

Microscopic description of fission properties: paving the way for large-scale data generation

Adrián Sánchez Fernández, Silvia Bara, Wouter Ryssens and Stéphane Goriely

Dynamics of Nuclear Fission (CEA Saclay). 19th of December, 2024.

The origin of the heaviest elements Or at least half of them...

Adrián Sánchez Fernández

184

credit: EMMI, GSI/Different Arts

What we want

1. Mass abundances

2. Kilonovae light curves

Image credit: Dreamstime

Adrián Sánchez Fernández

What we need

1. Fission rates

2. Nuclear level densities

3. Fission fragments distributions

Our approach Microscopic description of fission paths with (Skyrme) EDF

Step 1: Mass symmetric or asymmetric?

Minimum energy path for different ending points

We chose the minimum action path

Adrián Sánchez Fernández

II. The method Integration MOCCa+PyNEB (S. Bara, W. Ryssens and A. Sánchez-Fernández)

236U (Least action* path)

Step 2: Let us break axiality

Adrián Sánchez Fernández

II. The method

*
$$S = \int_{in}^{out} ds \sqrt{\mu(s)} (V(s) - E_{c})$$

Adrián Sánchez Fernández

II. The method

Adrián Sánchez Fernández

II. The method

- Benefits of the double-path calculation
- We avoid usual
- discontinuities
- Identification of
- symmetric fission paths

- Fragment
- distribution analysis,

Adrián Sánchez Fernández

II. The method

Adrián Sánchez Fernández

II. The method

$\Delta E_{out} \approx 0.6 \text{ MeV}$

LAP->LAP:

S=54,67 \hbar ; $log[t_{1/2}^{SF}]$ =26.94

MEP->LAP S=54,08 \hbar ; $log[t_{1/2}^{SF}]$ =26.43

The approach to odd/odd-odd nuclei

Step 2: Let us break axiality

Adrián Sánchez Fernández

II. The method

We choose the lowest energy blocked configuration

A key ingredient: the collective moments of inertia

Adrián Sánchez Fernández

II. The method

Microscopic inertia tensor (diagonal terms) for ²³⁰U

A key ingredient: the collective moments of inertia

Adrián Sánchez Fernández

II. The method

Effective inertia and triaxiality ²³⁰U

What we got so far 45 reference nuclei (RIPL-3)

$\overline{\epsilon}(E)$	Inner (MeV)	Outer (MeV)
MEP	-1.70	-0.16
LAP	-1.66	-0.08

Energy mean-deviation triaxial-axial path

Adrián Sánchez Fernández

III. The results

45 reference nuclei (RIPL-3)

Primary barriers from MEP

III. The results

EoS MANASLU workshop

45 reference nuclei (RIPL-3)

	$\overline{\epsilon}(\log[t_{1/2}^{SF}])$	$\sigma(\log[t_{1/2}^{SF}])$
MEP (μ con.)	12.33	13.42
MEP (μ mic.)	-2.78	4.44
LAP (μ mic.)	-0.53	3.66

Adrián Sánchez Fernández

III. The results

Not-so-large scale: U-chain

Primary barrier and S.F. half-lives

UNIVERSITÉ **ULB** LIBRE DE BRUXELLES

Adrián Sánchez Fernández

III. The results

Coming after Christmas

Comparison with all available experimental S.F. half-lives

Requesting computing time in a Tier-O cluster: the leap to the large-scale

5000 nuclei x 2 PESs = 10.000 PESs

 $10.000 \text{ PESs x } 600 \text{ points} = 6.10^6 \text{ points}$

6.10⁶ points x 4 h =

24 million hours of computation

IV. The next steps

Some conclusions

1. Unified microscopic framework for computing fission properties

3. Even, odd and odd-odd nuclei "at the same price"

4. Tons of nuclei, I know... but it is feasible!

5. Results useful not only for astrophysics

Adrián Sánchez Fernández

V Conclusions

2. Best EDF model to describe empirical fission barriers and S.F. half-lives

