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Purpose of the talk
Introduce and discuss microscopic methods in order to study
multi-quasiparticle excitation with a focus in odd nuclei.
So far, little (if any) attention has usually been paid by the theory
community to odd nuclei (and MQP excitations)

The outline of the presentation is as follows
▶ Introduction

Main differences between odd and even systems
Some phenomenological models

▶ Mean field (HF and HFB): blocking
shell model view
Hartree-Fock
HFB + blocking

▶ Beyond mean field
Symmetry restoration
Fluctuations
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Odd and even

What makes and odd system different from an even one ?
▶ Pairing interaction: in even systems all nucleons form Cooper

pairs whereas in odd systems there is always a “single”
nucleon
In addition to typical odd-even effect in binding energies, etc
the “single” nucleon has the tendency to quench pairing
correlations

▶ Time reversal invariance: Cooper pair wave function is
invariant under time-reversal. The “single” nucleon one is not
In even systems time-reversal invariance is broken for generic
multiquasiparticle excitations

▶ Core - “single” nucleon: Given the above, it is customary to
consider the whole nucleus as made of an even core plus the
single nucleon.
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Models
Based on the core + single particle paradigm
▶ Particle plus rotor: Based on the I = R + j decomposition

▶ Strong coupling limit (deformed)

EIK = EK + ℏ2

2J
[I (I + 1) − K2 + δK,1/2a(−1)I+1/2(I + 1/2)]

▶ Weak coupling limit (spherical)
▶ Aligned limit (spherical+high j orbital)

▶ Particle + vibration coupling: More microscopic, based on
QRPA and fermionic extensions
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Mean field
The mean field approach is the starting point for any microscopic
treatment of nuclear dynamics
Mean field generates orbits where one places protons and neutrons
respecting Pauli exclusion principle

Slater determinants
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Pairing
▶ Strong experimental evidence supporting the existence of a

short range attractive interaction: Pairing
Mass parabolas

e-e 163, e-o: 51, o-e: 50, o-o:4
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Pairing
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Pairing
▶ Pairing leads to correlated structures: Cooper pairs of

protons and neutrons coupled to J = 0+ (k, k̄ scheme: time
reversal invariance !)

Cooper pairs

▶ BCS theory of superconductivity

|BCS⟩ = N
∏
k>0

(uk + vkc+
k c+

k̄ )|⟩

α+
k = uka+

k − vkak̄ α+
k̄ = uka+

k̄ + vkak

Focused on ”pairs” , breaks particle number symmetry
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Framework

▶ The interplay between Cooper pairs and the “single nucleon”
in odd nuclei require the introduction of the
Hartree-Fock-Bogoliubov (HFB) method

▶ The same holds if one is dealing with two-quasiparticle
excitations, etc

▶ The concept of “blocked” HFB wave function appears
naturally. Fortunatelly, an addapted version of Wick’s theorem
also applies in this case

▶ Time reversal symmetry is broken because one is dealing with
Cooper pairs J = 0 and a single nucleon with angular
momentum j

▶ Due to polarization effects, many “blocking configurations”
have to be explored
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Multi-quasiparticles

Mean field plus pairing (Hartree Fock Bogoliubov, HFB) based on
the Bogoliubov transformation to quasi-particles(

β
β†

)
=
(

U + V +

V T U T

)(
c
c†

)
≡ W +

(
c
c†

)

The c+ and c creation and annihilation operators in a convenient
fermion single particle basis (harmonic oscillator, ...)
▶ HFB ground state defined by βµ|Φ⟩ = 0.
▶ Wick’s theorem to compute mean values ⟨Φ|c+

k c+
l cmcn |Φ⟩

▶ U and V determined by the variational principle on ⟨Φ|Ĥ |Φ⟩
▶ HFB solution: Ĥ = H0 +

∑
µ Eµβ+

µ βµ + · · · Quasiparticle
energies Eµ
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Multi-quasiparticles
If |Φ⟩ is a fully paired state corresponding to an even nucleus and
with number parity even then, in the canonical basis

|HFB⟩ = N
∏
k>0

(uk + vka+
k a+

k̄ )|⟩

▶ β+
µ |Φ⟩ corresponds to an odd system (number parity changes)

In the canonical basis N a+
k0

∏
k>0, ̸=k0(uk + vka+

k a+
k̄ )|⟩

k0 is the blocked level
▶ β+

µ β+
ν |Φ⟩ is an elementary excitation of |Φ⟩

In the canonical basis N a+
k0

a+
k1

∏
k>0, ̸=k0, ̸=k1(uk + vka+

k a+
k̄ )|⟩

▶ β+
µ β+

ν β+
ρ |Φ⟩ is an elementary excitation of the odd system

▶ β+
µ β+

ν β+
ρ β+

σ |Φ⟩ . . . four-QP states

▶
...
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Multi-quasiparticles (MQP)
▶ MQP perturbative: U , V obtained once for all (from g.s.

|Φ0⟩). Excitation energy: sum of the quasiparticle energy of
each blocked level Eµν = Eµ + Eν + · · · for β+

ν β+
µ |Φ0⟩

▶ MQP selfconsistent: Each mqp excitation has its own U
and V amplitudes obtained by invoking the variational
principle. For instance, minimizing 2qp energies

δEµν = δ⟨Φ|βµβνĤβ+
ν β+

µ |Φ⟩ = 0 =⇒ U (µν)V (µν)

Eµν = ⟨Φ|βµβνĤβ+
ν β+

µ |Φ⟩ − ⟨Φ0|Ĥ |Φ0⟩
▶ Selfconsistency: each excitation has its own multipole

deformation parameters, pairing properties, etc
▶ MQP excitations treated with the blocking method
▶ Axial symmetry: K good quantum number
▶ Constrains on collective variables provide specific PES for

each MQP. Crucial for a proper treatment of fluctuations.
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One and two qp excitations
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▶ 182W
▶ Axial calculation
▶ Gogny force
▶ K is a good quantum

number
▶ 1QP excitation

energies Eµ

▶ 2QP excitation
energies Eµ + Eν
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Selfconsistency
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▶ Axial calculation
▶ Gogny force
▶ K is a good quantum

number
▶ Factor of two

reduction excitation
energies

▶ Green symbols, 4QP
excitation

Note: Many blocked configurations converge to the same state. This
explains the smaller number of blocked states as compared to
perturbative 2QP excitations of the ground state and the absence of
K = 0 states. Orthogonality constraint!
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Selfconsistency

▶ Axial calculation
▶ Gogny force D1S
▶ K is a good quantum

number
▶ Shape of PES depend

on blocked level.
Relevant for
fluctuations on
collective coordinates

Selfconsistency shifts the octupole moment of blocked
configurations to non-zero values and each configuration has its
own value of Q30
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The blocking method

Common wisdom: to treat quasiparticle excitations just exchange
corresponding columns of U and V amplitude
To get an easy understanding of this rule let us consider the
quasiparticle density for the fully paired HFB gs vacuum

R =
(

⟨Φ|β†
µβν |Φ⟩ ⟨Φ|β†

µβ†
ν |Φ⟩

⟨Φ|βµβν |Φ⟩ ⟨Φ|βµβ†
ν |Φ⟩

)
=
(

0 0
0 I

)

where I is the identity matrix.
From R one gets the single particle generalized density

R =
(

⟨Φ|c†
kcl |Φ⟩ ⟨Φ|c†

kc†
l |Φ⟩

⟨Φ|ckcl |Φ⟩ ⟨Φ|ckc†
l |Φ⟩

)
=
(

ρ κ
−κ∗ 1 − ρ∗

)
= WRW † .

used to compute observables (Wick’s theorem).
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The blocking method
For |Φ̃µ⟩ = β+

µ1 · · · β+
µM |Φ⟩ one gets

Rµ =
(

Iµ 0
0 I − Iµ

)
(Iµ)σρ = 1 if µ = σ = ρ ; 0 otherwise ,

The following decomposition holds

Rµ = SµRS†
µ , Sµ =

(
I − Iµ Iµ

Iµ I − Iµ

)

Where the ”swap” matrix S acting on W gives Wµ = WSµ , where
the µ columns of U and V are exchanged. Then

Rµ =
(

⟨Φ̃|c†
kcl |Φ̃⟩ ⟨Φ̃|c†

kc†
l |Φ̃⟩

⟨Φ̃|ckcl |Φ̃⟩ ⟨Φ̃|ckc†
l |Φ̃⟩

)
=WRµW † = WSµRS†

µW † = WµRW +
µ

(1)
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Self-consistent

▶ U and V amplitudes are determined by the variational
principle for each MQP configuration

δ⟨Φ|βµN . . . βµ1Ĥβ+
µ1 . . . β+

µN |Φ⟩ = 0

▶ Iterative solution (Gradient, iterative diagonalization, etc)
▶ If no orthogonality constraint imposed, it is very likely to

converge always to the same minimum with the same
quantum numbers irrespective of initial configuration

▶ Orthogonality can be enforced by using symmetry quantum
numbers, like K or π, i.e. µ → Ωµ, πµ, . . .

▶ For those states with the same quantum numbers, a
constraint on the overlap ⟨Φ|Φm⟩ is required (|Φm⟩ target
state to be orthogonal to). Easy to handle with the gradient
method used to solve HFB and some linear algebra stuff.
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Selfconsistency
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Symbol code inverted in 2QP energies

▶ Axial calculation
▶ Gogny force
▶ K is a good quantum

number
▶ Factor of two

reduction excitation
energies

▶ Green symbols, 4QP
excitation

Note: Many blocked configurations converge to the same state. This
explains the smaller number of blocked states as compared to
perturbative 2QP excitations of the ground state and the absence of
K = 0 states. Orthogonality constraint!
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Orthogonality constraint

▶ The overlap ⟨Φ1|Φ0⟩ is proportional to det A with

A = U +
1 U0 + V +

1 V0

▶ The gradient of the constraint is easy to compute, and turns
out to be proportional to

A−1 det A

▶ This is a indeterminacy as det A → 0 implies a non invertible
A. The conundrum is solved using the Singular Value
Decomposition (SVD) of A.

▶ The situation is simpler if a constraint on ⟨Φ1|Φ0⟩ ≈ 1 is
required as in recent publications on fission
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Density dependent forces
▶ Density dependent forces depend upon the mean field solution

|Φ⟩ through the spatial density ρ(⃗r) = ⟨Φ|ρ̂(⃗r)|Φ⟩
▶ The quasiparticle energies Eµi are obtained from the |Φ⟩

solution through generalized Brillouin and contain the
rearrangement term

▶ MQP excitations should satisfy
Eµ1 + · · · + EµM = ⟨Φ|βµM · · · βµ1∆Ĥβ+

µ1 · · · β+
µM |Φ⟩ + · · ·

▶ This requires the density

ρ(⃗r)µ1,...,µM = ⟨Φ|βµM · · · βµ1 ρ̂β+
µ1 · · · β+

µM |Φ⟩

in the density dependent part of the interaction 1

1Using ρ(⃗r)µ1,...,µM = ρ0(⃗r) +
∑µM

µ=µ1
ρ11

µ,µ(⃗r) and expanding the ρα term
to first order in ρ11

µ,µ the energy Eµ1,...,µM can be written as the sum of the
HFB energy of the reference state plus the sum of quasiparticle energies Eµi

plus an interaction term
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Equal Filling Approx

▶ The Equal Filling Approx (EFA) represents a good alternative
if time-odd components of the force are not relevant (or not
under control)

▶ Typical example: BCPM functional
▶ Odd nuclei: both the blocked quasiparticle Ki and its time

reversed partner have statistical occupancy one-half.
▶ Justified by using quantum statistical admixtures with fixed

probabilities
▶ For two (four, etc) quasiparticle both the blocked

quasiparticles Ki , Kj and their time reversed partners have
statistical occupancy 0.5



Introduction Formalism Examples Symmetry restoration

EFA
▶ The EFA can be viewed as a quantum statistical system where

both β+
µB |ϕ⟩ and β+

µ̄B
|ϕ⟩ are present with equal probability

1/2.
▶ Introduce a quantum density operator D (D̂β†

µ = pµβ†
µD̂) and

mean values are replaced by traces over multiquasiparticle
excitations

▶ Thanks to Gaudin’s theorem (Wick’s theorem for statistical
averages) every mean value takes the standard form in terms
of density and pairing tensor, but as a function of the
statistical density and pairing tensor.

▶ The statistical density and pairing tensor are nothing but the
EFA quantities

▶ The formalism of finite temperature can be borrowed
▶ As a consequence, EFA is a variational theory and gradient

methods can be used to derive and solve the EFA-HFB
equation.
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EFA
In the EFA, the time-reversal-breaking term is ”averaged” in the
density

ρEFA
kk′ =

(
V ∗V T

)
kk′

(2)

+ 1
2
(
Uk′µB U ∗

kµB − V ∗
k′µB VkµB + Uk′µB U ∗

kµB
− V ∗

k′µB
VkµB

)
(3)

and pairing tensor

κEFA
kk′ =

(
V ∗U T

)
kk′

(4)

+ 1
2
(
UkµB V ∗

k′µB − Uk′µB V ∗
kµB + UkµB V ∗

k′µB
− Uk′µB V ∗

kµB

)
(5)

Every mean value is written replacing the ”blocked” density and
pairing tensor by the EFA ones.
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Examples

A comparison D1M (EFA) and D1M (fulll blocking)
▶ The two spectrum are similar and therefore one can conclude

that time-odd fields are not relevant
▶ The same happens all over the nuclear chart
▶ The relevant factor for the reduction of excitation energies is

the quenching of pairing correlations . Pairing correlations
measured by ⟨∆N 2⟩. Dynamic pairing !
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Examples

More examples of blocking calculations in the rare earth and
actinide region

Note that there are just a few duplicated quantum numbers: no
orthogonality constraint in this calculation

States with duplicated quantum numbers correspond to different
deformation parameters (i.e. different local minima)
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254No (High-K isomers)
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▶ 4QP isomers
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▶ Perturbative 2QP energies

typically twice as high
▶ Strong reduction of ⟨∆N 2⟩.
▶ Quenched pairing calls for

dynamic pairing
treatment

▶ Dominant Nilsson
components of the QP
operators coincide with
empirical assignments
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254No
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▶ 254No with Gogny D1S
▶ Proton and neutron single particle

energies
▶ β2 ≈ 0.28
▶ 3+ 2QP proton 7/2−, 1/2−

▶ 8− 2QP neutron 9/2−, 7/2+

▶ 10+ 2QP neutron 7/2−, 11/2+

▶ 8− 2QP proton 7/2−, 9/2+

▶ 16+ 2QP-p 7/2−, 9/2+

2QP-n 9/2−, 7/2+
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254No EFA
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▶ D1S and D1S (EFA))
▶ Reasonable agreement

between full blocking and
EFA

▶ Time-odd fields not
relevant

▶ Strong reduction of ⟨∆N 2⟩.
▶ Quenching of pairing

correlations is the main
mechanism to explain the
reduction of excitation
energies .
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178Hf
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▶ 2QP energies typically twice

as high
▶ 4QP isomers
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178Hf EFA
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Odd-odd systems

The formalism described above can be easily extended to odd-odd
systems by locking at the same time protons and neutrons

In the EFA, no Gallaguer-Mozkowski splitting

▶ Reproducing experimental
data not so easy

▶ GM splitting depends on
spin-spin interaction

▶ Not well under control in
Gogny D1S

▶ Density dependent channel
seems to be responsible
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Beyond mean field

The spectra obtained are expected to be sensitive to interaction
details and beyond mean field effects
▶ EDF contain very few parameters to fit single particle

properties. Universal, no local fitting
▶ Pairing correlations severely quenched: Dynamic pairing and

particle number projection important
▶ Non uniform response to collective parameters imply that

symmetry restoration has to be implemented using the
Variation After Projection (VAP) instead of Projection
After Variation (PAV)

▶ Non uniform response to fluctuations in collective variables
(Particle-Vibration coupling ?)

Beyond mean field effects may have a strong impact on the
ordering of levels
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Importance of VAP and fluctuations

Octupole collectivity in even-even systems

▶ a) Mean field octupole correlation energy
▶ b) VAP parity projection
▶ c) Fluctuations in the octupole moment

VAP and fluctuations important in the
whole nuclear chart

Non-trivial Z and N dependence
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Beyond mean field, Parity projection
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Symmetry restoration (AMP+PNP)

SLyMR0

RVAP (Deformation) Lipkin
Nogami (PNP)

B. Bally, PhysRevLett.113.162501
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Symmetry restoration (AMP+PNP)

Gogny D1S
RVAP (Deformation)
(VAP-PNP)
M. Borrajo,
PhysRevC.98.044317
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