

Prediction and emulation of prompt neutrons/ γ with FIFRELIN

ESNT Dynamics of Nuclear Fission, 16-19/12/2024, Saclay

A. Chebboubi, O. Litaize and O. Serot CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache, 13108 Saint-Paul-lès-Durance

Nuclear data evaluation pipeline

The nuclear fission process

ESNT Dynamics of Nuclear Fission, 16-19/12/2024, Saclay

Description of FIFRELIN

FIFRELIN : a bridge between experimental and theoretical worlds

FIFRELIN (FIssion Fragments Evaporation modeLINg)

• Goal : characterize fission fragment since its creation (~ scission) until β decay (not included)

Fission fragment generation

Ingredient (input files/models) :

- Pre-neutron mass yields: A (usually obtained from experimental data)
- Nuclear charge calculation: Z (Wahl)
- Pre-neutron emission kinetic energy distributions : *KE* (usually obtained from experimental data)
- Excitation energy sharing E^* : Temperature Ratio function (2 free parameters)
- Fission fragment angular momentum calculation J^{π} : 2 models (2 free parameters / 1 free parameter)

Excitation energy after full

acceleration

- Instrinsic
- Deformation
- Collective

 $TXE = a_L T_L^2 + a_H T_H^2 + E_{rot}^L + E_{rot}^H$

<u>At the end</u>, only $TXE - (E_{rot}^L + E_{rot}^H)$ is partitioned through $E_{L,H}^* = a_{L,H}T_{L,H}^2$

Constant model : $\sigma_{L,H} = f_{\sigma_{L,H}}$ not energy dependent !

Emission of prompt particles

Ingredient (input files/models) :

- Experimental nuclear level scheme (RIPL)
- Models of nuclear level density (CGCM, ...)
- Models of γ strength function (EGLO, ...)
- Neutron transmission coefficients (Koning-Delaroche, ...)
- Internal conversion coefficients (Brlcc)

 \rightarrow complete fission fragment nuclear level scheme up to the entry region

→ determination of de-excitation probability $P(E_i^*, J_i^{\pi} \rightarrow E_f^*, J_f^{\pi})$ by emitting secondary particles (γ, e^- , neutron)

Multiple level scheme

Generalization of electron emission

- Before, electrons were coming only from RIPL-3 database : experimental ones
- Now, we have tabulated Internal Conversion Coefficient with Brlcc for
 - Z = 5 110
 - $E_{\gamma} = \epsilon_i + 1 6000 \ keV \ (\epsilon_i \text{ binding energy} of electron on shell i (K,L,M ...))$
 - *E*1 *E*6 and *M*1 *M*6
 - Positrons can be emitted !
- Ok but why do we care ?
 - Usefull for some particle physics experiment (detector calibration, background ...)
 - Reduce gamma multiplicity (especillay at low-energy)

How FIFRELIN is working?

- 4 free parameters to determine excitation energy and angular momentum for each fragment
- Fixed against "target observables" : average neutron multiplicity (light/heavy if existing)

• Limitation : 4D space

Some practical information

- Developed in C++ since 2009
- Highly parallel (OpenMP+MPI)
 - Next step: GPU •
- Available through NEA since 13/12/2024: https://www.oecd-

nea.org/tools/abstract/detail/nea-1934

- All events are stored in a binary file
 - Convertor to ROOT tree event ٠
 - Convertor to Pandas DataFrame • (python) ongoing !
 - Homemade GUI to "play" with all • the observables
- Not only for fission: decay for any nuclide (limitation : excitation energy + particle emission)
- A lot of use in neutrino/dark matter community for detector characterization !

©A. Chalil et al., Improved FIFRELIN deexcitation model for neutrino applications,

	Ge71	1/2+
	Ge73	1/2+
	Ge74	(4+ , 5+)
	Ge75	1/2+
	Ge77	1/2+
)	W183	1/2+
	W184	(0- , 1-)
	W185	1/2+
	W187	1/2+

Excitation Energy, Multiplicity, Temperature

Extraction of angular momentum with FIFRELIN

Focus on angular momentum generation

ESNT Dynamics of Nuclear Fission, 16-19/12/2024, Saclay

LOHENGRIN spectrometer of ILL

ESNT Dynamics of Nuclear Fission, 16-19/12/2024, Saclay

Analysis of µs isomers

keV (^{132m1}Te) - 974 keV (

926.21

93.64 keV (⁴¹Ar)

.820 keV (⁴⁰K)

US OF

1400

1000

Cez

Comparison with FIFRELIN calculation

Level density model : CGCM

•

- Model of γ strength function (EGLO)
- The impact of f_{σ_L} is more important than f_{σ_H}

- Role of the rotational energy in the total energy excitation sharing ?
- Correlation between both fragments arise naturally !
- Can be explained by nucleons exchange at scission (TDHFB) → role of deformation energy?
- Thermal excitation ?

@ J. Nicholson., Determination of fission fragment angular momentum from isomeric ratio measurement, PhD Thesis, UGA, 2021

Direct determination of angular momentum with FIFRELIN decay

In this work, FIFRELIN (developed by CEA Cadarache) is used only as a nuclear deexcitation code (step 2)

What is required for FIFRELIN :

- experimental level scheme (RIPL-3)
- Model of nuclear density to complete the level scheme (CGCM)
- Model of γ strength function (EGLO)
- Electron conversion coefficients (Brlcc)

For comparison with experimental results standard spin distribution:

•
$$IR_{FIF}(E^*, J_{RMS}) = \sum_{E} \sum_{\pi} P(\pi) P(J) IR_{FIF}(E^*, J^{\pi})$$

- $P(J) \propto (2J+1) \exp\left(-\frac{(J+\frac{1}{2})}{J_{cutoff}^2}\right)$
- $P(\pi) = \frac{1}{2}$

Synthesis on ¹³²Sn work

- Isomeric ratios : probe for fission fragment angular momentum
- Dependency of the derived average angular momentum with the fission fragment kinetic energy
- Next step : measurement in the light fragment region (part of a thesis 2025-2028)

Interpretation using FIFRELIN for prompt γ -rays

Combination	Model of initial angular momentum	Model of level density	$[RT_{min}; RT_{min}]$	$[f_{\sigma_L};f_{\sigma_H}]$	
F1	Constant	CGCM	[0.45;1.40]	[10.5;8.0]	
F2	Energy dependent	CGCM	[0.5;1.40]	[1.7;1.5]	
F3	Energy dependent	HFB14	[0.5;1.45]	[1.4;1.3]	

VESPA setup @JRC-Geel

- Twin ionization chamber with Frisch Grid with 252Cf
- 8 LaBr3 for γ
- 7 organic scintillators for neutrons

- F3 is the best combination of models
- Sawtooth behavior seems to raise from energy dependent model
- The scaling is better using HFB14 instead of CGCM level density

leutron and gamma multiplicities calculated in the consistent framework of the Hauser-Feshbach

B, 837, 137648 (2023)

To go further : angular correlation !

P(m)

© R. Vogt and J. Randrup, The role of angular momentum in fission, EPJ Web of Conf. 292,08006 (2024)

B On going developments

Machine Learning with FIFRELIN

Carlet Construction Constructio

How to determine these 4 parameters ?

- If we consider each of them as independent, and at least 5 points (per dimension) to find their best values, we need 5⁴ = 625 simulations → 4 days
- One way to reduce the number of simulations (time consuming) : Machine Learning
- In this work, we started with Gaussian Process algorithm

- Can be seen as a more complex way to make interpolation
- Suitable for linear problems!
- Based on prior covariance between data : hyper-parameters are fitted and control the smoothness of the interpolated function
- Not the best option for really high dimensions !

Gaussian process regression on a noisy dataset

GPs

- Can be seen as a more complex way to ٠ make interpolation
- Suitable for linear problems!
- Based on prior covariance between data : hyper-parameters are fitted and control the smoothness of the interpolated function
- Not the best option for really high ٠ dimensions !

- 1.00

Some results : ²⁵²Cf(sf)

© G. Bazelaire et al., Assimilating fission-code FIFRELIN using machine learning, EPJ Web of Conf. 294,03002 (2024)

- Target : $[\overline{\nu_L}, \overline{\nu_H}, \overline{M_{\gamma_L}}, \overline{M_{\gamma_H}}] = [2.06, 1.70, 4.56, 3.82]$
- In 2h, from scratch, we found an optimum : $[RT_{min}, RT_{max}, f\sigma_L, f\sigma_H] = [0.18, 1.58, 1.38, 1.37]$ thanks to 100 simulations

To go further : determination $R_T(A)$ function

- Use $\bar{\nu}(A)$ as target !
- $\bar{\nu}(A)$ and $\bar{\nu}(A_{CN} A)$ strongly correlated (anti-correlated) to $R_T(A)$

To go further : determination R_T(A) function

- To reproduce the sawtooth, we need such $R_T(A)$ function
- Can theoretical calculation produce such quantity ?
- Good illustration of the role played by FIFRELIN to "transform" experimental quantity (neutron multiplicity) to physical observable (excitation energy at/nearby scission)

Multi-chance fission

Need a lot of pre-neutron data \rightarrow GEF is used to provide them + interpolation Free parameters are also tuned against v + interpolation

Two models implemented :

- Non analog : based on evaluated partial fission cross section (see results below)
- Analog : calculation of fission width based on Hill-Wheeler formula + competition with other channels (neutron/ γ)

© M. Sabathé et al., Implementation of a multi-chance fission model in FIFRELIN for 235U(n,f) reaction, EPJ Web of Conf. 294,03001 (2024)

Conclusions

FIFRELIN is a two step Monte Carlo Code with 4 free parameters

- Recent works have generalized electron emission calculation
- Energy dependent angular momentum is crucial for comparison with experimental data
- HFB level densities suits well with experimental data
- Use of machine learning to expand the range of applications of FIFRELIN + more complex initial modelling
- Multi-chance fission implemented in the code
- FIFRELIN is now available at NEA!

Cea

Thank you for your attention

A. Chebboubi, O. Litaize, O. Serot, P. Tamagno, M. Sabathé, G. Bazelaire CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache A. Chalil CEA, DES, IRESNE, DTN, SMTA, Nuclear Measurement Laboratory,Cadarache V. Piau Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay L. Thulliez CEA, DRF, IRFU, DPHN, LEARN, Saclay