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Purpose of the talk
Introduce and discuss microscopic methods in order to study
multi-quasiparticle excitation with a focus in odd nuclei.
So far, little (if any) attention has usually been paid by the theory
community to odd nuclei (and MQP excitations)

The outline of the presentation is as follows

» Introduction
Main differences between odd and even systems
Some phenomenological models

» Mean field (HF and HFB): blocking
shell model view
Hartree-Fock
HFB + blocking
» Beyond mean field
Symmetry restoration
Fluctuations
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Odd and even

What makes and odd system different from an even one ?

» Pairing interaction: in even systems all nucleons form Cooper
pairs whereas in odd systems there is always a “single”
nucleon
In addition to typical odd-even effect in binding energies, etc
the “single” nucleon has the tendency to quench pairing
correlations

» Time reversal invariance: Cooper pair wave function is
invariant under time-reversal. The “single” nucleon one is not
In even systems time-reversal invariance is broken for generic
multiquasiparticle excitations

» Core - “single” nucleon: Given the above, it is customary to

consider the whole nucleus as made of an even core plus the
single nucleon.
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Models

Based on the core + single particle paradigm

» Particle plus rotor: Based on the I = R + j decomposition
» Strong coupling limit (deformed)

hQ
Erx = Bk + E[I(I‘F 1) = K + 6k 120(=1)""2(1+1/2)]

» Weak coupling limit (spherical)
» Aligned limit (spherical+high j orbital)
» Particle + vibration coupling: More microscopic, based on
QRPA and fermionic extensions

Fig. 11.3. Schematic illustration of the two extreme coupling schemes; deformation
alignment (left figure) and rotation alignment (right figure) (from R.M. Lieder and
H. Ryde, Adv. in Nucl. Phys., eds. M. Baranger and E. Vogt (Plenum Publ. Corp.,
New York) vol. 10 (1978) p. 1).
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Mean field
The mean field approach is the starting point for any microscopic

treatment of nuclear dynamics
Mean field generates orbits where one places protons and neutrons

respecting Pauli exclusion principle
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» Strong experimental evidence supporting the existence of a
short range attractive interaction: Pairing
Mass parabolas
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possible

analogy between this effect and the energy gap observed in the electronic excitation of a superconducting

metal is suggested.
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Pairing
» Pairing leads to correlated structures: Cooper pairs of
protons and neutrons coupled to J = 07 (k, k scheme: time
reversal invariance !)

N S

Cooper pairs
» BCS theory of superconductivity
|BCS) = N H(uk + vkc;cg)b
k>0

+ _ + + _ +
Qp = UGy — VgAp  Qp = Ugap + v ag

Focused on "pairs” , breaks particle number symmetry
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Framework

» The interplay between Cooper pairs and the “single nucleon”
in odd nuclei require the introduction of the
Hartree-Fock-Bogoliubov (HFB) method

» The same holds if one is dealing with two-quasiparticle
excitations, etc

» The concept of “blocked” HFB wave function appears
naturally. Fortunatelly, an addapted version of Wick’s theorem
also applies in this case

» Time reversal symmetry is broken because one is dealing with
Cooper pairs J = 0 and a single nucleon with angular
momentum j

» Due to polarization effects, many “blocking configurations”
have to be explored
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:

Multi-quasiparticles

Mean field plus pairing (Hartree Fock Bogoliubov, HFB) based on
the Bogoliubov transformation to quasi-particles

()= o o ) )= ()

The ¢t and c¢ creation and annihilation operators in a convenient
fermion single particle basis (harmonic oscillator, ...)

» HFB ground state defined by 3,|®) = 0.
» Wick's theorem to compute mean values (®|c;f ¢;" ¢ e |®)
» U and V determined by the variational principle on (®|H|d)

» HFB solution: H = Hy + > EuBy By + - -+ Quasiparticle
energies k),
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Multi-quasiparticles

If |®) is a fully paired state corresponding to an even nucleus and
with number parity even then, in the canonical basis

|HFB) = N [ ] (u + veaf a)))
k>0

> SF|®) corresponds to an odd system (number parity changes)
In the canonical basis ./\/'a/,:r0 Hk>0,;£ko(uk + vka,jag)b
ko is the blocked level
> (3,55, |®) is an elementary excitation of |®)
pag)l)

: ; + +
In the canonical basis ./\/ako ., Hk>0’¢k077ékl(uk + vy ag

v

BB BF|®) is an elementary excitation of the odd system
BrBLIBLIBL|®) ... four-QP states

v
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Multi-quasiparticles (MQP)

>

vy

MQP perturbative: U, V obtained once for all (from g.s.
|®0)). Excitation energy: sum of the quasiparticle energy of
each blocked level E,, = E, + E, +--- for 3, 3F|®)

MQP selfconsistent: Each mqp excitation has its own U
and V amplitudes obtained by invoking the variational
principle. For instance, minimizing 2qp energies

B = (P|6,8, HB; 5,7|®9) — (®o] H|o)
Selfconsistency: each excitation has its own multipole
deformation parameters, pairing properties, etc
MQP excitations treated with the blocking method
Axial symmetry: K good quantum number

Constrains on collective variables provide specific PES for
each MQP. Crucial for a proper treatment of fluctuations.
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One and two qgp excitations
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Selfconsistency
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excitation

explains the smaller number of blocked states as compared to
perturbative 2QP excitations of the ground state and the absence of
K = 0 states. Orthogonality constraint!
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Selfconsistency

T T
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» Axial calculation
» Gogny force D1S

» K is a good quantum
number

» Shape of PES depend
on blocked level.
Relevant for

a3 fluctuations on
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Selfconsistency shifts the octupole moment of blocked
configurations to non-zero values and each configuration has its
own value of Q3
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The blocking method

Common wisdom: to treat quasiparticle excitations just exchange
corresponding columns of U and V amplitude

To get an easy understanding of this rule let us consider the
quasiparticle density for the fully paired HFB gs vacuum

o [ (@IB1BI®) (B[BEAI®) ) _ (0 0
(@15,5,19) (@]5,5]/¢) 01

where [ is the identity matrix.
From R one gets the single particle generalized density

r_ [ ©ldal®) ©ldel®)\ (o N et
(®]cper|®)  (Plekef|) —K* 1—p*

used to compute observables (Wick's theorem).
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The blocking method
For |&)u> =Bt B, |®) one gets

RM:<H“ 0 ) (]IM)Upzl if w=o0=p; 0 otherwise,

0 I-1,

The following decomposition holds

-1, 1
R, = S,RS],, S#:< H““ 1[—”1@)

Where the "swap” matrix S acting on W gives W, = WS, , where
the 1 columns of U and V are exchanged. Then

» :<<{>|c;2czr{>> (lete] |&>>>
: (®|crer|®)  (D|egel|®)
=WR, W' = WS,RS|, Wi = W,RW,

(1)
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Self-consistent

» U and V amplitudes are determined by the variational
principle for each MQP configuration

5(O|Bruy - B HBS, . B ®) =0

» lterative solution (Gradient, iterative diagonalization, etc)

» If no orthogonality constraint imposed, it is very likely to
converge always to the same minimum with the same
quantum numbers irrespective of initial configuration

» Orthogonality can be enforced by using symmetry quantum
numbers, like K or m, i.e. p— Q,,m,,...

» For those states with the same quantum numbers, a
constraint on the overlap (®|®,,) is required (|®,,) target
state to be orthogonal to). Easy to handle with the gradient
method used to solve HFB and some linear algebra stuff.
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Selfconsistency
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Note: Many blocked configurations converge to the same state. This

excitation

explains the smaller number of blocked states as compared to

perturbative 2QP excitations of the ground state and the absence of

K = 0 states. Orthogonality constraint!
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Orthogonality constraint

» The overlap (®1|®g) is proportional to det A with
A=UUy+ ViV

» The gradient of the constraint is easy to compute, and turns
out to be proportional to

Al det A

» This is a indeterminacy as det A — 0 implies a non invertible
A. The conundrum is solved using the Singular Value
Decomposition (SVD) of A.

» The situation is simpler if a constraint on (®1|®g) ~ 1 is
required as in recent publications on fission
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Density dependent forces

» Density dependent forces depend upon the mean field solution
|®) through the spatial density p(7) = (®|5(7)|P)

» The quasiparticle energies E,,, are obtained from the |®)
solution through generalized Brillouin and contain the
rearrangement term

» MQP excitations should satisfy
By + -+ By, = (0|8, - “ﬁmAHﬁ:ﬁ ) ..5;rM|q>> +
» This requires the density

p(?)ﬂl,n-nU«M = <¢‘BHM T 6#1:55:1 T BIM‘¢>

in the density dependent part of the interaction !

YUsing p(F) s ,..one = po(7) + W py..(7) and expanding the p term
to first order in p}ju the energy Ej,, ..., can be written as the sum of the
HFB energy of the reference state plus the sum of quasiparticle energies E,,;

plus an interaction term
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Equal Filling Approx

» The Equal Filling Approx (EFA) represents a good alternative
if time-odd components of the force are not relevant (or not
under control)

» Typical example: BCPM functional

» Odd nuclei: both the blocked quasiparticle K; and its time
reversed partner have statistical occupancy one-half.

» Justified by using quantum statistical admixtures with fixed
probabilities
» For two (four, etc) quasiparticle both the blocked

quasiparticles K;, K; and their time reversed partners have
statistical occupancy 0.5
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EFA

» The EFA can be viewed as a quantum statistical system where
both 3 |#) and B;CBW) are present with equal probability
1/2.

» Introduce a quantum density operator D (ZA),BL = puﬁlf)) and
mean values are replaced by traces over multiquasiparticle
excitations

» Thanks to Gaudin's theorem (Wick's theorem for statistical
averages) every mean value takes the standard form in terms
of density and pairing tensor, but as a function of the
statistical density and pairing tensor.

» The statistical density and pairing tensor are nothing but the

EFA quantities
The formalism of finite temperature can be borrowed

v

» As a consequence, EFA is a variational theory and gradient
methods can be used to derive and solve the EFA-HFB
equation.
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EFA

In the EFA, the time-reversal-breaking term is "averaged” in the
density

EFA __
Prr — (V )kk, (2)
1 *
5 (Ukn Uy = Vi Visas + Uy Ul — Vi, Vi, )

(3)

+

and pairing tensor
/@5]5’4 = (V* UT) " )
1 . .
+ 2 (Uk“B Vitus = Ukug Vipy + Ukig Vien, — Uy V];"HB)
(5)

Every mean value is written replacing the "blocked” density and
pairing tensor by the EFA ones.
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A comparison D1IM (EFA) and D1M (fulll blocking)
» The two spectrum are similar and therefore one can conclude
that time-odd fields are not relevant
» The same happens all over the nuclear chart
» The relevant factor for the reduction of excitation energies is
the quenching of pairing correlations . Pairing correlations
measured by (AN?). Dynamic pairing !
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More examples of blocking calculations in the rare earth and

actinide region

Note that there are just a few duplicated quantum numbers: no

orthogonality constraint in this calculation

States with duplicated quantum numbers correspond to different

deformation parameters (i.e. different local minima)
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?4No (High-K isomers)
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» Exp vs D1S and D1IM

» 4QP isomers

(2 prot - 2 neut )

Perturbative 2QP energies
typically twice as high

» Strong reduction of (AN?).

» Quenched pairing calls for

dynamic pairing
treatment

Dominant Nilsson
components of the QP
operators coincide with
empirical assignments
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254N0

254No with Gogny D1S

Proton and neutron single particle > 107 2QP neutron 7/27, 11/27
energies > 8~ 2QP proton 7/27, 9/2%

B2 22 0.28 > 16+ 2QP-p 7/2-, 92+

3T 2QP proton 7/27, 1/2~ 2QP-n 9/27, 7/2*

8~ 2QP neutron 9/27, 7/2%
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%4No EFA
254N0 » 254No
EXP D1S D1S_EFA  » DiSand D1S (EFA))
4.5 16—
16t Reasonable agreement
4 - between full blocking and
EFA
3.5
N » Time-odd fields not
3 —--16 8 relevant
é 2.5 10t _10* » Strong reduction of (AN?).
+
o 2 10 8 8 » Quenching of pairing
15 ~ . correlations is the main
) . -8 3t 3" - mechanism to explain the
1 3" - reduction of excitation
energies .
0.5
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I8 Hf EFA
178Hf > L78Hf
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Odd-odd systems

The formalism described above can be easily extended to odd-odd

systems by locking at the same time protons and neutrons

In the EFA, no Gallaguer-Mozkowski splitting

400
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m
=
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E
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& 0

Figure 1: Low-lying band heads in the spectra of the nu-
cleus 1™ Lu and odd-A neighbors: '™ Lu (left); '">Yb (center)
'™ Lu (right). Due to the inversion of the lowest proton quasi-
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(71,102)  (70,103)  (71,103)

» Reproducing experimental

data not so easy

» GM splitting depends on
spin-spin interaction

» Not well under control in

Gogny D1S

» Density dependent channel
seems to be responsible
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Beyond mean field

The spectra obtained are expected to be sensitive to interaction
details and beyond mean field effects

» EDF contain very few parameters to fit single particle
properties. Universal, no local fitting

» Pairing correlations severely quenched: Dynamic pairing and
particle number projection important

» Non uniform response to collective parameters imply that
symmetry restoration has to be implemented using the
Variation After Projection (VAP) instead of Projection
After Variation (PAV)

» Non uniform response to fluctuations in collective variables
(Particle-Vibration coupling ?)
Beyond mean field effects may have a strong impact on the
ordering of levels
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Importance of VAP and fluctuations

100 fy2.5 MeV

Iﬂ 01 MeV

2

D1S Eggmg (GCM Q30)

D1S Egorg (PP Q80)

L4

D1S Egaae (HFB Q30)

a)

20 40 60 80 100 120 140 160 180
N

Octupole collectivity in even-even systems

» a) Mean field octupole correlation energy
» b) VAP parity projection
» ¢) Fluctuations in the octupole moment

VAP and fluctuations important in the
whole nuclear chart

Non-trivial Z and N dependence
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Beyond mean field, Parity projection
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Symmetry restoration (AMP+PNP)
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Symmetry restoration (AMP+PNP)
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RVAP (Deformation)
° Theory Experiment (VA P_ P N P)
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