of freedom):

$$i\hbar\frac{\partial}{\partial t}g(\beta_{2},\beta_{3},t) = \left[-\frac{\hbar^{2}}{2}\sum_{kl}\frac{\partial}{\partial\beta_{k}}B_{kl}(\beta_{2},\beta_{3})\frac{\partial}{\partial\beta_{l}} + V(\beta_{2},\beta_{3})\right]g(\beta_{2},\beta_{3},t)$$

Quadrupole and octupole constrained deformation energy surface of ²²⁸Th in the β_2 – β_3 plane.

Density profiles on the scission contour.

$$F(\xi,t) = \int_{t_0}^t dt' \int_{\{\beta_{20},\beta_{30}\}\in\xi} J(\beta_{20},\beta_{30},t') dS,$$

...charge yield

$$Y(Z) \propto \sum_{\xi \in \mathcal{A}} \lim_{t \to \infty} F(\xi, t).$$

Time evolution of the probability density $|g|^2$ in the (β_2 , β_3) plane. The solid line corresponds to the scission hypersurface.

Adiabatic evolution and dissipative dynamics

Time-dependent density functional theory (TDDFT)

$$i\frac{\partial}{\partial t}\psi_k(\boldsymbol{r},t) = \left[\hat{h}(\boldsymbol{r},t) - \varepsilon_k(t)\right]\psi_k(\boldsymbol{r},t),$$

$$i\frac{d}{dt}n_k(t) = n_k(t)\Delta_k^*(t) - n_k^*(t)\Delta_k(t),$$

$$i\frac{d}{dt}\kappa_k(t) = [\varepsilon_k(t) + \varepsilon_{\bar{k}}(t)]\kappa_k(t) + \Delta_k(t)[2n_k(t) - 1]$$

... classical evolution of independent nucleons in mean-field potentials, cannot be applied in classically forbidden regions of the collective space, nor does it take into account quantum fluctuations.

⇒ automatically includes the one-body dissipation mechanism, but can only simulate a single fission event by propagating the nucleons independently.

Negele et al. (1978) - use an adiabatic model for the time interval in which the fissioning nucleus evolves from the quasi-stationary initial state to the saddle point, and a non-adiabatic method for the saddle-to-scission and beyond-scission dynamics.

Ren, Zhao, Vretenar, Nikšić, Zhao, Meng Phys. Rev. C **105**, 044313 (2022).

TDGCM+GOA $E_{\rm TKE} = \frac{e^2 Z_H Z_L}{d_{\rm ch}}$, distance between centers of charge at the point of scission.

$$E_{
m TKE} = rac{1}{2} m A_{
m H} oldsymbol{v}_{
m H}^2 + rac{1}{2} m A_{
m L} oldsymbol{v}_{
m L}^2 + E_{
m Coul},$$

TDDFT

(≈ 25 fm, at which shape relaxation brings the fragments to their equilibrium shapes)

Induced Fission - Finite Temperature Effects

Extended TDGCM - dissipation effects

Zhao, Nikšić, Vretenar

Phys. Rev. C 105, 054604 (2022).

Extended TDGCM many-body wave function:

$$|\Phi(t)\rangle = \sum_{n} \int d\boldsymbol{q} f_n(\boldsymbol{q}, t) |n\boldsymbol{q}\rangle$$

... excited states at each value of the collective coordinate **q**

 \Rightarrow the matrix integral Hill-Wheeler equation:

+

$$\sum_{n'} \int d\boldsymbol{q}' \left\{ \mathcal{H}_{nn'}(\boldsymbol{q}, \boldsymbol{q}') f_{n'}(\boldsymbol{q}', t) - \mathcal{N}_{nn'}(\boldsymbol{q}, \boldsymbol{q}') \left[i\hbar \partial_t f_{n'}(\boldsymbol{q}', t) \right] \right\} = 0$$

... the level density for each value of **q** is high even at low excitation energies \Rightarrow the discrete label *n* can be separ

r

$$\begin{split} \sum_{\lambda, \text{ fixed } \epsilon} &= \rho(\boldsymbol{q}, \epsilon) d\epsilon, \\ i\hbar \frac{\partial}{\partial t} \psi(\boldsymbol{q}, \epsilon; t) &= \int d\boldsymbol{q}' h(\boldsymbol{q}, \boldsymbol{q}'; \epsilon, \epsilon) \psi(\boldsymbol{q}', \epsilon; t) \\ &+ \sum_{\lambda' \neq \lambda} \int \int d\boldsymbol{q}' d\epsilon' h(\boldsymbol{q}, \boldsymbol{q}'; \epsilon, \epsilon') \psi(\boldsymbol{q}', \epsilon'; t), \end{split}$$

... expansion of the Hamiltonian kernel in a power series in collective momenta: $m{P}=-i\hbar(\partial/\partialm{q}),$

$$i\hbar\partial_t\psi(\boldsymbol{q},\epsilon;t) = \left[V(\boldsymbol{q},\epsilon) + \boldsymbol{P}\frac{1}{2\mathcal{M}(\boldsymbol{q},\epsilon)}\boldsymbol{P}
ight]\psi(\boldsymbol{q},\epsilon;t) + rac{i}{2}\int\left\{\boldsymbol{P},\boldsymbol{\eta}(\boldsymbol{q};\epsilon,\epsilon')
ight\}\psi(\boldsymbol{q},\epsilon';t)d\epsilon'.$$

...dissipation function: $oldsymbol{\eta}(oldsymbol{q};\epsilon,\epsilon') \ = \ h^{(1)}(oldsymbol{q};\epsilon,\epsilon')/\hbar$

... excitation energy \rightarrow nuclear temperature η

$$\eta(\boldsymbol{q};T,T') \equiv \eta(\boldsymbol{q};\epsilon(T),\epsilon(T'))$$

Extended TDGCM

$$i\hbar\partial_t\psi(q,T;t) = \left[V(q,T) + P\frac{1}{2\mathcal{M}(q,T)}P\right]\psi(q,T;t) \\ + \frac{i}{2}\int \left\{P, \mathcal{O}(q;T,T')\right\}\psi(q,T';t)dT', \\ \mathcal{O}(q;T,T') = \eta(q;T,T')d\epsilon(T)/dT.$$

ILLUSTRATIVE CALCULATION: INDUCED FISSION DYNAMICS OF 228Th

The data for photo-induced fission correspond to photon energies in the interval 8 - 14 MeV, and a peak value of $E_{\gamma} = 11$ MeV.

2D projections on the (β_2 , β_3) plane of the probability distribution of the initial wave packet, at different T. The excitation energy of the initial state is E^{*} = 11 MeV.

The collective potential:

$$V(\boldsymbol{q},T) = \epsilon(T) + F(\boldsymbol{q},T)$$

The dissipation function:

$$\boldsymbol{\eta}(\boldsymbol{q};T,T') = \begin{cases} 0 & \beta_2 < \beta_2^0 \\ \boldsymbol{\eta}(T,T') & \beta_2 \ge \beta_2^0, \end{cases}$$

Gaussian random variables

3D extended TDGCM charge yields.

Time-integrated collective flux B(T) through the scission contour, as a function of temperature.

Total Kinetic Energy Distribution

The integrated flux F (ξ ; t) for a given scission surface element ξ is defined:

$$F(\xi;t) = \int_{t_0}^t dt' \int_{(\boldsymbol{q},T)\in\xi} \boldsymbol{J}(\boldsymbol{q},T;t') \cdot d\boldsymbol{S},$$

Scission contours for ²²⁸ Th in the (β_2 , β_3) deformation plane for several values of the nuclear temperature T, plotted on the

The TKE for the fission fragment with mass A:

Zhao, Nikšić, Vretenar Phys. Rev. C 106, 054609 (2022).

Fission dynamics, dissipation, and clustering at finite temperature

Li, Vretenar, Ren, Nikšić, Zhao, Zhao, Meng, Phys. Rev. C 107, 014303 (2023).

Induced-fission dynamics of ²²⁶Th

Li, Vretenar, Nikšić, Zhao, Meng, Phys. Rev. C **110**, 034302 (2024).

3 -	²²⁶ Th $F = E(T) - TS$ T = 0.8 MeV. F [MeV]
- 2 - β ³⁰ - 1	$\begin{bmatrix} 12 \\ 8 \\ 4 \\ 0 \\ -4 \\ -8 \\ -12 \end{bmatrix}$
- 0 ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Trajectory	1	2
$\overline{T^{ ext{init}}}$	0.80	0.80
$E_{ m init}$	-1707.15	-1703.12
$E_{\rm FS}^*$	10.47	10.47
$E^{k, \text{pre}}$	12.19	12.56
$E^{k,C}$	143.60	144.18
$E_{g.s.}^{1,T=0}(M_1)$	-1155.21	-1131.11
$E_1^{*,def}$	1.82	11.12
$E_{g.s.}^{2,T=0}(M_2)$	-735.74	-767.06
$E_2^{*,\mathrm{def}}$	6.16	5.73
$E^{ ilde{*}, ext{int}}$	20.03	21.47
$E^{*,\mathrm{dis}}$	9.56	11.00
$T_{ m sci}$	0.82	0.90

fission evaporation scission saddle *E**,*Bf* E_{FS}^* E*,dis E^{*,int} M_{FS} TXE fission E*,def barrier $E^{k,pre}$ TKE $E^{k,C}$ $M_1 + M_2$ Elongation

Energy balance:

$$E_{\text{init}} = E_{\text{g.s.}}^{1,T=0} + E_{\text{g.s.}}^{2,T=0} + \text{TKE} + \text{TXE}$$

$$E^{k,\text{pre}} = \frac{m}{2} \int \rho(\vec{r}, t_{\text{sci}}) \vec{v}^2(\vec{r}, t_{\text{sci}}) d\vec{r},$$

$$TXE = \sum_{i=1}^{2} E_{i}^{*,def} + E^{*,int}$$

$$E^{*,\mathrm{dis}} = E^{*,\mathrm{int}} - E^*_{\mathrm{FS}},$$

Symmetric trajectories

Trajectory	1	2	3	4
$\overline{T^{\mathrm{init}}}$	0.80	0.80	0.80	0.80
$E_{ m init}$	-1707.15	-1703.12	-1708.53	-1711.48
$E_{ m FS}^*$	10.47	10.47	10.47	10.47
$E^{k, \text{pre}}$	12.19	12.56	6.23	5.57
$E^{k,C}$	143.60	144.18	147.18	144.79
$E_{\rm g.s.}^{1,T=0}(M_1) \ E_1^{*,{ m def}}$	-1155.21	-1131.11	-946.95	-946.95
$E_1^{*,\mathrm{def}}$	1.82	11.12	8.88	9.01
$E_{g.s.}^{2,T=0}(M_2)$ $E_2^{*,def}$	-735.74	-767.06	-946.95	-946.95
$E_2^{*,\mathrm{def}}$	6.16	5.73	8.88	9.01
$\tilde{E^{*,\mathrm{int}}}$	20.03	21.47	14.20	14.04
$E^{*,\mathrm{dis}}$	9.56	11.00	3.73	3.57
T _{sci}	0.82	0.90	0.78	0.74

Entropy of fragments and entanglement at finite temperature

The von Neumann entropy:

 $S = -\mathrm{Tr}(\rho \ln \rho),$

 \Rightarrow entropy S^(q) for neutrons (q= n) or protons (q= p) of a fragment located in the subspace V:

$$S_V^{(q)} = -\text{Tr} \{ \boldsymbol{M}_V^{(q)} \ln \boldsymbol{M}_V^{(q)} + [\boldsymbol{I} - \boldsymbol{M}_V^{(q)}] \ln [\boldsymbol{I} - \boldsymbol{M}_V^{(q)}] \}$$
$$= -\sum_{i=1}^{N^{(q)}} \{ d_i^{(q)} \ln d_i^{(q)} + [1 - d_i^{(q)}] \ln [1 - d_i^{(q)}] \},$$

$$S_V = S_V^{(n)} + S_V^{(p)}.$$

divide are the eigenvalues of the overlap matrix $M^{(q)}$: $[M_V^{(q)}]_{ij} = \sqrt{f_i f_j} \langle \psi_i^{(q)} | \hat{\Theta}_V | \psi_j^{(q)} \rangle$, $\Theta_V(\mathbf{r}) = \begin{cases} 1 & \text{if } \mathbf{r} \in V, \\ 0 & \text{if } \mathbf{r} \notin V. \end{cases}$

The entanglement (mutual information) between the fragments:

$$L=S_V+S_{\bar{V}}-S_{\rm tot},$$

Nucleus			226	Th		
Trajectory	1	2	3	4	5	6
$\overline{S_{ m tot}}$	21.54	26.26	26.48	23.73	24.17	34.61
S_1	14.20	16.55	14.19	12.98	13.33	18.68
S_2	11.52	13.92	14.19	12.98	13.33	18.68
L	4.18	4.21	1.90	2.23	2.49	2.75

Generalized time-dependent generator coordinate method

Li, Vretenar, Nikšić, Zhao, Meng, Phys. Rev. C 108, 014321 (2023).

Li, Vretenar, Nikšić, Zhao, Zhao, Meng, Front. Phys. 19, 44201 (2024).

$$\begin{array}{ll} \text{The nuclear wave function:} & |\Psi(t)\rangle = \sum_{q} f_{q}(t) |\Phi_{q}(t)\rangle \implies i\hbar\partial_{t} |\Psi(t)\rangle = \hat{H} |\Psi(t)\rangle \\ \Rightarrow & \text{equation of motion for the weight functions:} & \sum_{q} i\hbar\mathcal{N}_{q'q}(t)\partial_{t}f_{q}(t) + \sum_{q}\mathcal{H}_{q'q}^{MF}(t)f_{q}(t) = \sum_{q}\mathcal{H}_{q'q}(t)f_{q}(t) \\ & \dots \text{time-dependent kernels:} & \begin{cases} \mathcal{N}_{q'q}(t) = \langle \Phi_{q'}(t) | \Phi_{q}(t) \rangle, \\ \mathcal{H}_{q'q}(t) = \langle \Phi_{q'}(t) | \hat{H} | \Phi_{q}(t) \rangle, \\ \mathcal{H}_{q'q}^{MF}(t) = \langle \Phi_{q'}(t) | i\hbar\partial_{t} | \Phi_{q}(t) \rangle, \end{cases} & \text{The time-dependent generator states are independent TDDFT fission trajectories on the PES.} \end{cases}$$

...collective wave function: $g = \mathcal{N}^{1/2} f$

$$i\hbar \dot{g} = \mathcal{N}^{-1/2} (H - H^{MF}) \mathcal{N}^{-1/2} g + i\hbar \dot{\mathcal{N}}^{1/2} \mathcal{N}^{-1/2} g.$$

Square moduli of the components of the TDGCM collective wave function, that starts from the initial point (β_{20} , β_{30}) = (2.30,1.13) of trajectory number 13.

The square moduli of the 25 TDDFT components of the generalized TDGCM collective wave functions $|g|^2$, at time 1300 fm/c. The generalized TDGCM trajectories 1–25 start from the initial points 1–25.

The probability of finding z protons in the subspace V_f that corresponds to one of the fragments, when the total system contains Z protons:

$$P(z|Z,t) = \frac{\langle \Psi(t) \left| \hat{P}_{z}^{V_{f}} \hat{P}_{Z} \right| \Psi(t) \rangle}{\langle \Psi(t) \left| \hat{P}_{Z} \right| \Psi(t) \rangle} = \frac{\sum_{qq'} f_{q'}^{*}(t) f_{q}(t) \langle \Phi_{q'}(t) \left| \hat{P}_{z}^{V_{f}} \hat{P}_{Z} \right| \Phi_{q}(t) \rangle}{\sum_{qq'} f_{q'}^{*}(t) f_{q}(t) \langle \Phi_{q'}(t) \left| \hat{P}_{Z} \right| \Phi_{q}(t) \rangle},$$

Probability distributions of proton number at time 1300 fm/c. The generalized TDGCM trajectories 1–25 start from the initial points 1–25.

Charge yields for induced fission of ²⁴⁰Pu.

Total kinetic energies of the emerging fragments.

