

Ab initio spectroscopy (and related topics) with the VS-IMSRG

Jason D. Holt

TRIUMF, Theory Department ESNT

May 22, 2024

发TRIUMF

Valence-Space IMSRG

Explicitly construct unitary transformation from sequence of rotations

$$
\begin{aligned}
& U=e^{\Omega}=e^{\eta_{n}} \ldots e^{\eta_{1}} \quad \eta=\frac{1}{2} \arctan \left(\frac{2 H_{\mathrm{od}}}{\Delta}\right)-\text { h.c. } \\
& \tilde{H}=e^{\Omega} H e^{-\Omega}=H+[\Omega, H]+\frac{1}{2}[\Omega,[\Omega, H]]+\cdots
\end{aligned}
$$

All operators truncated at two-body level IMSRG(2) IMSRG(3) in progress

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

Step 1: Decouple core

$$
\left\langle\tilde{\Psi}_{n}\right| P \tilde{H} P\left|\tilde{\Psi}_{n}\right\rangle \approx\left\langle\Psi_{i}\right| H\left|\Psi_{i}\right\rangle
$$

$$
\left|\Phi_{0}\right\rangle=\left|{ }^{16} \mathrm{O}\right\rangle
$$

Valence-Space IMSRG
Explicitly construct unitary transformation from sequence of rotations

$$
\begin{aligned}
U & =e^{\Omega}=e^{\eta_{n}} \ldots e^{\eta_{1}} \quad \eta=\frac{1}{2} \arctan \left(\frac{2 H_{\mathrm{od}}}{\Delta}\right)-\text { h.c. } \\
\tilde{H} & =e^{\Omega} H e^{-\Omega}=H+[\Omega, H]+\frac{1}{2}[\Omega,[\Omega, H]]+\cdots
\end{aligned}
$$

All operators truncated at two-body level IMSRG(2) IMSRG(3) variants in progress (Heinz, Stroberg)

Step 1: Decouple core
Step 2: Decouple valence space

Tsukiyama, Bogner, Schwenk, PRC 2012 Morris, Parzuchowski, Bogner, PRC 2015

Valence-Space IMSRG
Explicitly construct unitary transformation from sequence of rotations

$$
\begin{aligned}
U & =e^{\Omega}=e^{\eta_{n}} \ldots e^{\eta_{1}} \quad \eta=\frac{1}{2} \arctan \left(\frac{2 H_{\mathrm{od}}}{\Delta}\right)-\text { h.c. } \\
\tilde{H} & =e^{\Omega} H e^{-\Omega}=H+[\Omega, H]+\frac{1}{2}[\Omega,[\Omega, H]]+\cdots
\end{aligned}
$$

$$
\tilde{\mathcal{O}}=e^{\Omega} \mathcal{O} e^{-\Omega}=\mathcal{O}+[\Omega, \mathcal{O}]+\frac{1}{2}[\Omega,[\Omega, \mathcal{O}]]+\cdots
$$

Step 1: Decouple core
Step 2: Decouple valence space Step 3: Decouple additional operators
$\left\langle\tilde{\Psi}_{n}\right| P \tilde{H} P\left|\tilde{\Psi}_{n}\right\rangle \approx\left\langle\Psi_{i}\right| H\left|\Psi_{i}\right\rangle$

$$
\left\langle\tilde{\Psi}_{n}\right| P \tilde{M}_{0 \nu} P\left|\tilde{\Psi}_{n}\right\rangle \approx\left\langle\Psi_{i}\right| M_{0 \nu}\left|\Psi_{i}\right\rangle
$$

发TRIUMF

Ab Initio Progress: How Heavy Can We Go?

Tremendous progress in ab initio reach, largely due to polynomially scaling methods!

Ab initio calculations of ~ 700 nuclei from He to Fe

Known drip lines predicted within uncertainties
Ab initio guide for neutron-rich driplines

Input H fit to 2,3,4-body Not biased towards existing data

Featured in Physics Editors' Suggestion

Ab Initio Limits of Atomic Nuclei
S. R. Stroberg, J. D. Holt, A. Schwenk, and J. Simonis

Phys. Rev. Lett. 126, 022501 - Published 12 January 2021
PhysĨCS See synopsis: Predicting the Limits of Atomic Nuclei

®た TRIUMF

Magic Numbers in Nuclei

Magic numbers: pillars of nuclear structure, novel evolution in exotic nuclei

Signatures of Magic Numbers

Sharp decrease in separation energy (masses)
Elevated first excited 2+ energy (spectroscopy)
Tightly bound (decreased radii)

EM Moments

Q - collectivity; μ single-particle nature

き TRIUMF

Energies: Generally excellent agreement along isotopic chains to limits of existence

き TRIUMF

Prediction of Energies Across Chains

Energies: Generally excellent agreement along isotopic chains to limits of existence

Artifacts across major shells

き TRIUMF

Prediction of Excitation Energies Across Chains

Energies: Generally good agreement along isotopic chains
Overpredict $2+$ at shell closures... what might help?

Too large shell gap - IMSRG(3) - or missing cross-shell physics?

Future: Evolution of $\mathbf{N}=28,32,34$ Magic Numbers
Ab initio predictions from above calcium towards oxygen - persistence of $\mathrm{N}=34$

きTRIUMF

Essential for many applications: island of inversion, forbidden transitions, heavier beta decay cases Standard VS-IMSRG typically fails!

- Flow of single-particle energies

Typical IMSRG Failure

- Flow of single-particle energies
+ At the very beginning of valencedecoupling flow, some of pf-shell orbits come down.
- Intuitively, we expect that P- and Qspace single particle energies do not mix.
- At the beginning of the flow, the slope of single-particle energies (df/ds) seems to be crucial.

き TRIUMF

Proposed Fix: Modified Generator

Proposed fix: modify generator to give constant shift to energy denominator
Never have negative energy denominators if on order of hw...
K. Suzuki, Prog. Theor. Phys. 58, 1064 (1977).
N. Tsunoda, K. Takayanagi, M. Hjorth-Jensen, and T. Otsuka, Phys. Rev. C 89, 024313 (2014).

$$
\begin{aligned}
\eta_{12} & =\frac{f_{12}}{f_{11}-f_{22}+\Gamma_{1212}} \\
\eta_{1234} & =\frac{\Gamma_{1234}}{f_{11}+f_{22}-f_{33}-f_{44}+A_{1234}} \\
A_{1234} & =\Gamma_{1212}+\Gamma_{3434}-\Gamma_{1313}-\Gamma_{2424}-\Gamma_{1414}-\Gamma_{2323}
\end{aligned}
$$

$$
\begin{aligned}
\eta_{12} & =\frac{f_{12}}{f_{11}-f_{22}+\Gamma_{1212}+\Delta} \\
\eta_{1234} & =\frac{\Gamma_{1234}}{f_{11}+f_{22}-f_{33}-f_{44}+A_{1234}+\Delta} \\
A_{1234} & =\Gamma_{1212}+\Gamma_{3434}-\Gamma_{1313}-\Gamma_{2424}-\Gamma_{1414}-\Gamma_{2323}
\end{aligned}
$$

发TRIUMF

Proposed Fix: Modified Generator
Proposed fix: modify generator to give constant shift to energy denominator
Never have negative energy denominators if on order of hw...

发TRIUMF

Longstanding Shell Model Issue: Center of Mass

Centre of mass: long-standing issue in the shell-model universe
So far: add CoM at the shell-model calculation stage

$$
H \longrightarrow H_{\mathrm{VS}}+\beta H_{\mathrm{cm}} \longrightarrow \text { energies }
$$

BUT $H_{\text {vs }}$ is no longer represented in HO basis:

$\square-$	p	\square
$\square \square$	$p d_{5 / 2}$	\square
\square	$p s d$	

Add from beginning instead

$$
H+\beta H_{\mathrm{cm}} \longrightarrow H_{\mathrm{VS}} \longrightarrow \text { energies }
$$

Full two-shell suffers from H_{cm} dep.
Removing $d_{3 / 2}$ solves problem!

Comparison with EOM method

$3+0.5175$
$1+\underline{0.7875}$
$2+\xrightarrow{0.7659}$

1p1h dominant lowest 3-, 1-, 2- agree well with the EOM-IMSRG results.

发TRIUMF

Island of Inversion: sd-Shell Ground States

Ground-state energies of Ne, Mg, Si isotopes: 1.8/2.0(EM)
Multi-shell space improves Iol physics

き TRIUMF

Island of Inversion: sd-Shell Excited States

Excited-state properties of Ne, Mg, Si isotopes: 1.8/2.0(EM)
Multi-shell improves lol physics... not enough to fix completely

Miyagi et al., PRC (2020)

き TRIUMF Island of Inversion: sd-Shell Intruder Configurations

Explore intruder configurations in $0+$ states
Multi shell space dramatically improves lol physics

Ab initio multishell valence-space Hamiltonians and the island of inversion
T. Miyagi, S. R. Stroberg, J. D. Holt, and N. Shimizu

Phys. Rev. C 102, 034320 - Published 16 September 2020

发TRIUMF

Island of Inversion: pf-Shell

Explore Intruder configurations from $\mathrm{Ca}-\mathrm{Ni}$
Already important for Ca isotopes across $\mathrm{N}=40$ shell gap ${ }^{60} \mathrm{Ca}$ unlikely doubly magic

Strong increase at Ti , summit at Cr isotopes

发TRIUMF

Calculate charge radii in Ca isotopes - parabolic behavior, long-standing problem
Previous SM studies identified cross-shell excitations as origin

$$
\begin{array}{|llll|}
\hline- & s_{1 / 2} d_{3 / 2} f_{7 / 2} p_{3 / 2}(\beta=3) & \square-p f \\
\rightarrow & s_{1 / 2} d_{3 / 2} f_{7 / 2} p_{3 / 2}(\beta=4) & \\
\hline
\end{array}
$$

Global Trends in Absolute B(E2): sd Shell
Study E2 transitions across sd-shell

USDB with effective charges typically reproduces absolute values well VS-IMSRG (no effective charges) typically under-predicts experiment Trends well reproduced in all cases

发TRIUMF

Global Trends in B(E2): IS/IV Components
Study charge E2 transitions across sd-shell: IS $\left(\mathrm{M}_{0}\right)$ and IV $\left(\mathrm{M}_{1}\right)$

IS: USDB good agreement, VS-IMSRG systematically small IV: Both agree well
Deficiencies in IS only

Origin of E2 Puzzle: ${ }^{14} \mathrm{C}$ in p-sd Shell
Perform CC and VS-IMSRG calculations of ${ }^{14} \mathrm{C}$ in toy p -sd space with phenomenological potential

Energies well converged all around
p / n amplitudes increase with p / h ex.
Only converged at $\sim 6 \mathrm{Nph}$
Not possible to capture fully in spherical CC or IMSRG

忐TRIUMF

Comparisons with EDF (hit and miss): overall consistent picture of single-particle nature

Ab initio reproduces trends of new measurements
Q missing correlations, μ missing physics?

Article
Nuclear moments of indium isotopes reveal abrupt change at magic number 82

Comparisons with EDF (hit and miss): only VS-IMSRG reproduces trend for $1 / 2^{-}$isomer

\ldots DFT HFB with time-odd fields

- - - DFT HFB without time-odd fields
\ldots DFT HF with time-odd fields
A

Strong coupling of $9 / 2+$ to 5 - state from $\mathrm{nh}_{11 / 2}-\mathrm{ps}_{1 / 2}$
Q missing correlations, μ missing physics?

Article
Nuclear moments of indium isotopes reveal abrupt change at magic number 82

き TRIUMF

Systematic studies in Sn region: Sb Isotopes

Magnetic moments of even/odd Sb isotopes compared with nuclear shell model
Inclusion of $g_{9 / 2}$ orbit significantly improves results

VS-IMSRG with effective g-factors of SM agrees with data - (1.8/2.0 as good as phen)
Missing physics in M1 operator - MEC?

发TRIUMF

A Tale of Two Analyses: $\mathrm{B}\left(\mathrm{M} 1: 1^{+} \rightarrow \mathbf{0}^{+}\right)$in ${ }^{48} \mathrm{Ca}$

Three different experimental measurements yield different results

$\left(e, e^{\prime}\right)$ scattering:	$B(M 1)=4.0 \pm 0.3 \mu_{N}^{2}$
(γ, n) scattering:	$B(M 1)=6.8 \pm 0.5 \mu_{N}^{2}$
$\left(p, p^{\prime}\right)$ scattering:	$B(M 1)=3.85(32)-4.63(38) \mu_{N}^{2}$

[Steffen et al 1980; 1983]
(γ, n) scattering:

Extreme s.p. model: $\quad B(M 1)=12 \mu_{N}^{2} \quad \mu_{1 \mathrm{~B}}=\mu_{N} \sum_{i}\left(g_{i}^{l} l_{i, z}+g_{i}^{s} \sigma_{i, z}\right)$

Theory 1980-2000: 7-8 $\mu^{2}{ }_{N}$

A Tale of Two Analyses: $\mathrm{B}\left(\mathrm{M} 1: 1^{+} \rightarrow \mathbf{0}^{+}\right)$in ${ }^{48} \mathrm{Ca}$

Three different experimental measurements yield different results
(e, e^{\prime}) scattering:

$$
\begin{aligned}
& B(M 1)=4.0 \pm 0.3 \mu_{N}^{2} \\
& B(M 1)=6.8 \pm 0.5 \mu_{N}^{2} \\
& B(M 1)=3.85(32)-4.63(38) \mu_{N}^{2}
\end{aligned}
$$

(γ, n) scattering:
(p, p^{\prime}) scattering:
[Steffen et al 1980; 1983]
$B(M 1)=12 \mu_{N}^{2} \quad \mu_{1 \mathrm{~B}}=\mu_{N} \sum_{i}\left(g_{i}^{l} l_{i, z}+g_{i}^{s} \sigma_{i, z}\right)$
[Tompkin et al 2011]

Theory 1980-2000: 7-8 $\mu^{2} \mathrm{~N}$ VS-MBPT with NN+3N
\sim Agrees if quenched

A Tale of Two Analyses: $\mathrm{B}\left(\mathrm{M} 1: 1^{+} \rightarrow \mathbf{0}^{+}\right)$in ${ }^{48} \mathrm{Ca}$

Three different experimental measurements yield different results
(e, e^{\prime}) scattering:

$$
\begin{aligned}
& B(M 1)=4.0 \pm 0.3 \mu_{N}^{2} \\
& B(M 1)=6.8 \pm 0.5 \mu_{N}^{2} \\
& B(M 1)=3.85(32)-4.63(38) \mu_{N}^{2}
\end{aligned}
$$

[Steffen et al 1980; 1983]
[Tompkin et al 2011]
[Birkhan et al 2016]

Extreme s.p. model:

$$
B(M 1)=12 \mu_{N}^{2} \quad \mu_{1 \mathrm{~B}}=\mu_{N} \sum_{i}\left(g_{i}^{l} l_{i, z}+g_{i}^{s} \sigma_{i, z}\right)
$$

What's going on/missing?
Continuum: $\mathrm{E}\left(1^{+}\right) \sim 10 \mathrm{MeV}$, above threshold
Meson-exchange currents

发 TRIUMF

A Tale of Two Analyses: $\mathrm{B}\left(\mathrm{M} 1: 1^{+} \rightarrow \mathbf{0}^{+}\right)$in ${ }^{48} \mathrm{Ca}$

Monte Carlo calculations in light nuclei showed two-body currents do not quench
Papenbrock (Talk @ PAINT2024)

$J_{i}^{\pi} \rightarrow J_{f}^{\pi}$	Method	IA	$\pi+\rho$	MEC			Total
			$\mathrm{PS}+\mathrm{V}$	MS	MD	Δ	
${ }^{6} \mathrm{Li}\left(0^{+} ; 1\right) \rightarrow{ }^{6} \mathrm{Li}\left(1^{+} ; 0\right)$	VMC	3.683(14)	0.307	0.003	0.010	-0.053	3.950 (14)
${ }^{6} \mathrm{Li}\left(0^{+} ; 1\right) \rightarrow{ }^{6} \mathrm{Li}\left(1^{+} ; 0\right)$	GFMC	3.587(16)	0.323	0.002	0.012	-0.048	3.876(14)
${ }^{7} \mathrm{Li}\left(\frac{1^{-}}{}{ }^{-}\right) \rightarrow{ }^{7} \mathrm{Li}\left(\frac{3}{2}^{-}\right)$	VMC	2.743(17)	0.396	0.006	-0.017	-0.034	3.162(22)
${ }^{7} \mathrm{Li}\left(\frac{1}{2}^{-}\right) \rightarrow{ }^{7} \mathrm{Li}\left(\frac{3}{2}^{-}\right)$	GFMC	2.677(19)	0.395	0.011	-0.017	0.072	3.138(22)
${ }^{7} \mathrm{Be}\left(\frac{1}{2}^{-}\right) \rightarrow{ }^{7} \mathrm{Be}\left(\frac{3}{2}^{-}\right)$	VMC	2.420 (30)	0.390	-0.005	0.010	-0.024	2.791(36)
${ }^{7} \mathrm{Be}\left(\frac{1}{2}^{-}\right) \rightarrow{ }^{7} \mathrm{Be}\left(\frac{3_{2}}{}{ }^{-}\right)$	GFMC	2.374(31)	0.394	-0.010	0.010	-0.002	2.766 (36)
Marcucci, Muslema Pervin, Pieper, Schiavilla, Wiringa, Phys Rev C 78, 065501 (2008)			This is similar to what we will use			 This is per similar to people use the 198	

免TRIUMF

A Tale of Two Analyses: $\mathrm{B}\left(\mathrm{M} 1: 1^{+} \rightarrow \mathrm{0}^{+}\right)$in ${ }^{48} \mathrm{Ca}$

Coupled-cluster calculations including all relevant physics
Papenbrock (Talk @ PAINT2024)

Significant decrease from continuum and correlations
2BC do not auench - final results hiaher than experiment

迅 TRIUMF

A Tale of Two Analyses: $\mathrm{B}\left(\mathrm{M} 1: 1^{+} \rightarrow \mathbf{0}^{+}\right)$in ${ }^{48} \mathrm{Ca}$

IMSRG Calculations with 34 non-implausible interactions

non-implausible interactions favor $B(M 1)$ from (γ, \mathbf{n}) exp. and show partial overlap with Coupled Cluster calculation

A Tale of Two Analyses: Magnetic Moments in Ca
Coupled-cluster calculations including all relevant physics for moments

Generally good agreement with data w/o quenching
Issue in ${ }^{41} \mathrm{Ca}$ related to cross-shell excitations?

き TRIUMF

VS-IMSRG μ Moments: $\mathrm{O} \rightarrow \mathrm{Pb}$

Ab initio calculations throughout the nuclear chart w/ 2BC Ca discrepancies solved with multi-shell approach

Magnetic moments significantly improved across chart!

迅TRIUMF

VS-IMSRG μ Moments: In Isotopes

Revisit discrepancies in In isotopes with addition of 2BC
Systematic agreement with experiment except in mid-shell region (deformation)

发TRIUMF

Next Step: Improve with IMSRG(3f)

Full IMSRG(3) improves results, but contributions scale $\mathbf{N}^{7}-\mathbf{N}^{9}$
Explore contractions of 3 b structures that can be factorized to 1 b and 2b: IMSRG(3f)

$$
\Delta_{\Omega H}^{(2)}=\left[\Omega_{2 \mathrm{~b}},\left[\Omega_{2 \mathrm{~b}}, H_{2 \mathrm{~b}}\right]_{3 \mathrm{~b}}\right]_{1 \mathrm{~b}, 2 \mathrm{~b}}
$$

$$
\Delta_{\Omega H, 1 \mathrm{~b}}^{(2)}=f^{\mathrm{I}}+f^{\mathrm{II}}+f^{\mathrm{III}}
$$

$$
\Delta_{\Omega H, 2 \mathrm{~b}}^{(2)}=\Gamma^{\mathrm{I}}+\Gamma^{\mathrm{II}}+\Gamma^{\mathrm{III}}+\Gamma^{\mathrm{IV}}
$$

发TRIUMF

Next Step: Improve with IMSRG(3f)

Full IMSRG(3) improves results, but contributions scale $\mathbf{N}^{7}-\mathbf{N}^{9}$
Explore contractions of 3 b structures that can be factorized to 1 b and 2b: IMSRG(3f)

迅TRIUMF

Full IMSRG(3) improves results, but contributions scale $\mathbf{N}^{7}-\mathbf{N}^{9}$
Explore contractions of 3b structures that can be factorized to 1b and 2b: IMSRG(3f)

发TRIUMF

Next Step: Improve with IMSRG(3f)

Full IMSRG(3) improves results, but contributions scale $\mathbf{N}^{7}-\mathbf{N}^{9}$
Explore contractions of 3 b structures that can be factorized to 1 b and 2b: IMSRG(3f)

发TRIUMF

Next Step: Improve with IMSRG(3f)

Full IMSRG(3) improves results, but contributions scale $\mathbf{N}^{7}-\mathbf{N}^{9}$
Explore contractions of 3 b structures that can be factorized to 1 b and 2b: IMSRG(3f)

