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(Ab Initio) Optical potentils workshop at the ECT*

Direct nuclear reactions, processes such as nucleon transfer, knockout, anti-nucleon capture have been extensively exploited by experiments to learn about the 

structure of exotic isotopes far away from stability, to infer properties of the nuclear forces, to describe nucleosynthesis and to learn about the nuclear equation of 

state. In this respect, nucleon-nucleus optical potentials are of great importance since they are the fundamental building blocks needed to predict reaction 

observables to address such a wide range of Nuclear Physics facets. Traditional phenomenological optical potential parameterizations are fully reliable only in 

specific regions of the nuclear chart, near the stable isotopes they were fitted to. On the contrary, microscopically derived potentials can be systematically extended 

to isotopes far from stability that are the focus of modern experimental searches. This workshop will address the state-of-the-art of nuclear optical potentials to foster 

advances in their accuracy and handling of uncertainty propagation.
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All Ladders (GT) and ring modes (GW) are coupled 

to all orders. Two approaches: 

• Faddev-RPA allows for RPA modes 

• ADC(3) Tamn-Dancoff version using 3rd order 

diagrams as ‘seeds’: 

The Faddev-RPA and ADC(3) methods in a few words
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Σ★(ω) = R(2p1h) R(2h1p)

F-RPA:  
Phys. Rev. C63, 034313 (2001) 
Phys. Rev. A76, 052503 (2007) 
Phys. Rev. A83, 042517 (2011) 

ADC(3): 
Lect. Notes in Phys 936 (2017)- 
Chapter 11.

Compute the nuclear self energy to extract both scattering (optical potential) and spectroscopy. 

Both ladders and rings are needed for atomi nuclei:
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Explicit expressions for effective 1B and 2N interaction

operators are

αβ

αβ (13)

with

αβ αβ

γ δ

αγ βδ δγ

γ ǫ

δη

αγ ǫ βδη δη γ ǫ (14)

and

αγ

βδ

αβ γ δ

ǫη

αβǫ γ δη ηǫ (15)

where, in the averaging of 2NFs and 3NFs, one- and two-

body reduced density matrices of the many-body system are

produced,

δγ h gδγ (16)

δη γ ǫ h gII
δη γ ǫ (17)

The two-body density of Eq. (17) is obtained when the

opportune limits are taken in the time arguments of the 2B

Green’s function in Eq. ( ).

We note that when the irreducible self-energy is computed

with the effective Hamiltonian of Eq. (12), a portion of the

many-body effects is incorporated in the interactions, which

become system dependent. This is done in a systematic way

and the procedure is in principle superior to the usual normal

ordering approach. Here the density matrices and entering

the contraction of the interaction vertex are obtained from the

true correlated propagators; i.e., they are not computed from

the reference state.

The separation of a simple unperturbed Hamiltonian

from Eq. (11) is instrumental to any approach based on

perturbation theory (or on all-orders resummations): it allows

us to define a reference state upon which a perturbative series

is constructed and it also leads to the expansion of the Green’s

function in Feynman diagrams. Nevertheless, the auxiliary

potential eventually cancels from the SCGF formalism.

Considering the decomposition of Eq. ( ), the irreducible

gy αβ is given exactly by the 1B effective

interaction [22]:

αβ αβ (18)

Since is added to the definition of the reference propagator
(0) but subtracted in Eq. (14), it eventually cancels out exactly

from the Dyson equation [see Eq. (28)]. The dynamic self-

energy αβ ) can still depend on the auxiliary potential

through the perturbative expansion in
(0)
αβ ). However, in

the full self-consistent approach, the perturbative series is

restricted to skeleton diagrams where fully correlated propaga-

tors αβ ) replace the uncorrelated ones. Thus, the partition

of the Hamiltonian into a uncorrelated part and residual part

is completely lost in the exact SCGF formalism and one may

think of the correlated propagator as playing the role of an

improved reference state.

(a) (b)

FIG. 1. One-particle irreducible, skeleton, and interaction-

irreducible self-energy diagrams appearing at second order in the

expansion of Eq. ( ), using the effective Hamiltonian of Eq. (12).

The wiggly lines represent the 2N effective interaction of Eq. (15),

while the long-dashed lines represent the interaction-irreducible

3NF

For the irreducible self-energy, all one-particle irreducible,

skeleton and interaction-irreducible diagrams up to third order

have been derived in Ref. [22]. Within the skeleton expansion,

i.e., when single-particle propagators are correlated, the irre-

ducible self-energy up to the third order is given by the exact

18), the two second-order diagrams of Fig.

and the 17 third-order diagrams of Figs. and . In this case,

the energy-dependent part of the self-energy contains only

effective 2NFs and irreducible 3NFs as interaction insertions.

Note that because of Eq. (15), the contribution of Fig. 1(a)

actually corresponds to four separate diagrams if expressed

in terms of the bare Hamiltonian Eq. (10), of which three are

interaction reducible [22]. Likewise, many more reducible di-

agrams would appear at third order. Without propagator renor-

malization, when one considers the diagrammatic expansion

with reference propagators
(0)
αβ ) as internal fermionic lines,

other diagrams with different topologies must be included

to take into account explicitly additional correlations in both

the static and dynamic part of the self-energy. These terms

contain also nonskeleton diagrams that include and are

presented in Appendix

In Fig. we show the only two one-particle irreducible,

skeleton, and interaction-irreducible diagrams at second order.

These diagrams imply different sets of intermediate state

(a) (b)

(c)

FIG. 2. As described in the caption of Fig. but for the third-order

diagrams with only 2 and 2 configurations.
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The Self-Consistent Green’s Function with Faddev-RPA

Wrings

Tladders

Dyson 

Eq.W W
T

Optical potential

spectroscopic factors and asymptotic normalization coef-

be employed for the consistent computa-

of nucleon capture and knockout processes.

We first compare to early NCSM-RGM results

, where neutron scattering off 16O was

computedwith a NN-only interaction derived from the chiral

next-to-next-to-next-to-leading order force of Ref. [41]

(EM500) and evolved with free space similarity renormal-

ization group (SRG) [42] to a cutoff 66 fm . This soft

interaction facilitates model space convergence and allows

for amoremeaningful benchmark. These earlyNCSM-RGM

computations did not include virtual excitations of the target

nucleus. For consistence, we performed our SCGF calcu-

lations with the same Hamiltonian but evaluated the phase

ng only the static self-energy, . The comparison

is shown in the upper panel of Fig. , and it is very

satisfactory for the and tial waves.

For this light nucleus, the discrepancy of about 1 MeV for

the energy of the onance is also consistent with the

uncertainty in the transformation to the center ofmass system

done in Eq. . As we discuss below, doorway excitations of

the target nucleus have a strong impact on the energies of

single particle resonances. To account for this, we performed

new NCSMC calculations that can also include low-lying

excitations of 17O. Extrapolating from model spaces of

10 , we find quasiparticle energies of

, and 3.2 MeV for the bound states and the

onance, respectively. The corresponding results

from the SCGF, including the full f-energy, are

, and 0.5 MeV. These should be expected to be

more bound since SCGF introduces a larger number of

doorway configurations. At the same, time the excitation

energies relative to the 17O ground state agree to within

200 keV,which is a satisfactory agreement given the different

many-body truncations of the two approaches.

We performed an analogous comparison for the chiral

next-to-next-to-leading order NN of

). For NCSM techniques, 16

is more difficult to converge because the interaction is

of importance truncation . We performed

M calculations at

an uncertainty of 1 to 2 MeV for the position of

ws computations with

13, and we find that phase shifts are well con-

verged up to 15 MeV for this space. This puts into evidence

of the latter approach to address ab initio

off medium mass isotopes. The NNLO

is displayed in the lower panel of Fig. , and it is

vely similar to the case of the soft EM500-SRG

, with the waves agreeing

For both Hamiltonians, the largest discrepancies are

affected by correlations in the continuum and the different

of the two approaches. NNLO

explicitly constructed to reproduce correct nuclear

of medium mass nuclei, including

on radii is crucial

to predicting elastic scattering observables that can be

ly compared to the experiment; hence, we will

on this Hamiltonian in the following.

1. Real part of nuclear phase shifts, , for neutrons

off 16O as a function of energy obtained from the (upper

s. The

F calculations using only the static part of the

rgy in a max 13

h included only the ground state of 16

a no-core model space up to (top, from Ref.

NCSM 18

2. Real phase shifts, , for neutrons scattering off
16O using the complete self-energy, Eq. , and NNLO in an

of frequency 20 max 13

ve parity, (central panel) , and (lower

es are shown.

G30/$%.*(,B$+2(*/.0$$,+%()*K1;L/*?,<M*N,$$M*!"#O*PQRSPT*CRPTUEV

Virtual excitations of the target have the double effect of

n of the real part of the optical

lowering the single particle spectrum)

of generating a large number of narrow resonances.

is clearly seen in Fig. , which displays the phase

by the whole

gy of Eq. . Most of the virtual excitations

le for this, especially at low energy, are accessed

by coupling to hundreds of ns for 17O and

as clear spikes or in the

C(3) approach has the advantage of

, even at large energies, so it

efficiently the relevant physics. Table

of some representative bound and scattering

to the experiment. The

is computed at 0.91 MeV in the c.m. frame, very close to

experimental value. The first

predicted as bound states, although experimentally they are

inverted with the in the continuum. We

a narrow width for the

to excited states, close to the ones observed

at 3.02 and 3.54 MeV . However, there are other very

e resonances, measured between 1.55 and

, that our SCGF calculations do not resolve. In

we find that NNLO of

an accuracy of

low-energy differential cross

to neutron scattering data
16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are

ed well for 16O (and close to the experiment for
40 of density distri-

butions for NNLO . However, the results are

what overestimated and hint at a general lack of

is usually faced by attempts at computing

ab initio. This is likely related to

beyond) that

be propagated in the denominators of Eq. but are

neglected by state-of-the-art approaches. Note that there are

experimentally observed excitations already

in 41Ca , while the SCGF ADC(3) predicts

40 of them. This issue is likely to worsen at

x than

vant. We investigated this problem by
16O elastic cross sections,

, suppressing 50% of the

(evenly across all energies), and by using the

gy. Figure ws that

s up to about 5 MeV. These

in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the 16O threshold, as obtained from Eq.

NNLO to the experiment . Broad resonances in the continuum (most notably, the

) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for

h partial wave.

V)

14 27 09 30

NNLO 06 58 15 23 24

3. Differential cross section for neutron elastic scattering

off 16O (40 at 3.286 (3.2) MeV of neutron energy, with

to the empirical data from Refs. [44,50]

4. Total elastic cross section for neutron elastic scattering

on 16O form SCGFADC(3) at different incident neutron energies

to the experiment in Ref. . The dashed, dotted-

s correspond to the sole static self-energy

, to retaining 50% of the ay configu-

to the complete Eq. , respectively.
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7. Isovector E1 photoabsorption cross sections of 14 16 22 24O computed with the NNLOsat interaction and the SCGF many-body

method. The reference
OpRS

MF ) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra

with Lorentzian widths 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. 47] (red squares) and from Ishkhanov et al. 49

(green circles); experimental data for 22O in (c) are from Leistenschneider et al. 48].

D.
68

Ni

The isovector dipole response in the neutron-rich 68Ni was

recently measured and the corresponding dipole polarizability

extracted by Rossi et al. 52]. The experimental data are

shown in Fig. and compared with the computed SCGF

curve. The few experimental points at 5 MeV and around

17 MeV excitation energies are interpreted as pygmy and

giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities of

Eq. (22) compared with those calculated with the CC-LIT method in

Refs. [28 29 50] and those extracted from the experimental spectra

of Refs. [47 51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm fm fm
48Ca 2.06 fm fm fm

for a comparison with the closest peaks in the computed

discrete RPA spectrum, which is also displayed in Fig. . In

particular, the computed strength at low energy is fragmented

in two principal peaks at 10.68 MeV and 10.92 MeV, located

at higher energy than the experimental PDR. For the GDR,

Table IV reports the centroid calculated from the DRPA

response around the main peak after the Lorentzian folding.

The computed by integrating the DRPA spectrum is

in agreement with the experiment, also reported in Table IV

The 3.88(31) fm value is obtained by including corrections

from a theoretical extrapolation of the low-energy and high-

energy parts of the spectrum [ ], which were not accessible

in the experiment of Rossi et al. 52]. Both the discrete peaks

and the convoluted response in Fig. confirm that the com-

puted spectrum is somehow shifted towards higher energy as

compared to the experimental excitation energies. The

strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum

could point to insufficient constraints on the isospin-violating
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9. Isovector dipole response for 68Ni computed using a
OpRS

MF ) reference from Dyson-ADC(3). The lower (upper) panel

ws the discrete (convoluted) spectrum obtained from DRPA. The

convolution uses a Lorentzian width 3.0 MeV. Experimental

data are from Rossi et al. 52].

verified by using different RPA phenomenological models

55]. When varying the truncation of the model space in our

simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,

and dipole polarizability in 68Ni from Rossi et al. 52], compared

with the SCGF method at ADC(3)-DRPA level

text for details).

EPDR (MeV) 10.68 9.55(17)

10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)

3.88(31)
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Ishkhanov (2002)

cross sections of 16O computed with
OpRS

). The computed DRPA spectrum is convoluted with a

Lorentzian width of . Experimental data are from

Ahrens et al. 47] (red squares) and from Ishkhanov et al. 49] (green

the polarizability of this nucleus is strongly correlated to its

radius.

IV. DIFFERENT REDUCTION OF THE

DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator

into a simpler OpRS one is not unique. Different definitions

of the constraining moments can be used, as in Eqs. (18) and

20). Moreover, propagators
OpRS

αβ ) with different numbers

of quasiparticle and quasihole poles are possible according to

the number of moments considered. In general, the strategy

of constraining the lower moments through Eq. (19) is very

effective and it works similarly to Krylov subspace projection

techniques to induce a fast convergence of the spectroscopic

response spectrum [56]. As a result, several fundamental

observables and physical quantities that are encoded in the

fully dressed propagator are retained already when a few

moments are conserved. Nevertheless, even with large-scale

computational technique it is normally possible to handle only

smallest OpRs propagators. It is therefore interesting to

investigate by how much this truncation affects the DRPA

computed quantities. Even more interesting is the need to

ascertain the effect of fragmentation, beyond the
OpRS

MF ): As

discussed in Sec. II A, the fragmented strength in the solution

of Eq. ( ) results from admixtures of 2 and 2 states.

These can couple in the DRPA equations to generate the redis-

tribution of strength at high energies without explicitly includ-

ing configurations beyond ph. While the above information is

washed out of a mean-field propagator, some fragmentation

is already present even in the lowest
OpRS

,...

) reference

propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-

cross section of 16O predicted from the mean-field type

054327-10
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verified by using different RPA phenomenological models

55]. When varying the truncation of the model space in our

simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,

and dipole polarizability in 68Ni from Rossi et al. 52], compared

with the SCGF method at ADC(3)-DRPA level

text for details).

SCGF

PDR (MeV) 10.68 9.55(17)

10.92

GDR (MeV) 18.1 17.1(2)

(fm ) 3.60 3.40(23)

3.88(31)
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] 16

max=13, =20 MeV
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Ahrens (1975)

Ishkhanov (2002)

cross sections of 16O computed with
OpRS

). The computed DRPA spectrum is convoluted with a

Lorentzian width of . Experimental data are from

Ahrens et al. 47] (red squares) and from Ishkhanov et al. 49] (green

the polarizability of this nucleus is strongly correlated to its

radius.

IV. DIFFERENT REDUCTION OF THE

DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator

into a simpler OpRS one is not unique. Different definitions

of the constraining moments can be used, as in Eqs. (18) and

20). Moreover, propagators
OpRS

αβ ) with different numbers

of quasiparticle and quasihole poles are possible according to

the number of moments considered. In general, the strategy

of constraining the lower moments through Eq. (19) is very

effective and it works similarly to Krylov subspace projection

techniques to induce a fast convergence of the spectroscopic

response spectrum [56]. As a result, several fundamental

observables and physical quantities that are encoded in the

fully dressed propagator are retained already when a few

moments are conserved. Nevertheless, even with large-scale

computational technique it is normally possible to handle only

smallest OpRs propagators. It is therefore interesting to

investigate by how much this truncation affects the DRPA

computed quantities. Even more interesting is the need to

ascertain the effect of fragmentation, beyond the
OpRS

MF ): As

discussed in Sec. II A, the fragmented strength in the solution

of Eq. ( ) results from admixtures of 2 and 2 states.

These can couple in the DRPA equations to generate the redis-

tribution of strength at high energies without explicitly includ-

ing configurations beyond ph. While the above information is

washed out of a mean-field propagator, some fragmentation

is already present even in the lowest
OpRS

,...

) reference

propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-

cross section of 16O predicted from the mean-field type

054327-10

68Ni:

in this Letter, only

Sn and Sn are doubly magic and can be computed at

n level. Our investigations show that,

as observed previously on lighter nuclei , the

) and ADC(3) values for the

ge radius (and similarly for the charge density dis-

is very small, such that it is basically converged at

level. As such, we do not discuss differences

any further in this

. In the following, we will hence represent our results

as a band obtained for frequencies from 10 to 14 MeV at

13 12 to 14 MeV at 11

16

e, the charge radius of Xe is

to be which agrees with the

value recently extracted from the SCRIT experiment of

79
11

08
fm . For comparison, the calcula-

have been reproduced using the newly

NN , which is known

to have good convergence properties with respect to the

to give results similar to the very

EM on . In contrast to

NNLO , the charge radius obtained for Xe is

experi-

value consistently with studies on lighter nuclei

. Despite this failure at reproducing the experimental

value of the charge radius, one notices that values obtained

NN ge better than for NNLO , as

expected from the softness of NN . This relative

of NNLO , tied to the nonlocal cutoff on the

wn to play an important role

of nuclear matter

a good reproduction of both energies and radii, in

to NN
In addition to the sole charge radius, another quantity

be computed from SCGF calculations is the charge

In the case of

extracted the constants for a two-parameter Fermi

ge distribution Þ ¼ ln =t
as a

a gray band representing the error bars,

It

be observed that while the SCGF calculations agree

at the surface of the

nucleus, though slightly overpredicting the charge radius,

we obtain an oscillating behavior for the density inside the

be reproduced with only a two-

a three-point Fermi

experiment would require an increase

in its luminosity such that possible discrepancies

experiment cannot be discussed any

To better gauge the discrepancies between the theoretical

experimental bands in Fig. , we compare the

to

by the luminosity as a function of

effective momentum transfer for the three experimental

of , and

2. Charge density distribution for Xe obtained from

F calculations at ADC(2). The dotted line with gray

to the two-point Fermi distribution with

extracted from Ref.

3. Luminosity multiplied by the differential cross section

Xe obtained from Gorkov SCGF calculations at ADC(2).

values for the NN e been scaled by

10 . The gray bands correspond to the two-point Fermi

. Experimental values are taken from

a scaling of 10 NN values,

e been removed for clarity.

132Xe
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the number of neutrons increases. This is attributable to the

strong components of the proton-neutron forces, which also

enhances their correlations. However, the overall dependence

on proton-neutron asymmetry is rather mild. We note that the

to the neutron dripline would require to explicitly

account for the continuum. Reference [71] found that this

effect is sizable for 24 28O and leads to further quenching

of the proton SFs. Again, this could be interpreted as a

reduced gap between the highest neutron quasihole state and

the nearby particle continuum. In this sense, the reduction of

SFs is an indirect consequence of the change in proton-neutron

asymmetry, which first affects energy gaps.

For the case of the NN -induced Hamiltonian we

find a completely similar picture, with SFs of dominant peaks

being on average slightly larger than those obtained with the

full interaction. Also in this case, stronger quenchings are

associated with increased fragmentation of nearby strength

and the narrowing of (sub-)shell gaps. Thus, we conclude that

the general effects of the original 3NFs on the quenching of

absolute SFs mainly results from the rearrangement of shell

orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach

allows calculations up to the second order in the self-energy

[i.e., at the ADC(2) level]. Although this does not guarantee

the best precision for quasiparticle energies [49], it still yields

proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all

oxygen isotopes in Fig. and compare them to the Dyson-

ADC(3) results where available. For the Dyson case, the

NN -induced Hamiltonian systematically underbinds

the full isotopic chain and predicts 28 to be bound with

 O  O  O  O  O  O  O  O
-180

-160

-140
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-100

-80

-60

Dys-ADC(3), NN+3N(ind)

Dys-ADC(3), NN+3N(full)

Gkv-2nd, NN+3N(full)
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14 16 18 20 22 24 26 28

E
g
.s

. 
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]

ω=24 MeV

SRG=2.0 fm-1

Dys-ADC(3),  NN+3N(full)

Dys-ADC(3),  NN+3N(ind)

Gorkov-2nd,   NN+3N(full)

Exp

6. (Color online) Binding energies of oxygen isotopes.

and solid lines join the results from Dyson-ADC(3) cal-

culations with the NN full (circles)

Hamiltonians. The shaded area highlights the changes owing to the

original 3NF at NNLO. The open diamonds, joined by dot-dashed

Gorkov calculations at second order and include

ven isotopes are obtained by summing

total binging energies of the even-even systems [Eq. (10)] and the

energies for addition or removal of a neutron [Eq. (12

are from Refs. [56 57 60 63 72].

respect to 24 . This is fully corrected by including the

original 3NF at leading order, which brings all results to about

3% form the experiment or closer. This is well within the

estimated theoretical errors discussed above [19]. The dot-

dashed line shows the trend of ground-state energies for the full

Hamiltonian obtained form Gorkov, which include the 18 20 26

isotopes. This demonstrates that the fraction of binding missed

by the second-order truncation is rather constant across the

whole isotopic chain and, in the present case, of about

2–4 MeV. The result is a constant shift with respect to the

complete ADC(3) prediction and the overall trend of binding

energy is reproduced very close to the experiment. Note that

binding energies for odd-even oxygens can be calculated either

as neutron addition or neutron removal from two different

nearby isotopes. Figure shows that this procedure can lead

to somewhat different results, which should be taken as an

indication of the errors owing to the second-order many-body

truncation. For the more complete Dyson-ADC(3) method and

the full Hamiltonian, these differences are never larger than

200 keV and are not visible in the plot. Our calculations with

the more accurate Dyson-ADC(3) scheme predict 28 to be

unbound with respect to 24 by 5.2 MeV. However, this value

should be slightly affected by the vicinity to the continuum

17], which was neglected in the present work.

Figure shows the analogous information for the binding

energies of the nitrogen and fluorine isotopic chains, obtained

through removal and addition of one proton. This confirms that

all considerations made regarding the effects of leading-order

3NFs on the oxygens also apply to their neighboring chains. In

particular, the repulsive effect on the orbit is key

in determining the neutron driplines at 23N and 24 . Fluorine

isotopes have been observed experimentally up to 31F but with
29 that is very weakly bound. Figure clearly demonstrates

that this is attributable to an very subtle cancellation between

the repulsion form 3NFs and the attraction generated by one

extra proton [19].

The general qualitative features of the spectral functions

discussed in the previous sections are also found in our Gorkov

propagators but with an even more spread single-particle

 F  F  F  F  F  F  F  F

 N  N  N  N  N  N  N  N

N - NN+3N(IND) GF-ADC3

N - Experiment

15
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]

=24 MeV

SRG
-1

17 19 21 23

Gorkov-

Exp

25 27 29

2725232119171513

FIG. 7. (Color online) Same as Fig. but for the binding energies

of nitrogen and fluorine isotopes. These are calculated as addition

or removal of a proton to and from even-even oxygen isotopes.

Experiment are from Refs. [56 58 63 72].
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value

(See Table ). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values

between parentheses are calculated without the 1 level of N . The column labeled ADC(3) represents the ADC(3) results from Ref. [28].

values are from Refs. [28 29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF

1π 17 17 16 22 16 46 16 48 16 05 16 35 16 05

3σ 20 98 20 14 20 33 20 36 20 03 20 24 20

CO

5σ 15 10 14 48 13 88 13 94 14 37 13 69 14 01

1π 17 44 17 02 16 93 16 98 16 95 16 84 16 91

4σ 21 99 20 05 20 11 20 19 19 46 19 59 19 72

N

17 25 16 14 15 65 15 72 15 76 15 18 15 60

16 73 17 20 16 82 16 85 17 71 17 14 16 98

21 25 19 35 18 99 19 06 18 29 17 90 18 78

13 86 12 80 12 83 12 86 12 62 12 67 12 62

15 93 15 06 15 11 15 15 14 91 14 98 14 74

19 56 19 15 19 19 19 21 19 06 19 13 18 51

(eV) 1 14) 0 31) 0 28) 0 30) 0 23) 0 26)

max (eV) 2 27) 0 64) 0 68) 0 70) 0 73) 0 62)

A. Ground-state and ionization energies at

equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table

The ground-state energies for the molecules H to H
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C

The equilibrium bond distances show a larger spread

when comparing the Faddeev-Tamm-Dancoff approximation

[FTDA(c)] and FRPA(c). The equilibrium bond distances

for ADC(3) and FRPA have comparable deviations from

the experimental values and, in the majority of cases, are

closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental

value than ADC(3). The same conclusion can be made for the

vertical ionization energies. The coupled-cluster results were

calculated as the difference of the ground-state energies of the

neutral and ionic molecule at the same geometry. The FTDA(c)

and FRPA(c) ionization energies outperform the coupled-

cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance

(no energy minimum) for N , CO , and C in both the FTDA

and FRPA calculations without incorporating self-consistency

at the level of the Hartree-Fock–type diagram. This example

stresses the importance of a consistent treatment of the

static self-energy. The inclusion of self-consistency in the

calculations tends to adjust the results toward experiment,

where needed.

To compare with previous ADC(3) calculations by other au-

thors, we calculated ionization energies for a set of molecules

settings used in Ref. [28], i.e., at the experimental

geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)

results are presented in Table II. The present

FTDA(c) results are in close agreement with the Dyson

results in Ref. [28]. The differences are less than 2 mH

and, in fact, are already present when comparing the Hartree-

Fock single-particle energies. Compared to experiment, the

mean absolute error is of the same order of magnitude for

ADC(3) and FRPA. Note that there is a large deviation for

the 2 level of N in the FRPA(c), which has a substantial

influence on the mean error value.

We have also checked the basis-set dependency of the

results by performing calculations for HF in the cc-pVDZ,

correlation-consistent polarized valence triple zeta (cc-pVTZ),

aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis

sets. The differences in ionization energies between the basis

sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value

(See Table ). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values

between parentheses are calculated without the 1 level of N . The column labeled ADC(3) represents the ADC(3) results from Ref. [28].

values are from Refs. [28 29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF

17 17 16 22 16 46 16.48 16.05 16.35 16.05

20 98 20 14 20 33 20.36 20.03 20.24 20.0

CO

15 10 14 48 13 88 13.94 14.37 13.69 14.01

17 44 17 02 16 93 16.98 16.95 16.84 16.91

21 99 20 05 20 11 20.19 19.46 19.59 19.72

17 25 16 14 15 65 15 72 15 76 15 18 15 60

16 73 17 20 16 82 16 85 17 71 17 14 16 98

21 25 19 35 18 99 19 06 18 29 17 90 18 78

13 86 12 80 12 83 12 86 12 62 12 67 12 62

15 93 15 06 15 11 15 15 14 91 14 98 14 74

19 56 19 15 19 19 19 21 19 06 19 13 18 51

(eV) 1 14) 0 31) 0 28) 0 30) 0 23) 0 26)

max (eV) 2 27) 0 64) 0 68) 0 70) 0 73) 0 62)

A. Ground-state and ionization energies at

equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table

The ground-state energies for the molecules H to H
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C

The equilibrium bond distances show a larger spread

when comparing the Faddeev-Tamm-Dancoff approximation

[FTDA(c)] and FRPA(c). The equilibrium bond distances

for ADC(3) and FRPA have comparable deviations from

the experimental values and, in the majority of cases, are

closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental

value than ADC(3). The same conclusion can be made for the

vertical ionization energies. The coupled-cluster results were

calculated as the difference of the ground-state energies of the

neutral and ionic molecule at the same geometry. The FTDA(c)

and FRPA(c) ionization energies outperform the coupled-

cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance

(no energy minimum) for N , CO , and C in both the FTDA

and FRPA calculations without incorporating self-consistency

at the level of the Hartree-Fock–type diagram. This example

stresses the importance of a consistent treatment of the

static self-energy. The inclusion of self-consistency in the

calculations tends to adjust the results toward experiment,

where needed.

To compare with previous ADC(3) calculations by other au-

thors, we calculated ionization energies for a set of molecules

settings used in Ref. [28], i.e., at the experimental

geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)

results are presented in Table II. The present

FTDA(c) results are in close agreement with the Dyson

results in Ref. [28]. The differences are less than 2 mH

and, in fact, are already present when comparing the Hartree-

Fock single-particle energies. Compared to experiment, the

mean absolute error is of the same order of magnitude for

ADC(3) and FRPA. Note that there is a large deviation for

the 2 level of N in the FRPA(c), which has a substantial

influence on the mean error value.

We have also checked the basis-set dependency of the

results by performing calculations for HF in the cc-pVDZ,

correlation-consistent polarized valence triple zeta (cc-pVTZ),

aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis

sets. The differences in ionization energies between the basis

sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value

(See Table ). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values

between parentheses are calculated without the 1 level of N . The column labeled ADC(3) represents the ADC(3) results from Ref. [28].

values are from Refs. [28 29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF

17 17 16 22 16 46 16 48 16 05 16 35 16 05

20 98 20 14 20 33 20 36 20 03 20 24 20

CO

15 10 14 48 13 88 13 94 14 37 13 69 14 01

17 44 17 02 16 93 16 98 16 95 16 84 16 91

21 99 20 05 20 11 20 19 19 46 19 59 19 72

17 25 16 14 15 65 15 72 15 76 15 18 15 60

16 73 17 20 16 82 16 85 17 71 17 14 16 98

21 25 19 35 18 99 19 06 18 29 17 90 18 78

13 86 12 80 12 83 12.86 12.62 12.67 12.62

15 93 15 06 15 11 15.15 14.91 14.98 14.74

19 56 19 15 19 19 19.21 19.06 19.13 18.51

(eV) 1 14) 0 31) 0 28) 0.30(0.30) 0.25(0.23) 0.31(0.26)

max (eV) 2 27) 0 64) 0 68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at

equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table

The ground-state energies for the molecules H to H
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C

The equilibrium bond distances show a larger spread

when comparing the Faddeev-Tamm-Dancoff approximation

[FTDA(c)] and FRPA(c). The equilibrium bond distances

for ADC(3) and FRPA have comparable deviations from

the experimental values and, in the majority of cases, are

closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental

value than ADC(3). The same conclusion can be made for the

vertical ionization energies. The coupled-cluster results were

calculated as the difference of the ground-state energies of the

neutral and ionic molecule at the same geometry. The FTDA(c)

and FRPA(c) ionization energies outperform the coupled-

cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance

(no energy minimum) for N , CO , and C in both the FTDA

and FRPA calculations without incorporating self-consistency

at the level of the Hartree-Fock–type diagram. This example

stresses the importance of a consistent treatment of the

static self-energy. The inclusion of self-consistency in the

calculations tends to adjust the results toward experiment,

where needed.

To compare with previous ADC(3) calculations by other au-

thors, we calculated ionization energies for a set of molecules

settings used in Ref. [28], i.e., at the experimental

geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)

results are presented in Table II. The present

FTDA(c) results are in close agreement with the Dyson

results in Ref. [28]. The differences are less than 2 mH

and, in fact, are already present when comparing the Hartree-

Fock single-particle energies. Compared to experiment, the

mean absolute error is of the same order of magnitude for

ADC(3) and FRPA. Note that there is a large deviation for

the 2 level of N in the FRPA(c), which has a substantial

influence on the mean error value.

We have also checked the basis-set dependency of the

results by performing calculations for HF in the cc-pVDZ,

correlation-consistent polarized valence triple zeta (cc-pVTZ),

aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis

sets. The differences in ionization energies between the basis

sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value

(See Table ). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values

between parentheses are calculated without the 1 level of N . The column labeled ADC(3) represents the ADC(3) results from Ref. [28].

values are from Refs. [28 29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF

17 17 16 22 16 46 16 48 16 05 16 35 16 05

20 98 20 14 20 33 20 36 20 03 20 24 20

CO

15 10 14 48 13 88 13 94 14 37 13 69 14 01

17 44 17 02 16 93 16 98 16 95 16 84 16 91

21 99 20 05 20 11 20 19 19 46 19 59 19 72

17 25 16 14 15 65 15 72 15 76 15 18 15 60

16 73 17 20 16 82 16 85 17 71 17 14 16 98

u 21 25 19 35 18 99 19 06 18 29 17 90 18 78

H2O

1b1 13 86 12 80 12 83 12 86 12 62 12 67 12 62

3a1 15 93 15 06 15 11 15 15 14 91 14 98 14 74

1b2 19 56 19 15 19 19 19 21 19 06 19 13 18 51

1̄ (eV) 1 14) 0 31) 0 28) 0 30) 0 23) 0 26)

1max (eV) 2 27) 0 64) 0 68) 0 70) 0 73) 0 62)

A. Ground-state and ionization energies at

equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table

The ground-state energies for the molecules H to H
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C

The equilibrium bond distances show a larger spread

when comparing the Faddeev-Tamm-Dancoff approximation

[FTDA(c)] and FRPA(c). The equilibrium bond distances

for ADC(3) and FRPA have comparable deviations from

the experimental values and, in the majority of cases, are

closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental

value than ADC(3). The same conclusion can be made for the

vertical ionization energies. The coupled-cluster results were

calculated as the difference of the ground-state energies of the

neutral and ionic molecule at the same geometry. The FTDA(c)

and FRPA(c) ionization energies outperform the coupled-

cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance

(no energy minimum) for N , CO , and C in both the FTDA

and FRPA calculations without incorporating self-consistency

at the level of the Hartree-Fock–type diagram. This example

stresses the importance of a consistent treatment of the

static self-energy. The inclusion of self-consistency in the

calculations tends to adjust the results toward experiment,

where needed.

To compare with previous ADC(3) calculations by other au-

thors, we calculated ionization energies for a set of molecules

settings used in Ref. [28], i.e., at the experimental

geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)

results are presented in Table II. The present

FTDA(c) results are in close agreement with the Dyson

results in Ref. [28]. The differences are less than 2 mH

and, in fact, are already present when comparing the Hartree-

Fock single-particle energies. Compared to experiment, the

mean absolute error is of the same order of magnitude for

ADC(3) and FRPA. Note that there is a large deviation for

the 2 level of N in the FRPA(c), which has a substantial

influence on the mean error value.

We have also checked the basis-set dependency of the

results by performing calculations for HF in the cc-pVDZ,

correlation-consistent polarized valence triple zeta (cc-pVTZ),

aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis

sets. The differences in ionization energies between the basis

sets with double zeta functions and these with triple zeta
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6. (Color online) Spectral

on
56Ni obtained from the self-consistent

single-particle propagator ). Poles

above (below) the Fermi energy,

to transition to eigenstates

of 57Ni (55 respective spectro-

factors are given as a fraction of

the independent-particle model value.

to the valence orbits of the 1

are indicated by arrows. A logarithmic

scale was chosen to put in stronger evi-

dence the distribution of the fragmented

strength. Results are for ¯ 10 MeV,

max 9, and 57 MeV.

by analyzing the spectroscopic factors and strength distribu-

tion rather than occupation numbers, because the latter are

integrated quantities. While unoccupied states can be probed

by the addition of a nucleon, occupied states are accessed by

knockout to states of the 1 nucleon system. A similar

fragmentation pattern is therefore seen for the 0 orbit

but reversed below the Fermi surface. Interestingly enough,

the Faddeev random phase approximation predicts that states

corresponding to orbits in the 1 and 2

a strong single-particle character even though they are further

apart from the Fermi surface. The fragmentation of these orbits

requires excitations across shells of different parity (e.g., 1

and 1 ) and could become stronger if the energy difference

among major shells is reduced. A comparison of our results

with electron scattering measurements on 58Ni [75] suggests

that indeed the N LO interaction tends to overestimate the

gaps between these major shells. Note that in the present

calculations the 2 quasiparticles are found at energies of

about 3 MeV and overlap with the fragmented 1 states.

Far from the Fermi energy , the mixing with complex

configurations becomes strong and it is no longer possible

to identify sharp quasiparticle and quasihole states. Still, the

energy region occupied by the major shells can be identified

clearly. The N LO interaction places the states associated

shell between 60 and 30 MeV, whereas the

-shell states appear below 50 MeV. Other hole fragments

Occupation numbers are normally defined in terms of the density

matrix, which involves an integral sum over each hole pole of

Eq. ( ). Especially for deeply bound orbits, it is possible that a strong

fragmentation pattern still leads to large occupation numbers.

are observed around 30 MeV for the 1 , and 0

waves. These originate from particle states in the 1

shell that are partially occupied due to the smearing of the

Fermi surface. Nucleon knockout from these orbits requires

little energy transfer and leads to low-lying states in 55Ni

or 55Cu. These states originate from the mixing of particle

orbits with two-hole-one-particle configurations ( (2h1p)) in

the Dyson equation. Still, the 55Ni ground state is strongly

influenced by the 0 hole component.

Analogous fragmentation patterns extend to the shells

further away from the Fermi surface, although these are

not shown in Fig. . On the particle side, 0 MeV

marks the threshold for the single-particle continuum in

the ( 1)-nucleon system. Above this, the exact spectral

function becomes a continuous function of energy. In the

present calculations a structure of separate poles is found

due to the discretization of the model space. A continuum

distribution also develops for the hole part of the exact spectral

function below the energy , where

is the one-nucleon separation energy from the ground

state of 1 particles. The distribution on both sides of the

Fermi surface is similar but not fully symmetric, the strength

being stronger at large positive energies. This is because

the ( 1)-nucleon system can access a larger phase space

than a single hole within the -nucleon ground state. This

asymmetry is already observed at the level of the self-energy

), a result in line with available fits of global optical

potentials [49 50].

For the proton case, the poles of ) correspond to the

addition (removal) of a proton to the eigenstates of 57Co (55

The corresponding spectral strength is substantially the same

as that discussed for neutrons due to the almost exact isospin

0 -0 -0 -0 - 0 00 00 00 0

The reference state is a mean-field 
with only a few orbits
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approaches going beyond the simple summation of the ring

diagrams in the polarization propagator have been formulated:

extensions of the RPA with more complex excitation operators

17 19] also at finite temperature [20], the particle-vibration

coupling methods such as the nuclear field theory [21] and the

quasiparticle-phonon model [22], the time-dependent density-

functional description of the nuclear dynamics [23 24], and

the extended theory of finite Fermi systems [25].

The theoretical approaches starting from realistic nuclear

interactions, both conventional and based on chiral effective

field theories, are mainly focused to light nuclei, as reviewed

in Refs. [26 27]. Recently, the scope of the ab initio many-

body methods capable of describing the nuclear excited spec-

tra was extended to nuclei with mass number 16. In

particular, a series of applications was put forward within the

coupled cluster approach combined with the Lorentz integral

transform (CC-LIT) method, with the computation of the E1

response of several nuclei, from He to 48Ca [28 29].

Preliminary calculations of the isovector E1 response

and dipole polarizability have also been performed using

the self-consistent Green’s function (SCGF) approach

30]. Building on this first application, we present in this

work extensive calculations of the E1 response and related

quantities of medium-mass nuclei, within a formalism in

which the particle-hole propagator is treated at the RPA level.

Note that the SCGF formalism is based on expressing the

self-energy and particle-hole interaction kernels in terms of

skeleton diagrams and fully dressed propagator, rather than

mean-field reference states. The self-consistency requirement

is a useful feature because it is related to the dynamical

fulfillment of conservation laws, however, it is not achieved

by the dressed RPA (DRPA) many-body truncation used

in the present study. In this work, we exploit the accurate

saturation properties of a well-established chiral two-nucleon

(2N) plus three-nucleon (3N) interaction, NNLOsat 31]. This

chiral interaction is particularly suitable for the computation

of quantities related to the nuclear matter distribution and size

of the nuclei, because it contains carbon and oxygen radii in

the pool of fit observables, and reproduces accurately radii up

to the calcium isotopes [13 32].

Section II sets out a short review of the SCGF formalism

and the basic equations of the DRPA, with Sec. II B focused

on the isovector dipole nuclear response. After having dis-

cussed in Sec. III A the convergence of our calculations with

respect to the size and the features of the model space, we

present in the rest of Sec. III the results for the E1 photoab-

sorption cross sections and polarizabilites for several nuclei,
14O to 68Ni. For the closed-subshell nuclei considered

below, it is well established that the Dyson formulation of

SCGF provides accurate results even when the pairing effect

is not included explicitly [33 34]. Different choices of the

effective propagators for the DRPA are discussed in Sec. IV

Finally, we draw our conclusions in Sec.

II. SCGF FORMALISM AND E1 NUCLEAR RESPONSE

Within the SCGF formalism [35 37] the single-particle

and the polarization propagators are obtained as the

solution of the Dyson and Bethe-Salpeter equations, respec-

tively. The polarization propagator gives direct access to the

nuclear response of an external operator. Hence, it provides

the spectroscopic (overlap functions) and dynamic (energies)

information required to compute the nuclear isovector electric

dipole response we are interested in.

The spectral information is especially apparent in the

Lehmann representation of these propagators. Given the

many-body Schrödinger eigenvalue problem for the - and

1-nucleon systems,

1) 1) 1)

we consider for the propagation of a single nucleon in the

ground state , the one-body Green’s function,

gαβ (ω) =
∑

n

〈

9A
0

∣

∣aα

∣

∣9A+1
n

〉〈

9A+1
n

∣

∣a
†
β

∣

∣9A
0

〉

h̄ω −
(

EA+1
n − EA

0

)

+ iη

〈 ∣ 〉〈 ∣ ∣ 〉

where the poles give the excitation energies of the

system with respect to the ground-state energy

and the transition amplitudes for the addition and removal of

a nucleon are

The full expansion of the propagator ( ) in terms of the

uncorrelated propagator
(0)
αβ ) is resummed through the

Dyson equation,

αβ
(0)
αβ

γ δ

(0)
αγ γ δ δβ

which is a nonlinear equation that iterates the irreducible

self-energy γ δ ). The effects of the medium on the particle

propagation are encoded in the self-energy with an organiza-

tion scheme, the algebraic diagrammatic construction (ADC),

in which the resummation of ring (particle-hole) and ladder

(particle-particle and hole-hole) diagrams is performed to all

orders [37 38].

The Lehmann representation of the polarization propagator

is

γ δ αβ

〉〈

〉〈

where labels the excited states of the system. In

the following, we will use the shorthand notation for the
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approaches going beyond the simple summation of the ring

diagrams in the polarization propagator have been formulated:

extensions of the RPA with more complex excitation operators

17 19] also at finite temperature [20], the particle-vibration

coupling methods such as the nuclear field theory [21] and the

quasiparticle-phonon model [22], the time-dependent density-

functional description of the nuclear dynamics [23 24], and

the extended theory of finite Fermi systems [25].

The theoretical approaches starting from realistic nuclear

interactions, both conventional and based on chiral effective

field theories, are mainly focused to light nuclei, as reviewed

in Refs. [26 27]. Recently, the scope of the ab initio many-

body methods capable of describing the nuclear excited spec-

tra was extended to nuclei with mass number 16. In

particular, a series of applications was put forward within the

coupled cluster approach combined with the Lorentz integral

transform (CC-LIT) method, with the computation of the E1

response of several nuclei, from He to 48Ca [28 29].

Preliminary calculations of the isovector E1 response

and dipole polarizability have also been performed using

the self-consistent Green’s function (SCGF) approach

30]. Building on this first application, we present in this

work extensive calculations of the E1 response and related

quantities of medium-mass nuclei, within a formalism in

which the particle-hole propagator is treated at the RPA level.

Note that the SCGF formalism is based on expressing the

self-energy and particle-hole interaction kernels in terms of

skeleton diagrams and fully dressed propagator, rather than

mean-field reference states. The self-consistency requirement

is a useful feature because it is related to the dynamical

fulfillment of conservation laws, however, it is not achieved

by the dressed RPA (DRPA) many-body truncation used

in the present study. In this work, we exploit the accurate

saturation properties of a well-established chiral two-nucleon

(2N) plus three-nucleon (3N) interaction, NNLOsat 31]. This

chiral interaction is particularly suitable for the computation

of quantities related to the nuclear matter distribution and size

of the nuclei, because it contains carbon and oxygen radii in

the pool of fit observables, and reproduces accurately radii up

to the calcium isotopes [13 32].

Section II sets out a short review of the SCGF formalism

and the basic equations of the DRPA, with Sec. II B focused

on the isovector dipole nuclear response. After having dis-

cussed in Sec. III A the convergence of our calculations with

respect to the size and the features of the model space, we

present in the rest of Sec. III the results for the E1 photoab-

sorption cross sections and polarizabilites for several nuclei,
14O to 68Ni. For the closed-subshell nuclei considered

below, it is well established that the Dyson formulation of

SCGF provides accurate results even when the pairing effect

is not included explicitly [33 34]. Different choices of the

effective propagators for the DRPA are discussed in Sec. IV

Finally, we draw our conclusions in Sec.

II. SCGF FORMALISM AND E1 NUCLEAR RESPONSE

Within the SCGF formalism [35 37] the single-particle

and the polarization propagators are obtained as the

solution of the Dyson and Bethe-Salpeter equations, respec-

tively. The polarization propagator gives direct access to the

nuclear response of an external operator. Hence, it provides

the spectroscopic (overlap functions) and dynamic (energies)

information required to compute the nuclear isovector electric

dipole response we are interested in.

The spectral information is especially apparent in the

Lehmann representation of these propagators. Given the

many-body Schrödinger eigenvalue problem for the - and

1-nucleon systems,

1) 1) 1)

we consider for the propagation of a single nucleon in the

ground state , the one-body Green’s function,

αβ

∑

∣ ∣

〉〈

∣ ∣

−
(

−
)

+

+
∑

k

〈

9A
0 |a

†
β

∣

∣9A−1
k

〉〈

9A−1
k

∣

∣aα

∣

∣9A
0

〉

h̄ω −
(

EA
0 − EA−1

k

)

− iη

where the poles give the excitation energies of the

system with respect to the ground-state energy

and the transition amplitudes for the addition and removal of

a nucleon are

The full expansion of the propagator ( ) in terms of the

uncorrelated propagator
(0)
αβ ) is resummed through the

Dyson equation,

αβ
(0)
αβ

γ δ

(0)
αγ γ δ δβ

which is a nonlinear equation that iterates the irreducible

self-energy γ δ ). The effects of the medium on the particle

propagation are encoded in the self-energy with an organiza-

tion scheme, the algebraic diagrammatic construction (ADC),

in which the resummation of ring (particle-hole) and ladder

(particle-particle and hole-hole) diagrams is performed to all

orders [37 38].

The Lehmann representation of the polarization propagator

is

γ δ αβ

〉〈

〉〈

where labels the excited states of the In

the following, we will use the shorthand notation for the
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

OpRS

αβ αβ , . . . , (19)

with integer 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

M̃
p

αβ =
∑

n

(
X n

α

)∗
X n

β (ε+
n )p

Ñ
p

αβ
=

∑

k

Yk
α

(
Yk

β

)∗
(ε−

k )p, (20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 Non-

interacting 1 terms that contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

Both Eqs. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)
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FIG. 1. Expansion of the polarization propagator ) at the

RPA level. Double fermionic lines denote the fully correlated prop-

agators (or OpRS ones) employed in the DRPA. The expansion

truncated at the first row would correspond to the Tamm-Dancoff

poles,

(9)

and the residues,

αβ (10)

These are, respectively, the energies and particle-hole matrix

elements between excited states of the A-nucleon system and

its ground state.

The polarization propagator is the solution of the Bethe-

Salpeter equation,

γ δ αβ γ δ αβ

ρνσ

γ δ,µ

ph
νσ νσ αβ (11)

where ) is the free polarization propagator, and the

ph irreducible interaction ph plays for the particle-hole

propagator a similar role as that of the self-energy in Eq. (

for the single-particle propagator.

The RPA to Eq. (11) results from approximating the ph

kernel to first order, i.e., by using only the bare interaction

vertex. In standard applications, the associated unperturbed

reference propagator is the Hartree-Fock one as required by

the Baym-Kadanoff self-consistency approach [39 40]. The

RPA can be extended by using the fully correlated single-

particle propagator instead of the Hartree-Fock one, yielding

the DRPA discussed in the next section.

A. Dressed RPA and reduced propagator

The basic idea of the DRPA is to take into account

the fragmentation of the fully correlated propagators in the

construction of the free polarization propagator, ), as

depicted in Fig. . The DRPA equation can be cast in the usual

matrix form,

A B
)(

(12)

with the RPA eigenvectors related to the polarization ampli-

tudes in the following way:

nk

αβγ δ

αγβδ δγ (13)

nk

αβγ δ

αγβδ δγ (14)

The submatrices and in Eq. (12) are

αβγ δ

αγβδ (15)

αβγ δ

αγβδ (16)

A study of the 16O excitation energy spectrum in Ref. [41

has shown that the main effects of the fragmentation of the

propagator are the screening of the nuclear interaction, with

low-lying states pushed at higher energies, and a redistribution

of the strength among ph and 2 phonons considered

therein.

Note that the reference single-particle propagator for the

construction of the DRPA matrices, Eqs. (15) and (16), should

be the fully correlated propagator. However, the use of dressed

propagators increases significantly the requirement in com-

puting resources: The propagator for a typical medium-mass

nucleus within a harmonic oscillator model space of 14 major

shells contains more than 10 poles, which would lead to ph

matrices in Eq. (12) which are dense and have dimensions of

the order of 1010. To overcome this limitation, an effective

way to include the correlations of the fully dressed propagator

was introduced in Ref. [42], with the concept of the optimized

reference state (OpRS) propagator, which we employ as the

reference of our (D)RPA computations. As explained below,

the OpRS propagator includes the relevant many-body corre-

lations while keeping manageable the computational task at

hand. Thus, it is adopted as the optimal choice for the refer-

ence propagator. The effective OpRS one-body propagator,

g
OpRS

αβ (ω) =

∑

n 6∈F

(

ψn
α

)∗
ψn

β

ω − ε
OpRS
n + iη

+

∑

k∈F

ψk
α

(

ψk
β

)∗

ω − ε
OpRS

k
− iη

,

(17)

is obtained by mapping the fully correlated propagator to a

simpler one that has a reduced number of poles, for instance,

one with the same number of poles as the independent particle

model (or mean-field) propagator. The effects of the correla-

tions are embedded in the OpRS propagator by requiring that

the set of single-particle energies and amplitudes reproduces

the first 2 moments of the poles of αβ ),

αβ (18)

578 C. Barbieri and A. Carbone

Likewise, a second sum (or integration) over the coordinate space yields the total

number of particles,

.!/ ˛˛.!/ (11.10)

A very special case is the Koltun sum-rule that allows calculating the total energy

of the system by means of the exact one-body propagator alone, .!/ 32].

This relation is exact for any Hamiltonian containing at most one- and two body

interactions. When many-particle interactions are present, it is necessary to correct

for the over countings that arise from these additional terms [33]. For the specific

case in which a three-body interaction b is included, the exact relation for the

ground state energy is given by the following modified Koltun rule:

EA
0 D

X

˛ˇ

1

2

Z "�

0

�1

Œ T˛ˇ C ! ı˛ˇ � Sh
ˇ˛.!/ d! �

1

2
hbWi (11.11)

This still relies on the use of a one-body propagator but it requires the additional

evaluation of the expectation value of the three-body interaction, (which in

principle requires the knowledge of more complex Green’s functions). Thankfully,

in most cases the total strength of is much smaller than other terms in the

Hamiltonian. Thus, one can safely approximate its expectation value at lowest order,

in terms of three correlated density matrices, as

i '

˛ˇ�

˛ˇ ıˇ �� (11.12)

As a typical example in finite nuclei, the error from this approximation has been

estimated not to exceed 250 keV for the total binding energies for 16O and 24O [34].

However, the accuracy of Eq. (11.12) is not guaranteed and needs to be verified case

by case.

11.2.2 Perturbation Expansion of the Green’s Function

In order to understand the following sections and to devise appropriate

approximations to the self-energy .!/ it is necessary to understand the basic

elements of perturbation theory. These will be also fundamental to derive all-

order summation schemes leading to non-perturbative solutions and to discuss

the concept of self-consistency. We summarize here the material needed to

understand the following sections, while the full set of Feynman rules is reviewed in

Appendix 1.
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The existence of isolated dominant peaks as those shown in Fig. 11.2 indicates

that the eigenstates and are to a very good approximation constructed

of a nucleon or a hole independently orbiting the ground state . This is the

basic hypothesis at the origin of the nuclear shell-model. How much a real nucleus

deviates from this assumption can be gauged by the deviations in the values of

their spectroscopic factors. These are defined as the normalization overlap of the

spectroscopic amplitudes for the attachment or removal of a particle:

SF SF (11.5)

The energy distribution of spectroscopic factors is given by

.!/ ˛˛.!/ ˛˛.!/

SF ı.! SF ı.! / ; (11.6)

where each -peak corresponds to eigenstates of a neighboring isotope with

particles. These quasiparticle energies are directly observed in nucleon addition

and removal experiments. Note that the total strength seen in similar experiments

results from a convolution of the spectroscopic amplitudes with the dynamics of the

reaction mechanisms. Hence, while the quasiparticle energies appearing in the poles

of Eq. (11.2) are strictly observed, the magnitude of the spectral strength .!/ only

gives a semi-quantitative description of the strength of the observed cross sections.

Any one-body observable can be calculated via the one-body density matrix ˛ˇ

which is obtained from ˛ˇ.!/ as follows:

�˛ˇ � h	 A
0 ja

�

ˇa˛j	 A
0 i D

Z "�

0

�1

Sh
˛ˇ.!/ d! D

X

k

.Y k
ˇ/�Y k

˛ : (11.7)

The expectation value of a one-body operator, , can then be written in terms of

the amplitudes as:

i D

˛ˇ

˛ˇ ˇ˛

˛ˇ

˛ˇ (11.8)

However, evaluating two- and many-nucleon observables requires the knowledge of

many-body propagators. Equation (11.7) also implies that the density profile of the

system can be obtained by integrating over the hole spectral function in coordinate

space (cf. Fig. 11.2):

.!/ ! : (11.9)
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reaction mechanisms. Hence, while the quasiparticle energies appearing in the poles

of Eq. (11.2) are strictly observed, the magnitude of the spectral strength .!/ only
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However, evaluating two- and many-nucleon observables requires the knowledge of

many-body propagators. Equation (11.7) also implies that the density profile of the

system can be obtained by integrating over the hole spectral function in coordinate

space (cf. Fig. 11.2):
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

M
p,OpRS

αβ = M
p

αβ , p = 0, 1, 2, . . . , 2κ − 1, (19)

with integer 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 . (Left) Non-

interacting 1 terms that contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

Both Eqs. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)

−−−
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

OpRS

αβ αβ , . . . , (19)

with integer κ > 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 Non-

interacting 1 contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

Both Eqs. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

OpRS

αβ αβ = 0, , . . . , (19)

with integer 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 . (Left) Non-

interacting 1 t contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

Both Eqs. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)
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approaches going beyond the simple summation of the ring

diagrams in the polarization propagator have been formulated:

extensions of the RPA with more complex excitation operators

17 19] also at finite temperature [20], the particle-vibration

coupling methods such as the nuclear field theory [21] and the

quasiparticle-phonon model [22], the time-dependent density-

functional description of the nuclear dynamics [23 24], and

the extended theory of finite Fermi systems [25].

The theoretical approaches starting from realistic nuclear

interactions, both conventional and based on chiral effective

field theories, are mainly focused to light nuclei, as reviewed

in Refs. [26 27]. Recently, the scope of the ab initio many-

body methods capable of describing the nuclear excited spec-

tra was extended to nuclei with mass number 16. In

particular, a series of applications was put forward within the

coupled cluster approach combined with the Lorentz integral

transform (CC-LIT) method, with the computation of the E1

response of several nuclei, from He to 48Ca [28 29].

Preliminary calculations of the isovector E1 response

and dipole polarizability have also been performed using

the self-consistent Green’s function (SCGF) approach

30]. Building on this first application, we present in this

work extensive calculations of the E1 response and related

quantities of medium-mass nuclei, within a formalism in

which the particle-hole propagator is treated at the RPA level.

Note that the SCGF formalism is based on expressing the

self-energy and particle-hole interaction kernels in terms of

skeleton diagrams and fully dressed propagator, rather than

mean-field reference states. The self-consistency requirement

is a useful feature because it is related to the dynamical

fulfillment of conservation laws, however, it is not achieved

by the dressed RPA (DRPA) many-body truncation used

in the present study. In this work, we exploit the accurate

saturation properties of a well-established chiral two-nucleon

(2N) plus three-nucleon (3N) interaction, NNLOsat 31]. This

chiral interaction is particularly suitable for the computation

of quantities related to the nuclear matter distribution and size

of the nuclei, because it contains carbon and oxygen radii in

the pool of fit observables, and reproduces accurately radii up

to the calcium isotopes [13 32].

Section II sets out a short review of the SCGF formalism

and the basic equations of the DRPA, with Sec. II B focused

on the isovector dipole nuclear response. After having dis-

cussed in Sec. III A the convergence of our calculations with

respect to the size and the features of the model space, we

present in the rest of Sec. III the results for the E1 photoab-

sorption cross sections and polarizabilites for several nuclei,
14O to 68Ni. For the closed-subshell nuclei considered

below, it is well established that the Dyson formulation of

SCGF provides accurate results even when the pairing effect

is not included explicitly [33 34]. Different choices of the

effective propagators for the DRPA are discussed in Sec. IV

Finally, we draw our conclusions in Sec.

II. SCGF FORMALISM AND E1 NUCLEAR RESPONSE

Within the SCGF formalism [35 37] the single-particle

and the polarization propagators are obtained as the

solution of the Dyson and Bethe-Salpeter equations, respec-

tively. The polarization propagator gives direct access to the

nuclear response of an external operator. Hence, it provides

the spectroscopic (overlap functions) and dynamic (energies)

information required to compute the nuclear isovector electric

dipole response we are interested in.

The spectral information is especially apparent in the

Lehmann representation of these propagators. Given the

many-body Schrödinger eigenvalue problem for the - and

1-nucleon systems,

1) 1) 1)

we consider for the propagation of a single nucleon in the

ground state , the one-body Green’s function,

gαβ (ω) =
∑

n

〈

9A
0

∣

∣aα

∣

∣9A+1
n

〉〈

9A+1
n

∣

∣a
†
β

∣

∣9A
0

〉

h̄ω −
(

EA+1
n − EA

0

)

+ iη

〈 ∣ 〉〈 ∣ ∣ 〉

where the poles give the excitation energies of the

system with respect to the ground-state energy

and the transition amplitudes for the addition and removal of

a nucleon are

The full expansion of the propagator ( ) in terms of the

uncorrelated propagator
(0)
αβ ) is resummed through the

Dyson equation,

αβ
(0)
αβ

γ δ

(0)
αγ γ δ δβ

which is a nonlinear equation that iterates the irreducible

self-energy γ δ ). The effects of the medium on the particle

propagation are encoded in the self-energy with an organiza-

tion scheme, the algebraic diagrammatic construction (ADC),

in which the resummation of ring (particle-hole) and ladder

(particle-particle and hole-hole) diagrams is performed to all

orders [37 38].

The Lehmann representation of the polarization propagator

is

γ δ αβ

〉〈

〉〈

where labels the excited states of the system. In

the following, we will use the shorthand notation for the
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approaches going beyond the simple summation of the ring

diagrams in the polarization propagator have been formulated:

extensions of the RPA with more complex excitation operators

17 19] also at finite temperature [20], the particle-vibration

coupling methods such as the nuclear field theory [21] and the

quasiparticle-phonon model [22], the time-dependent density-

functional description of the nuclear dynamics [23 24], and

the extended theory of finite Fermi systems [25].

The theoretical approaches starting from realistic nuclear

interactions, both conventional and based on chiral effective

field theories, are mainly focused to light nuclei, as reviewed

in Refs. [26 27]. Recently, the scope of the ab initio many-

body methods capable of describing the nuclear excited spec-

tra was extended to nuclei with mass number 16. In

particular, a series of applications was put forward within the

coupled cluster approach combined with the Lorentz integral

transform (CC-LIT) method, with the computation of the E1

response of several nuclei, from He to 48Ca [28 29].

Preliminary calculations of the isovector E1 response

and dipole polarizability have also been performed using

the self-consistent Green’s function (SCGF) approach

30]. Building on this first application, we present in this

work extensive calculations of the E1 response and related

quantities of medium-mass nuclei, within a formalism in

which the particle-hole propagator is treated at the RPA level.

Note that the SCGF formalism is based on expressing the

self-energy and particle-hole interaction kernels in terms of

skeleton diagrams and fully dressed propagator, rather than

mean-field reference states. The self-consistency requirement

is a useful feature because it is related to the dynamical

fulfillment of conservation laws, however, it is not achieved

by the dressed RPA (DRPA) many-body truncation used

in the present study. In this work, we exploit the accurate

saturation properties of a well-established chiral two-nucleon

(2N) plus three-nucleon (3N) interaction, NNLOsat 31]. This

chiral interaction is particularly suitable for the computation

of quantities related to the nuclear matter distribution and size

of the nuclei, because it contains carbon and oxygen radii in

the pool of fit observables, and reproduces accurately radii up

to the calcium isotopes [13 32].

Section II sets out a short review of the SCGF formalism

and the basic equations of the DRPA, with Sec. II B focused

on the isovector dipole nuclear response. After having dis-

cussed in Sec. III A the convergence of our calculations with

respect to the size and the features of the model space, we

present in the rest of Sec. III the results for the E1 photoab-

sorption cross sections and polarizabilites for several nuclei,
14O to 68Ni. For the closed-subshell nuclei considered

below, it is well established that the Dyson formulation of

SCGF provides accurate results even when the pairing effect

is not included explicitly [33 34]. Different choices of the

effective propagators for the DRPA are discussed in Sec. IV

Finally, we draw our conclusions in Sec.

II. SCGF FORMALISM AND E1 NUCLEAR RESPONSE

Within the SCGF formalism [35 37] the single-particle

and the polarization propagators are obtained as the

solution of the Dyson and Bethe-Salpeter equations, respec-

tively. The polarization propagator gives direct access to the

nuclear response of an external operator. Hence, it provides

the spectroscopic (overlap functions) and dynamic (energies)

information required to compute the nuclear isovector electric

dipole response we are interested in.

The spectral information is especially apparent in the

Lehmann representation of these propagators. Given the

many-body Schrödinger eigenvalue problem for the - and

1-nucleon systems,

1) 1) 1)

we consider for the propagation of a single nucleon in the

ground state , the one-body Green’s function,
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where the poles give the excitation energies of the

system with respect to the ground-state energy

and the transition amplitudes for the addition and removal of

a nucleon are

The full expansion of the propagator ( ) in terms of the

uncorrelated propagator
(0)
αβ ) is resummed through the

Dyson equation,

αβ
(0)
αβ

γ δ

(0)
αγ γ δ δβ

which is a nonlinear equation that iterates the irreducible

self-energy γ δ ). The effects of the medium on the particle

propagation are encoded in the self-energy with an organiza-

tion scheme, the algebraic diagrammatic construction (ADC),

in which the resummation of ring (particle-hole) and ladder

(particle-particle and hole-hole) diagrams is performed to all

orders [37 38].

The Lehmann representation of the polarization propagator

is

γ δ αβ

〉〈

〉〈

where labels the excited states of the In

the following, we will use the shorthand notation for the
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FIG. 1. Expansion of the polarization propagator ) at the

RPA level. Double fermionic lines denote the fully correlated prop-

agators (or OpRS ones) employed in the DRPA. The expansion

truncated at the first row would correspond to the Tamm-Dancoff

poles,

(9)

and the residues,

αβ (10)

These are, respectively, the energies and particle-hole matrix

elements between excited states of the A-nucleon system and

its ground state.

The polarization propagator is the solution of the Bethe-

Salpeter equation,

γ δ αβ γ δ αβ

ρνσ

γ δ,µ

ph
νσ νσ αβ (11)

where ) is the free polarization propagator, and the

ph irreducible interaction ph plays for the particle-hole

propagator a similar role as that of the self-energy in Eq. (

for the single-particle propagator.

The RPA to Eq. (11) results from approximating the ph

kernel to first order, i.e., by using only the bare interaction

vertex. In standard applications, the associated unperturbed

reference propagator is the Hartree-Fock one as required by

the Baym-Kadanoff self-consistency approach [39 40]. The

RPA can be extended by using the fully correlated single-

particle propagator instead of the Hartree-Fock one, yielding

the DRPA discussed in the next section.

A. Dressed RPA and reduced propagator

The basic idea of the DRPA is to take into account

the fragmentation of the fully correlated propagators in the

construction of the free polarization propagator, ), as

depicted in Fig. . The DRPA equation can be cast in the usual

matrix form,

A B
)(

(12)

with the RPA eigenvectors related to the polarization ampli-

tudes in the following way:

nk

αβγ δ

αγβδ δγ (13)

nk

αβγ δ

αγβδ δγ (14)

The submatrices and in Eq. (12) are

αβγ δ

αγβδ (15)

αβγ δ

αγβδ (16)

A study of the 16O excitation energy spectrum in Ref. [41

has shown that the main effects of the fragmentation of the

propagator are the screening of the nuclear interaction, with

low-lying states pushed at higher energies, and a redistribution

of the strength among ph and 2 phonons considered

therein.

Note that the reference single-particle propagator for the

construction of the DRPA matrices, Eqs. (15) and (16), should

be the fully correlated propagator. However, the use of dressed

propagators increases significantly the requirement in com-

puting resources: The propagator for a typical medium-mass

nucleus within a harmonic oscillator model space of 14 major

shells contains more than 10 poles, which would lead to ph

matrices in Eq. (12) which are dense and have dimensions of

the order of 1010. To overcome this limitation, an effective

way to include the correlations of the fully dressed propagator

was introduced in Ref. [42], with the concept of the optimized

reference state (OpRS) propagator, which we employ as the

reference of our (D)RPA computations. As explained below,

the OpRS propagator includes the relevant many-body corre-

lations while keeping manageable the computational task at

hand. Thus, it is adopted as the optimal choice for the refer-

ence propagator. The effective OpRS one-body propagator,

g
OpRS

αβ (ω) =

∑

n 6∈F

(

ψn
α

)∗
ψn

β

ω − ε
OpRS
n + iη

+

∑

k∈F

ψk
α

(

ψk
β

)∗

ω − ε
OpRS

k
− iη

,

(17)

is obtained by mapping the fully correlated propagator to a

simpler one that has a reduced number of poles, for instance,

one with the same number of poles as the independent particle

model (or mean-field) propagator. The effects of the correla-

tions are embedded in the OpRS propagator by requiring that

the set of single-particle energies and amplitudes reproduces

the first 2 moments of the poles of αβ ),

αβ (18)
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

M
p,OpRS

αβ = M
p

αβ , p = 0, 1, 2, . . . , 2κ − 1, (19)

with integer 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 . (Left) Non-

interacting 1 terms that contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

Both Eqs. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)

−−−

FRANCESCO RAIMONDI AND CARLO BARBIERI PHYSICAL REVIEW C 99, 054327 (2019)

with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

OpRS

αβ αβ , . . . , (19)

with integer κ > 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 Non-

interacting 1 contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

Both Eqs. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

OpRS

αβ αβ = 0, , . . . , (19)

with integer 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 . (Left) Non-

interacting 1 t contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

Both Eqs. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)
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FIG. 1. Expansion of the polarization propagator ) at the

RPA level. Double fermionic lines denote the fully correlated prop-

agators (or OpRS ones) employed in the DRPA. The expansion

truncated at the first row would correspond to the Tamm-Dancoff

approximation (TDA).

poles,

(9)

and the residues,

αβ (10)

These are, respectively, the energies and particle-hole matrix

elements between excited states of the A-nucleon system and

its ground state.

The polarization propagator is the solution of the Bethe-

Salpeter equation,

γ δ αβ γ δ αβ

ρνσ

γ δ,µ

ph
νσ νσ αβ (11)

where ) is the free polarization propagator, and the

ph irreducible interaction ph plays for the particle-hole

propagator a similar role as that of the self-energy in Eq. (

for the single-particle propagator.

The RPA to Eq. (11) results from approximating the ph

kernel to first order, i.e., by using only the bare interaction

vertex. In standard applications, the associated unperturbed

reference propagator is the Hartree-Fock one as required by

the Baym-Kadanoff self-consistency approach [39 40]. The

RPA can be extended by using the fully correlated single-

particle propagator instead of the Hartree-Fock one, yielding

the DRPA discussed in the next section.

A. Dressed RPA and reduced propagator

The basic idea of the DRPA is to take into account

the fragmentation of the fully correlated propagators in the

construction of the free polarization propagator, ), as

depicted in Fig. . The DRPA equation can be cast in the usual

matrix form,

A B
)(

(12)

with the RPA eigenvectors related to the polarization ampli-

tudes in the following way:

nk

αβγ δ

αγβδ δγ (13)

nk

αβγ δ

αγβδ δγ (14)

The submatrices and in Eq. (12) are

αβγ δ

αγβδ (15)

αβγ δ

αγβδ (16)

A study of the 16O excitation energy spectrum in Ref. [41

has shown that the main effects of the fragmentation of the

propagator are the screening of the nuclear interaction, with

low-lying states pushed at higher energies, and a redistribution

of the strength among ph and 2 phonons considered

therein.

Note that the reference single-particle propagator for the

construction of the DRPA matrices, Eqs. (15) and (16), should

be the fully correlated propagator. However, the use of dressed

propagators increases significantly the requirement in com-

puting resources: The propagator for a typical medium-mass

nucleus within a harmonic oscillator model space of 14 major

shells contains more than 10 poles, which would lead to ph

matrices in Eq. (12) which are dense and have dimensions of

the order of 1010. To overcome this limitation, an effective

way to include the correlations of the fully dressed propagator

was introduced in Ref. [42], with the concept of the optimized

reference state (OpRS) propagator, which we employ as the

reference of our (D)RPA computations. As explained below,

the OpRS propagator includes the relevant many-body corre-

lations while keeping manageable the computational task at

hand. Thus, it is adopted as the optimal choice for the refer-

ence propagator. The effective OpRS one-body propagator,

OpRS

αβ OpRS OpRS

(17)

is obtained by mapping the fully correlated propagator to a

simpler one that has a reduced number of poles, for instance,

one with the same number of poles as the independent particle

model (or mean-field) propagator. The effects of the correla-

tions are embedded in the OpRS propagator by requiring that

the set of single-particle energies and amplitudes reproduces

the first 2 moments of the poles of αβ ),

M
p

αβ =

∑

n

(

X n
α

)∗
X n

β

[EF − ε+
n ]p

+

∑

k

Yk
α

(

Yk
β

)∗

[EF − ε−
k

]p
(18)

"+%)%(03*#+2#0)0$2+b*

"#?4*0##+2H%&0$%2(b*

R(@*/$+0$,)Lb*)+2B#*#0+$%.3,*.87*;23,*@%/$+%eB$%2(/*$2),$;,+b



The self-consistency loop (approximated)

574 C. Barbieri and A. Carbone

that the poles of the Green’s function, and

are one-nucleon addition and removal energies, respectively. Note that these are

generically referred to in the literature as “separation” or “quasiparticle” energies

although the first naming should normally refer to transitions involving only

)-nucleon ground states. We will use the second convention in the following,

unless the two naming are strictly equivalent. In the last line of Eq. (11.2) we have

also introduced short notations for the spectroscopic amplitudes associated with the

addition ( ) and the removal ( ) of a particle

to and from the initial ground state . We will use the Latin letter to label one-

particle excitations and to distinguish them from one-hole states that are indicated

by instead. This compact form will simplify deriving the working formalism in

the following sections.

The one-body Green’s function (11.2) is completely determined by solving the

Dyson equation:

g˛ˇ.!/
.0/

˛ˇ .!/ .0/.!/ ˙ .!/ ıˇ.!/ (11.3a)

.0/

˛ˇ .!/ .!/ ˙ .!/
.0/

ıˇ .!/ ; (11.3b)

where we have put in evidence that there exists two different conjugate forms

of this equation, corresponding to the first and second lines. In Eqs. (11.3), the

unperturbed propagator
.0/

˛ˇ .!/ is the initial reference state (usually a mean-field

or Hartree-Fock state), while ˛ˇ.!/ is called the correlated or dressed propagator.

The quantity .!/ is the irreducible self-energy and it is often referred to

as the mass operator. This operator plays a central role in the GF formalism

and can be interpreted as the non-local and energy-dependent potential that each

fermion feels due to the interactions with the medium. For frequencies ! > 0

the solution of Eqs. (11.3) yields a continuum spectrum with and the

state describes the elastic scattering of the additional nucleon off the

target. It can be shown that .!/ is an exact optical potential for scattering of a

particle from the many-body target [26 28]. The Dyson equation is nonlinear in its

solution, .!/, and thus it corresponds to an all-orders resummation of diagrams

involving the self-energy. The Feynman diagrams representations of both forms of

the Dyson equation are shown in Fig. 11.1. In both cases, by recursively substituting

the exact Green’s function (indicated by double lines) that appears on the right

hand side with the whole equation, one finds a unique expansion in terms of the

unperturbed .0/.!/ and the irreducible self-energy. The solution of Eqs. (11.3

is referred to as dressed propagators since it formally results by ‘dressing’ the

free particle (shown as a single line) by repeated interactions with the system

.!/).

A full knowledge of the self-energy .!/ [see Eqs. (11.3)] would yield the

exact solution for .!/ but in practice this has to be approximated somehow.

Standard perturbation theory, expands .!/ in a series of terms that depend on the
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approaches going beyond the simple summation of the ring

diagrams in the polarization propagator have been formulated:

extensions of the RPA with more complex excitation operators

17 19] also at finite temperature [20], the particle-vibration

coupling methods such as the nuclear field theory [21] and the

quasiparticle-phonon model [22], the time-dependent density-

functional description of the nuclear dynamics [23 24], and

the extended theory of finite Fermi systems [25].

The theoretical approaches starting from realistic nuclear

interactions, both conventional and based on chiral effective

field theories, are mainly focused to light nuclei, as reviewed

in Refs. [26 27]. Recently, the scope of the ab initio many-

body methods capable of describing the nuclear excited spec-

tra was extended to nuclei with mass number 16. In

particular, a series of applications was put forward within the

coupled cluster approach combined with the Lorentz integral

transform (CC-LIT) method, with the computation of the E1

response of several nuclei, from He to 48Ca [28 29].

Preliminary calculations of the isovector E1 response

and dipole polarizability have also been performed using

the self-consistent Green’s function (SCGF) approach

30]. Building on this first application, we present in this

work extensive calculations of the E1 response and related

quantities of medium-mass nuclei, within a formalism in

which the particle-hole propagator is treated at the RPA level.

Note that the SCGF formalism is based on expressing the

self-energy and particle-hole interaction kernels in terms of

skeleton diagrams and fully dressed propagator, rather than

mean-field reference states. The self-consistency requirement

is a useful feature because it is related to the dynamical

fulfillment of conservation laws, however, it is not achieved

by the dressed RPA (DRPA) many-body truncation used

in the present study. In this work, we exploit the accurate

saturation properties of a well-established chiral two-nucleon

(2N) plus three-nucleon (3N) interaction, NNLOsat 31]. This

chiral interaction is particularly suitable for the computation

of quantities related to the nuclear matter distribution and size

of the nuclei, because it contains carbon and oxygen radii in

the pool of fit observables, and reproduces accurately radii up

to the calcium isotopes [13 32].

Section II sets out a short review of the SCGF formalism

and the basic equations of the DRPA, with Sec. II B focused

on the isovector dipole nuclear response. After having dis-

cussed in Sec. III A the convergence of our calculations with

respect to the size and the features of the model space, we

present in the rest of Sec. III the results for the E1 photoab-

sorption cross sections and polarizabilites for several nuclei,
14O to 68Ni. For the closed-subshell nuclei considered

below, it is well established that the Dyson formulation of

SCGF provides accurate results even when the pairing effect

is not included explicitly [33 34]. Different choices of the

effective propagators for the DRPA are discussed in Sec. IV

Finally, we draw our conclusions in Sec.

II. SCGF FORMALISM AND E1 NUCLEAR RESPONSE

Within the SCGF formalism [35 37] the single-particle

and the polarization propagators are obtained as the

solution of the Dyson and Bethe-Salpeter equations, respec-

tively. The polarization propagator gives direct access to the

nuclear response of an external operator. Hence, it provides

the spectroscopic (overlap functions) and dynamic (energies)

information required to compute the nuclear isovector electric

dipole response we are interested in.

The spectral information is especially apparent in the

Lehmann representation of these propagators. Given the

many-body Schrödinger eigenvalue problem for the - and

1-nucleon systems,

1) 1) 1)

we consider for the propagation of a single nucleon in the

ground state , the one-body Green’s function,

αβ

〉〈

〉〈

where the poles give the excitation energies of the

system with respect to the ground-state energy

and the transition amplitudes for the addition and removal of

a nucleon are

The full expansion of the propagator ( ) in terms of the

uncorrelated propagator
(0)
αβ ) is resummed through the

Dyson equation,

αβ
(0)
αβ

γ δ

(0)
αγ γ δ δβ

which is a nonlinear equation that iterates the irreducible

self-energy γ δ ). The effects of the medium on the particle

propagation are encoded in the self-energy with an organiza-

tion scheme, the algebraic diagrammatic construction (ADC),

in which the resummation of ring (particle-hole) and ladder

(particle-particle and hole-hole) diagrams is performed to all

orders [37 38].

The Lehmann representation of the polarization propagator

is

5γ δ,αβ (ω) =
∑

nπ 6=0

〈

9A
0

∣

∣a
†
δaγ

∣

∣9A
nπ

〉〈

9A
nπ

∣

∣a†
αaβ

∣

∣9A
0

〉

h̄ω −
(

EA
nπ

− EA
0

)

+ iη

−
∑

nπ 6=0

〈

9A
0

∣

∣a†
αaβ

∣

∣9A
nπ

〉〈

9A
nπ

∣

∣a
†
δaγ

∣

∣9A
0

〉

h̄ω +
(

EA
nπ

− EA
0

)

− iη
, (8)

where labels the excited states of the In

the following, we will use the shorthand notation for the
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FIG. 1. Expansion of the polarization propagator ) at the

RPA level. Double fermionic lines denote the fully correlated prop-

agators (or OpRS ones) employed in the DRPA. The expansion

truncated at the first row would correspond to the Tamm-Dancoff

poles,

(9)

and the residues,

αβ (10)

These are, respectively, the energies and particle-hole matrix

elements between excited states of the A-nucleon system and

its ground state.

The polarization propagator is the solution of the Bethe-

Salpeter equation,

5γ δ,αβ (ω) = 5
f

γ δ,αβ (ω) +

∑

µρνσ

5
f

γ δ,µρ (ω)

× K (ph)
µρ,νσ (ω)5νσ,αβ (ω), (11)

where ) is the free polarization propagator, and the

ph irreducible interaction ph plays for the particle-hole

propagator a similar role as that of the self-energy in Eq. (

for the single-particle propagator.

The RPA to Eq. (11) results from approximating the ph

kernel to first order, i.e., by using only the bare interaction

vertex. In standard applications, the associated unperturbed

reference propagator is the Hartree-Fock one as required by

the Baym-Kadanoff self-consistency approach [39 40]. The

RPA can be extended by using the fully correlated single-

particle propagator instead of the Hartree-Fock one, yielding

the DRPA discussed in the next section.

A. Dressed RPA and reduced propagator

The basic idea of the DRPA is to take into account

the fragmentation of the fully correlated propagators in the

construction of the free polarization propagator, ), as

depicted in Fig. . The DRPA equation can be cast in the usual

A B
)(

(12)

with the RPA eigenvectors related to the polarization ampli-

tudes in the following way:

nk

αβγ δ

αγβδ δγ (13)

nk

αβγ δ

αγβδ δγ (14)

The submatrices and in Eq. (12) are

αβγ δ

αγβδ (15)

αβγ δ

αγβδ (16)

A study of the 16O excitation energy spectrum in Ref. [41

has shown that the main effects of the fragmentation of the

propagator are the screening of the nuclear interaction, with

low-lying states pushed at higher energies, and a redistribution

of the strength among ph and 2 phonons considered

therein.

Note that the reference single-particle propagator for the

construction of the DRPA matrices, Eqs. (15) and (16), should

be the fully correlated propagator. However, the use of dressed

propagators increases significantly the requirement in com-

puting resources: The propagator for a typical medium-mass

nucleus within a harmonic oscillator model space of 14 major

shells contains more than 10 poles, which would lead to ph

matrices in Eq. (12) which are dense and have dimensions of

the order of 1010. To overcome this limitation, an effective

way to include the correlations of the fully dressed propagator

was introduced in Ref. [42], with the concept of the optimized

reference state (OpRS) propagator, which we employ as the

reference of our (D)RPA computations. As explained below,

the OpRS propagator includes the relevant many-body corre-

lations while keeping manageable the computational task at

hand. Thus, it is adopted as the optimal choice for the refer-

ence propagator. The effective OpRS one-body propagator,

OpRS

αβ OpRS OpRS

(17)

is obtained by mapping the fully correlated propagator to a

simpler one that has a reduced number of poles, for instance,

one with the same number of poles as the independent particle

model (or mean-field) propagator. The effects of the correla-

tions are embedded in the OpRS propagator by requiring that

the set of single-particle energies and amplitudes reproduces

the first 2 moments of the poles of αβ ),

αβ (18)
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which is expressed in terms of the single-particle matrix

element of the isovector dipole operator and the particle-

hole spectroscopic amplitudes of Eq. (10). To obtain these

amplitudes, we have to solve for the polarization propagator

) in the DRPA discussed in Sec. II A. The corresponding

E1 nuclear response is given then by

R(E ) = −
1

π

∑

αβ

γ δ

〈γ |Q̂T =1
1m |δ〉∗ Im 5γ δ,αβ (E ) 〈α|Q̂T =1

1m |β〉

∑
(25)

In our discussions below, we will fold the response with a

Lorentzian of width to smooth the energy dependence,

(26)

III. RESULTS

To calculate the E1 response of a nuclear system to the

isovector dipole operator of Eq. (23), we proceed according

to the following steps:

(1) The correlated single-particle propagator for the nu-

cleus of interest is obtained from the Dyson Eq. ( ),

with the self-energy expanded up to ADC(3) in the

2N and 3N interactions, that is, by including nonper-

turbatively correlations extracted from all Feynman

diagrams topologies up third order (see Ref. [37 38

for details). The contributions from 3N forces are

included as 2N effective interaction, hence neglecting

interaction irreducible 3N terms [38 45].

(2) The reduction of the single-particle propagator de-

scribed in Sec. II A is performed and the corresponding

effective
OpRS

αβ ) is obtained.

(3) The quasihole and quasiparticle states of the OpRS

propagator are used to build the ph basis spanning

the RPA matrices, which are diagonalized to find the

solutions of the DRPA Eq. (12).

(4) The spectroscopic amplitudes obtained from the con-

vergent solution of the Bethe-Salpeter equation are

plugged into Eqs. (24)–(26) to compute the E1 re-

sponse.

The procedure outlined above was applied to calculate the

E1 photoabsorption cross section and dipole polarizability for

light and medium-mass nuclei, from 14O to 68Ni.

The microscopic Hamiltonian used to compute all the

E1 responses in this work is the chiral nuclear interaction

NNLOsat 31]. The matrix elements of this interaction are

computed in Jacobi coordinates and then transformed to a

harmonic oscillator (HO) laboratory frame by keeping all

matrix elements with 16, where

is the major oscillator quantum number of nucleon 46].

For our purposes, it is crucial that the spectra of light and

medium mass nuclei are computed with a saturating nuclear

Hamiltonian so that both binding energies and radii are repro-

duced correctly. Given the established correlation among the
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16

max=13, =3 MeV
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3. Integrated isovector E1 photoabsorption cross section of
16O as a function of the excitation energy E , computed from the

NNLOsat chiral Hamiltonian. The three curves correspond to ¯ 18

(solid line), 20 (dashed line), and 22 (dotted line) MeV, for max 13

and Lorentzian width

matter density distribution and the dipole response in nuclei

], the NNLOsat interaction is appropriate for the computa-

tion of the E1 response in a microscopic nuclear many-body

method.

Concerning the mapping of the fully correlated propagator

to the OpRS propagator explained in Sec. II A, we have

explored different choices in Sec. IV: The mean-field type
OpRS

MF ) corresponding to the moments of Eq. (18) for

and 1, and two
OpRS

) propagators for 1 or 3 with the

moments defined in Eq. (20).

A. Convergence with respect to the model space

the many-body truncation

In this section, we discuss the convergence of our calcu-

lations with respect to the size of the HO model space. We

explore different truncations in terms of the number of major

shells, max 1, and the HO frequency ¯ , considering 16O as

a test case. Convergence should also be gauged with respect

to the many-body truncation of the single-particle reference

propagator, OpRS ), by starting from the HF approximation

and moving to the ADC scheme at second and third order.

It should be clear that, throughout this work, the Bethe-

Salpeter equation (11) remains approximated to include only

explicit ph (RPA) configurations. We also discuss the impact

of different choices of the Lorentzian width used to fold the

dipole response in Eq. (26).

Figure shows the dependence of the photoabsorption

cross section of 16O on the HO frequency ¯ using a model

space truncated at max 13. The low-energy part of the

excitation spectrum up to the position of the giant dipole

resonance ( 23 5 MeV) is well converged: This is reflected in

the values of the dipole polarizability , displayed in Table

The latter quantity is an inverse energy weighted sum rule [see
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

OpRS

αβ αβ , . . . , (19)

with integer 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 . (Left) Non-

interacting 1 terms that contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

σ (E ) = 4π2αER(E ), (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

Both Eqs. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

OpRS

αβ αβ
, . . . , (19)

with integer 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator ) with 2 te configurations. (Left) Non-

interacting 1 terms that contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

αD = 2α

∫
dE

R(E )

E
(22)

which is the total E1 strength weighted with the inverse of the

energy.

. (21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)
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FIG. 1. Expansion of the polarization propagator ) at the

RPA level. Double fermionic lines denote the fully correlated prop-

agators (or OpRS ones) employed in the DRPA. The expansion

truncated at the first row would correspond to the Tamm-Dancoff

poles,

(9)

and the residues,

αβ (10)

These are, respectively, the energies and particle-hole matrix

elements between excited states of the A-nucleon system and

its ground state.

The polarization propagator is the solution of the Bethe-

Salpeter equation,

γ δ αβ γ δ αβ

ρνσ

γ δ,µ

ph
νσ νσ αβ (11)

where ) is the free polarization propagator, and the

ph irreducible interaction ph plays for the particle-hole

propagator a similar role as that of the self-energy in Eq. (

for the single-particle propagator.

The RPA to Eq. (11) results from approximating the ph

kernel to first order, i.e., by using only the bare interaction

vertex. In standard applications, the associated unperturbed

reference propagator is the Hartree-Fock one as required by

the Baym-Kadanoff self-consistency approach [39 40]. The

RPA can be extended by using the fully correlated single-

particle propagator instead of the Hartree-Fock one, yielding

the DRPA discussed in the next section.

A. Dressed RPA and reduced propagator

The basic idea of the DRPA is to take into account

the fragmentation of the fully correlated propagators in the

construction of the free polarization propagator, ), as

depicted in Fig. . The DRPA equation can be cast in the usual

A B
)(

(12)

with the RPA eigenvectors related to the polarization ampli-

tudes in the following way:

nk

αβγ δ

αγβδ δγ (13)

nk

αβγ δ

αγβδ δγ (14)

The submatrices and in Eq. (12) are

αβγ δ

αγβδ (15)

αβγ δ

αγβδ (16)

A study of the 16O excitation energy spectrum in Ref. [41

has shown that the main effects of the fragmentation of the

propagator are the screening of the nuclear interaction, with

low-lying states pushed at higher energies, and a redistribution

of the strength among ph and 2 phonons considered

therein.

Note that the reference single-particle propagator for the

construction of the DRPA matrices, Eqs. (15) and (16), should

be the fully correlated propagator. However, the use of dressed

propagators increases significantly the requirement in com-

puting resources: The propagator for a typical medium-mass

nucleus within a harmonic oscillator model space of 14 major

shells contains more than 10 poles, which would lead to ph

matrices in Eq. (12) which are dense and have dimensions of

the order of 1010. To overcome this limitation, an effective

way to include the correlations of the fully dressed propagator

was introduced in Ref. [42], with the concept of the optimized

reference state (OpRS) propagator, which we employ as the

reference of our (D)RPA computations. As explained below,

the OpRS propagator includes the relevant many-body corre-

lations while keeping manageable the computational task at

hand. Thus, it is adopted as the optimal choice for the refer-

ence propagator. The effective OpRS one-body propagator,

OpRS

αβ OpRS OpRS

(17)

is obtained by mapping the fully correlated propagator to a

simpler one that has a reduced number of poles, for instance,

one with the same number of poles as the independent particle

model (or mean-field) propagator. The effects of the correla-

tions are embedded in the OpRS propagator by requiring that

the set of single-particle energies and amplitudes reproduces

the first 2 moments of the poles of αβ ),

αβ (18)
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body

method. The reference g
OpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra

with Lorentzian widths Ŵ = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]

(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D.
68

Ni

The isovector dipole response in the neutron-rich 68Ni was

recently measured and the corresponding dipole polarizability

extracted by Rossi et al. 52]. The experimental data are

shown in Fig. and compared with the computed SCGF

curve. The few experimental points at 5 MeV and around

17 MeV excitation energies are interpreted as pygmy and

giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities of

Eq. (22) compared with those calculated with the CC-LIT method in

Refs. [28 29 50] and those extracted from the experimental spectra

of Refs. [47 51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm fm fm
48Ca 2.06 fm fm fm

for a comparison with the closest peaks in the computed

discrete RPA spectrum, which is also displayed in Fig. . In

particular, the computed strength at low energy is fragmented

in two principal peaks at 10.68 MeV and 10.92 MeV, located

at higher energy than the experimental PDR. For the GDR,

Table IV reports the centroid calculated from the DRPA

response around the main peak after the Lorentzian folding.

The computed by integrating the DRPA spectrum is

in agreement with the experiment, also reported in Table IV

The 3.88(31) fm value is obtained by including corrections

from a theoretical extrapolation of the low-energy and high-

energy parts of the spectrum [ ], which were not accessible

in the experiment of Rossi et al. 52]. Both the discrete peaks

and the convoluted response in Fig. confirm that the com-

puted spectrum is somehow shifted towards higher energy as

compared to the experimental excitation energies. The

strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum

could point to insufficient constraints on the isospin-violating
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FIG. 8. Same as Fig. but for 36 40 48 52 54 70Ca. Experimental data for 40Ca in (b) are from Ahrens et al. 47]; experimental data for 48Ca

in (c) are from Birkhan et al. 50] (green circles) and from Ahrens et al. 47] rescaled according to Ref. [50].

contact terms of the NNLOsat interaction, giving a too soft

symmetry energy. This is also found in calculations of the

infinite nucleonic matter within the microscopic Brueckner-

Hartree-Fock [53] and SCGF [54] approaches. However, the

limitations of the many-body truncation in the present RPA

scheme prevents us from drawing firm conclusions on the

interaction. The correlation between the slope of the symme-

try energy and the strength relative to the PDR in 68Ni was
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7. Isovector E1 photoabsorption cross sections of 14 16 22 24O computed with the NNLOsat interaction and the SCGF many-body

method. The reference
OpRS

MF ) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra

with Lorentzian widths 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. 47] (red squares) and from Ishkhanov et al. 49

(green circles); experimental data for 22O in (c) are from Leistenschneider et al. 48].

D.
68

Ni

The isovector dipole response in the neutron-rich 68Ni was

recently measured and the corresponding dipole polarizability

extracted by Rossi et al. 52]. The experimental data are

shown in Fig. and compared with the computed SCGF

curve. The few experimental points at 5 MeV and around

17 MeV excitation energies are interpreted as pygmy and

giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities of

Eq. (22) compared with those calculated with the CC-LIT method in

Refs. [28 29 50] and those extracted from the experimental spectra

of Refs. [47 51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm fm fm
48Ca 2.06 fm fm fm

for a comparison with the closest peaks in the computed

discrete RPA spectrum, which is also displayed in Fig. . In

particular, the computed strength at low energy is fragmented

in two principal peaks at 10.68 MeV and 10.92 MeV, located

at higher energy than the experimental PDR. For the GDR,

Table IV reports the centroid calculated from the DRPA

response around the main peak after the Lorentzian folding.

The computed by integrating the DRPA spectrum is

in agreement with the experiment, also reported in Table IV

The 3.88(31) fm value is obtained by including corrections

from a theoretical extrapolation of the low-energy and high-

energy parts of the spectrum [ ], which were not accessible

in the experiment of Rossi et al. 52]. Both the discrete peaks

and the convoluted response in Fig. confirm that the com-

puted spectrum is somehow shifted towards higher energy as

compared to the experimental excitation energies. The

strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum

could point to insufficient constraints on the isospin-violating
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9. Isovector dipole response for 68Ni computed using a
OpRS

MF ) reference from Dyson-ADC(3). The lower (upper) panel

ws the discrete (convoluted) spectrum obtained from DRPA. The

convolution uses a Lorentzian width 3.0 MeV. Experimental

data are from Rossi et al. 52].

verified by using different RPA phenomenological models

55]. When varying the truncation of the model space in our

simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,

and dipole polarizability in 68Ni from Rossi et al. 52], compared

with the SCGF method at ADC(3)-DRPA level

text for details).

PDR (MeV) 10.68 9.55(17)

10.92

GDR (MeV) 18.1 17.1(2)

(fm ) 3.60 3.40(23)

3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with

g̃
OpRS

p61 (ω). The computed DRPA spectrum is convoluted with a

Lorentzian width of Ŵ = 3.0 MeV. Experimental data are from

Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green

circles).

the polarizability of this nucleus is strongly correlated to its

radius.

IV. DIFFERENT REDUCTION OF THE

DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator

into a simpler OpRS one is not unique. Different definitions

of the constraining moments can be used, as in Eqs. (18) and

20). Moreover, propagators
OpRS

αβ ) with different numbers

of quasiparticle and quasihole poles are possible according to

the number of moments considered. In general, the strategy

of constraining the lower moments through Eq. (19) is very

effective and it works similarly to Krylov subspace projection

techniques to induce a fast convergence of the spectroscopic

response spectrum [56]. As a result, several fundamental

observables and physical quantities that are encoded in the

fully dressed propagator are retained already when a few

moments are conserved. Nevertheless, even with large-scale

computational technique it is normally possible to handle only

smallest OpRs propagators. It is therefore interesting to

investigate by how much this truncation affects the DRPA

computed quantities. Even more interesting is the need to

ascertain the effect of fragmentation, beyond the
OpRS

MF ): As

discussed in Sec. II A, the fragmented strength in the solution

of Eq. ( ) results from admixtures of 2 and 2 states.

These can couple in the DRPA equations to generate the redis-

tribution of strength at high energies without explicitly includ-

ing configurations beyond ph. While the above information is

washed out of a mean-field propagator, some fragmentation

is already present even in the lowest
OpRS

,...

) reference

propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-

cross section of 16O predicted from the mean-field type
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FIG. 11. Same as Fig. 10 but with g̃
OpRS

p63 (ω).

reference
OpRS

MF ), which is shown in Fig. 7(b), to the DRPA

responses resulting from
OpRS

) and
OpRS

), displayed,

vely, in Figs. 10 and 11. As expected, the denser

spectroscopic fragmentation results in an enhancement of

the large energy tail in the excitation spectra. This is better

in Fig. 12 where we collected the dipole strength

in 5-MeV bins for energies above the GDR. The strength for

the
OpRS

) and
OpRS

) becomes important in this energy

region compared to the effective propagator of the mean-field

type. Section II A also pointed out that the DRPA implies

missing diagrams and Pauli violations already among 2

intermediate states. This issue does not appear to have strong

implications in the high energy tail, where several particle and

hole fragments are mixed and distributed over a large energy

range. However, we find that the centroid energy of the GDR

changes notably when introducing more fragmentation. This

30 35 40 45 50 55 60

[MeV]

R
(E

)
[f

m
/M

e
V

]

OpRS
MF

OpRS

OpRS

E1 strength of 16O for 5-MeV energy bins

in the region of the spectrum above the GDR. The different shaded

areas correspond to the mean-field
OpRS

MF ) [shown in Fig. ], the
OpRS

) (Fig. 10) and the
OpRS

) (Fig. 11).

indicates that full DRPA is better reliable at large energies but

becomes unstable in the giant resonance region. To overcome

this limitation, one should implement an extension of the RPA

as in Ref. [41], where the polarization diagrams accounting

for the coupling with two-phonon contributions are explicitly

included.

Finally, we have found that the dipole polarizability

computed with the different OpRS propagators differ by less

than 5%.

V. CONCLUSIONS

The results discussed in Secs. III and IV show that the

SCGF formalism is capable of grasping the main features of

the E1 response for the computed nuclei. In particular, the

low-energy part of the excitation spectrum up to the GDR

is very well reproduced for 16 22O and 40 48Ca, and compares

dipole polarizability values, which involve an

integration over the whole experimental spectrum. For the
68Ni, the energies of both PDR and GDR are slightly overesti-

mated, and we compute a lower strength than the experiment,

especially in the PDR.

Despite the fact that the employed ph-RPA for the two-

body propagator is quite rudimentary, the agreement with

the experimental data is comparable to the findings of the

higher many-body truncation such as from Ref. [29]. This

fact should be substantiated by a thorough assessment of

SCGF theoretical errors, for which we still miss—at this

stage—direct information regarding many-body truncations

beyond the explicit ph intermediate states. Nonetheless, the

results confirm the good saturation properties of the NNLOsat

interaction as the crucial mechanism at play in the dipole

response, while the missing PDR strength in 68Ni could be

a hint that the isospin dependence of the interaction is not suf-

ficiently constrained [53]. In general, we can conclude that the

present DRPA to the Bethe-Salpeter equation performs fairly

well for the observables related to the E1 response, where

the nuclear correlations included in higher-order diagrams

of the polarization propagator could be not so significant.

However, the treatment of the polarization propagator beyond

the RPA is expected to be important for higher multipolarities

of the electromagnetic response and for the weak processes,

requiring an extension of the present implementation.

The procedure for reducing the fully correlated single-

particle propagator to a simpler reference state (referred to as

OpRS) was tested, and we have concluded that the integrated

spectrum has a mild dependence, with a 5% difference in

the dipole polarizability values for different choices of the
OpRS ). On the contrary, the dependence of the GDR cen-

troid and of the response profile in the higher-energy part

of the spectrum points to the limitations of the DRPA, in

particular to the incomplete description of interactions among

and 3 intermediate state configurations.

The isotopes studied so far are closed-subshell nuclei,

because the present implementation for the computation of

the E1 response is limited to the particle-number conserving

version of the SCGF approach. To compute the E1 response

for open-shell nuclei, an extension of the Gorkov formalism

57] to include the two-body propagator is required. The first
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with being the Fermi energy. This means that OpRS and

are chosen to fulfill the relations,

OpRS

αβ αβ , . . . , (19)

with integer 1.

When the moments of Eq. (18) are retained only up to

0 and 1, one obtains an effective OpRS propagator with

the same number of poles as the mean-field propagator, corre-

sponding to the single-particle occupancy of the lowest con-

figuration in the independent particle picture. This effective

propagator is denoted as
OpRS

MF ). This is of course the most

crude approximation of the dressed propagator: including

higher moments, i.e., for 1, allows for the fragmentation

of the single-particle strength. The fragmentation becomes

denser as higher moments are retained and the propagator

eventually approaches the fully correlated one.

A feature of Eq. (18) is that both particle and hole spectral

distributions are mixed together in the same moments. The

denominator gives more weight in the sum to those poles

closed to , hence reproducing at best the correlation effects

near the Fermi energy. Alternatively, one can consider sepa-

rate moments for the particle and hole distributions using the

following definitions:

αβ

αβ
(20)

for , . . ., which yield an OpRS propagator, denoted

in the following as
OpRS

,.... Equation (20) leads to a larger

number of poles in
OpRS

) as compared to Eq. (18) but they

constrain the particle and hole strengths separately, hereby

ensuring that the density profile, total particle number, one-

body expectation values, and the energy Koltun sum rule of

the original propagator are reproduced exactly already for

1.

It is important to remark that the
OpRS

αβ
) propagator,

according to the order of the moments included in the

reduction procedure, contains effectively 2 intermediate

state configurations originating from the ADC treatment of

the self-energy in the Dyson equation. More specifically,

the ADC is implemented by resumming at infinite order the

self-energy diagram topologies at third order, yielding the

ADC(3) scheme [38]. For this reason, each particle-hole pair

of fermionic lines in the free polarization propagator

can contain in turn 1 , 1 , and 2

intermediate configurations, but in the form of two non-

interacting sets of fermionic lines. For instance, both the

diagrams in Fig. represent the propagation of a ph pair

that includes virtual 2 intermediate state configurations,

but only the diagram on the left implicitly contributes to

the DRPA because it is composed by a 2 self-energy

noninteracting with the corresponding hole line. The diagram

on the right side depicts a particle-hole interaction mediated

by a phonon (a bubble). These bubble diagrams are required

to achieve a complete description of 2 configurations

17 43 44], however, they are not included at the DRPA level.

FIG. 2. Example of diagrams contributing to the ph polarization

propagator 5(ω) with 2p2h intermediate configurations. (Left) Non-

interacting 1h + 2p1h terms that contribute to DRPA through the

dressing of the reference propagator. (Right) Interaction among the

ph pair mediated by a phonon exchange.

The importance of these terms is also understood by noting

that the DRPA could be seen as a hybrid approach because

it improves the description of the single-nucleon dynamics

by accounting for the fragmentation of its spectral functions,

but it continues to approximate the interaction kernel ph

at first order. This breaks self-consistency according to the

Baym-Kadanoff approach [39 40] so that the fulfillment of

fundamental conservation laws is no longer guaranteed. Im-

proving the kernel accordingly, for the ADC(3) polarization,

would require a very large number of additional diagrams

that also include the bubble exchange of Fig. and other

similar terms. These improvements will be the object of future

work. In the present work we will mostly investigate unto

which point the fragmentation introduced by DRPA allows

one to improve the response at large energies, above the giant

resonance region.

B. Isovector dipole nuclear response

The observables of interest for our purposes are the in-

tegrated photoabsorption and Coulomb excitation cross sec-

tions, which are computed as

ER (21)

and the dipole polarizability,

dE (22)

which is the total E1 strength weighted with the inverse of the

energy.

21) and (22) include the fine-structure constant

, and depend on the response ) of a nucleus of protons

and neutrons to an isovector dipole electromagnetic field,

with 1 quantum numbers,

(23)

which is corrected for the center-of-mass displacement, and

uses the elementary charge 1. The nuclear response con-

tains the matrix element of the field of Eq. (23) with respect

to the correlated excited and ground states,

αβ

αβ (24)

F=%+,.$*#23,/I*"#?4CAhPOTE
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state, and ) is the creation annihilation rator of a

particle in the state . For a clearer discussion of the formal-

ism employed in this work, it is useful to first give a descrip-

tion of the relevant contributions in terms of Feynman dia-

ms.

A. Diagrammatic contributions

The exact gator is a solution of the Bethe-

Salpeter equation, depicted in Fig. 2 . This equation

can be written schematically as

where represents the free propagation of a quasiparticle

and a quasihole in the nuclear medium and the kernel

is, in general, a four-time quantity. According to the

Baym-Kadanoff procedure, a solution for is obtained by

first generating a self-consistent solution of the sp propagator

using a given choice of the self-energy. From the functional

derivative of this self-consistent self-energy with respect to

the corresponding sp propagator, one then obtains the irre-

ible interaction that generates the correspond-

ing conserving approximation for the gator when

used in the Bethe-Salpeter equation . The standard RPA ap-

ch is derived by applying this procedure to the Hartree-

Fock HF sp propagator and self-energy. This corresponds

to approximating with the bare interaction and em-

ploying bare HF sp propagators as external lines. Equation

then generates the RPA series of ring diagrams shown in

Fig. 3.

The extension of the RPA formalism, proposed and imple-

mented by Brand et al. , was suggested by the ob-

served fragmentation of the sp strength and the necessity to

go beyond a lowest-order self-energy for a commensurate

theoretical description. There, the Baym-Kadanoff procedure

is applied to a second-order approximation for the self-

energy. This yields contributions to the kernel , which

automatically include all the terms which couple the

states to the 2 -2 s, in accordance with the Pauli prin-

ciple for the latter states. Thus, this formalism takes into

account the mixing with 2 -2 configurations in the con-

struction of the gator the diagram of Fig. 4

gives an example . In the work of Brand et al. y a single-

e approximation to the self-consistent propagators was

employed. It is the aim of the present work to take the effects

of the sp fragmentation more completely into account, and

therefore a fully dressed sp propagator must be used. The

employed in the present work was obtained in Ref.

by means of a Faddeev expansion for the nuclear self-energy.

When one applies the Baym-Kadanoff prescription to the

latter self-energy, a large set of contributions to is

generated 38 . According to Ref. 27 , one may expect that

the most important of these terms involve the couplings to

two as depicted in Fig. 1. It is not difficult to

see that different diagrams, similar to those in Fig. 1, can be

ained through Pauli exchange of the phonon’s external

lines. In total, there are 16 such possible contributions, cor-

responding to all the possibilities of connecting two

to a state by means of a single interaction, both

in the upper and lower part of the diagram. It is this approxi-

mation to the irreducible interaction that will be pursued in

the present work.

An additional ingredient entering the 2 -2 extended

RPA ERPA of Refs. requires further discussion.

This involves diagrams similar to the one in Fig. 4 , which

Π
(ph)

(ph)

K

= +Π
(ph)

FIG. 2. Bethe-Salpeter equation for the arization propa-

gator. No specific time direction has to be assumed for these dia-

ms.
FIG. 3. Diagrammatic expansion of the standard RPA equation.

An explicit time direction is assumed for the diagrams of this figure.

outin
outin

in

a)
b) c)

FIG. 4. Example of direct and time inversion diagrams

that appear in the standard ERPA expansion. Both diagrams and

come from the same four-time screening diagram. The last pic-

ture in part shows the corresponding two-phonon extension of

the time-inversion contribution. Note that the diagram generates

Pauli exchange corrections to the last diagram shown in Fig. 3.
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complicated, meeting the challenge of describing this system

will virtually guarantee good results when the same method

is applied to heavier nuclei.

Shell-model calculations for this nucleus have been re-

ed in Refs. 19–22 , which indicate the particular impor-

tance of four-particle–four-hole (4 -4 ) admixtures to the

-0 state in generating the first excited 0 state.

Other positive-parity states at low energy are dominated by

-2 components, as indirectly confirmed by inelastic elec-

tron scattering 23 . Some of this resulting physics was an-

ticipated in terms of deformation effects that simulate these

types of many-particle many-hole admixtures 24 . A

complementary point of view is given by the interacting bo-

son model of Refs. . There, the low-lying positive

parity states are understood in terms of the coupling of 3

and 1 isoscalar states. One should note that, due to the

inant 1 -1 nature of these excitations, the coupling

of different phonons generates the np nh configurations rel-

evant to this problem. In Refs. , the 3 and 1 states

were used as phenomenological boson degrees of freedom to

generate the spectrum of the nucleus. The connection with

the underlying fermionic description was indicated but not

explored completely. This relation was considered in Ref.

27 . There it was argued that the microscopic interac-

tion contains two-phonon exchange contributions that in-

clude the actually observed low-lying states of 16O them-

selves, thereby generating the correct number of low-lying

states observed at low excitation energy.

In this work we begin to implement the physical ingredi-

ents proposed in Refs. by extending the RPA to in-

clude the coupling to two-phonon states. The basic idea of

the present approach is illustrated in Fig. 1. This figure de-

picts the coupling of a state to two intermediate phonons

that are described by the gator itself. If the two

intermediate phonons have been computed using the RPA

equations, they will already provide a reasonable description

of the low-lying collective isoscalar 3 and 1 excited

states. These phonons can be sufficient to generate the quan-

tum numbers of the most important positive-parity states.

Particularly relevant is the coupling of two 3

, which represent some of the

correlated 2 -2 states of 16O. In the framework of SCGF,

employs dressed sp propagator in the construction of the

microscopic phonons. This results in a dressed RPA DRPA

approach for the calculation and in its extension to the

coupling to two-phonon states. In the present paper, we em-

ploy the self-consistent sp propagator of 16O computed in

Refs. . It should be noted that the incorporation of all

the 4 -4 effects in the present formalism requires a full

calculation. For this reason, a complete resolu-

tion in terms of a microscopic description of the spectrum

may only be partially successful.

We note that there has been tremendous progress in recent

years in the microscopic description of -shell nuclei using

the Green’s function Monte Carlo and no-core shell-model

methods 29–31 . A possible application of the no-core shell

model to 16O would properly include such 4 -4 effects.

However, the description of spectroscopic factors would still

require the construction of effective operators to include the

effects of short-range correlations on these quantities

whereas these are automatically included in the SCGF

method.

The paper is organized as follows. Section II introduces

the formalism to account for two-phonon coupling in the

calculation of the gator. The approach employed

here is based on a formalism first introduced by Baym and

Kadanoff for the description of response functions in a

many-body system at finite temperature 32–34 . This

mework provides a procedure to construct the effective

interaction of the Bethe-Salpeter equation that general-

izes the RPA approach. This method is described in Sec.

II A and the resulting equations in Sec. II B. More technical

details are left to the Appendix. Section III describes the

results for the spectrum within the current approximation

scheme. Section IV is devoted to a study of convergence

rties related to the number of two-phonon configura-

tions included, and the role of time-inversion diagrams. In

Sec. IV A we discuss the possible appearance of instabilities,

in particular for the 0 state, which was also observed in

Ref. . Conclusions are drawn in Sec. V.

II. EXTENSION OF THE RPA FORMALISM

In this work the central quantity of interest is the two-time

arization propagator, whose Lehmann 35 representation

is given by

ab
ab ba

In Eq. , the poles and residues contain the information on

the response and excitation energies of the system with

particles in terms of the quantities

ab

where and are the exact energies and eigenstates of

the rticle system, the subscript 0 refers to the ground

Π
(ph)

Π
(ph)

Π
(ph)

Π
(ph)

FIG. 1. Examples of contributions involving the coupling of two

independent . In total, there are 16 possible diagrams

of this type, obtained by considering all the possible couplings to a

state. The two-phonon ERPA equations sum all of these

contributions in terms of dressed sp propagators.
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state, and ) is the creation annihilation rator of a

particle in the state . For a clearer discussion of the formal-

ism employed in this work, it is useful to first give a descrip-

tion of the relevant contributions in terms of Feynman dia-

ms.

A. Diagrammatic contributions

The exact gator is a solution of the Bethe-

Salpeter equation, depicted in Fig. 2 . This equation

can be written schematically as

where represents the free propagation of a quasiparticle

and a quasihole in the nuclear medium and the kernel

is, in general, a four-time quantity. According to the

Baym-Kadanoff procedure, a solution for is obtained by

first generating a self-consistent solution of the sp propagator

using a given choice of the self-energy. From the functional

derivative of this self-consistent self-energy with respect to

the corresponding sp propagator, one then obtains the irre-

ible interaction that generates the correspond-

ing conserving approximation for the gator when

used in the Bethe-Salpeter equation . The standard RPA ap-

ch is derived by applying this procedure to the Hartree-

Fock HF sp propagator and self-energy. This corresponds

to approximating with the bare interaction and em-

ploying bare HF sp propagators as external lines. Equation

then generates the RPA series of ring diagrams shown in

Fig. 3.

The extension of the RPA formalism, proposed and imple-

mented by Brand et al. , was suggested by the ob-

served fragmentation of the sp strength and the necessity to

go beyond a lowest-order self-energy for a commensurate

theoretical description. There, the Baym-Kadanoff procedure

is applied to a second-order approximation for the self-

energy. This yields contributions to the kernel , which

automatically include all the terms which couple the

states to the 2 -2 s, in accordance with the Pauli prin-

ciple for the latter states. Thus, this formalism takes into

account the mixing with 2 -2 configurations in the con-

struction of the gator the diagram of Fig. 4

gives an example . In the work of Brand et al. y a single-

e approximation to the self-consistent propagators was

employed. It is the aim of the present work to take the effects

of the sp fragmentation more completely into account, and

therefore a fully dressed sp propagator must be used. The

employed in the present work was obtained in Ref.

by means of a Faddeev expansion for the nuclear self-energy.

When one applies the Baym-Kadanoff prescription to the

latter self-energy, a large set of contributions to is

generated 38 . According to Ref. 27 , one may expect that

the most important of these terms involve the couplings to

two as depicted in Fig. 1. It is not difficult to

see that different diagrams, similar to those in Fig. 1, can be

ained through Pauli exchange of the phonon’s external

lines. In total, there are 16 such possible contributions, cor-

responding to all the possibilities of connecting two

to a state by means of a single interaction, both

in the upper and lower part of the diagram. It is this approxi-

mation to the irreducible interaction that will be pursued in

the present work.

An additional ingredient entering the 2 -2 extended

RPA ERPA of Refs. requires further discussion.

This involves diagrams similar to the one in Fig. 4 , which

FIG. 2. Bethe-Salpeter equation for the arization propa-

gator. No specific time direction has to be assumed for these dia-

ms.
FIG. 3. Diagrammatic expansion of the standard RPA equation.

An explicit time direction is assumed for the diagrams of this figure.

Π
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Π
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FIG. 4. Example of direct and time inversion diagrams

that appear in the standard ERPA expansion. Both diagrams and

come from the same four-time screening diagram. The last pic-

ture in part shows the corresponding two-phonon extension of

the time-inversion contribution. Note that the diagram generates

Pauli exchange corrections to the last diagram shown in Fig. 3.
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FIG. 1. Expansion of the polarization propagator ) at the

RPA level. Double fermionic lines denote the fully correlated prop-

agators (or OpRS ones) employed in the DRPA. The expansion

truncated at the first row would correspond to the Tamm-Dancoff

poles,

(9)

and the residues,

αβ (10)

These are, respectively, the energies and particle-hole matrix

elements between excited states of the A-nucleon system and

its ground state.

The polarization propagator is the solution of the Bethe-

Salpeter equation,

5γ δ,αβ (ω) = 5
f

γ δ,αβ (ω) +

∑

µρνσ

5
f

γ δ,µρ (ω)

× K (ph)
µρ,νσ (ω)5νσ,αβ (ω), (11)

where ) is the free polarization propagator, and the

ph irreducible interaction ph plays for the particle-hole

propagator a similar role as that of the self-energy in Eq. (

for the single-particle propagator.

The RPA to Eq. (11) results from approximating the ph

kernel to first order, i.e., by using only the bare interaction

vertex. In standard applications, the associated unperturbed

reference propagator is the Hartree-Fock one as required by

the Baym-Kadanoff self-consistency approach [39 40]. The

RPA can be extended by using the fully correlated single-

particle propagator instead of the Hartree-Fock one, yielding

the DRPA discussed in the next section.

A. Dressed RPA and reduced propagator

The basic idea of the DRPA is to take into account

the fragmentation of the fully correlated propagators in the

construction of the free polarization propagator, ), as

depicted in Fig. . The DRPA equation can be cast in the usual

matrix form,

A B
)(

(12)

with the RPA eigenvectors related to the polarization ampli-

tudes in the following way:

nk

αβγ δ

αγβδ δγ (13)

nk

αβγ δ

αγβδ δγ (14)

The submatrices and in Eq. (12) are

αβγ δ

αγβδ (15)

αβγ δ

αγβδ (16)

A study of the 16O excitation energy spectrum in Ref. [41

has shown that the main effects of the fragmentation of the

propagator are the screening of the nuclear interaction, with

low-lying states pushed at higher energies, and a redistribution

of the strength among ph and 2 phonons considered

therein.

Note that the reference single-particle propagator for the

construction of the DRPA matrices, Eqs. (15) and (16), should

be the fully correlated propagator. However, the use of dressed

propagators increases significantly the requirement in com-

puting resources: The propagator for a typical medium-mass

nucleus within a harmonic oscillator model space of 14 major

shells contains more than 10 poles, which would lead to ph

matrices in Eq. (12) which are dense and have dimensions of

the order of 1010. To overcome this limitation, an effective

way to include the correlations of the fully dressed propagator

was introduced in Ref. [42], with the concept of the optimized

reference state (OpRS) propagator, which we employ as the

reference of our (D)RPA computations. As explained below,

the OpRS propagator includes the relevant many-body corre-

lations while keeping manageable the computational task at

hand. Thus, it is adopted as the optimal choice for the refer-

ence propagator. The effective OpRS one-body propagator,

OpRS

αβ OpRS OpRS

(17)

is obtained by mapping the fully correlated propagator to a

simpler one that has a reduced number of poles, for instance,

one with the same number of poles as the independent particle

model (or mean-field) propagator. The effects of the correla-

tions are embedded in the OpRS propagator by requiring that

the set of single-particle energies and amplitudes reproduces

the first 2 moments of the poles of αβ ),

αβ (18)

are obtained from the 2 -2 contribution by inverting the

sense of propagation of either the incoming or the outgoing

pair. These diagrams involve higher excitations at least

-3 , when combined in the expansion of Fig. 3 and are

expected to give rather small contributions. Nevertheless,

they represent corrections to the terms of the interac-

tions, which control the RPA correlations, and they also add

Pauli corrections to the RPA expansion of Fig. 3 at the

-3 level. In Ref. 16 it was found that they play a role in

stabilizing some particular solutions.

The present calculation includes both the direct two-

contributions of the type depicted in Fig. 1 and the

diagrams similar to the one in Fig. 4 . Obviously, all the

-2 ERPA contributions are incorporated in this approach.

Moreover, full two-phonon configurations are accouned for,

and a SCGF approach is applied. Thus, the present formal-

ism is an extension of and goes well beyond the calcula-

tions of Refs. . However, to avoid complica-

tions in the notation, we will still refer to it as ‘‘extended

RPA,’’ or as ‘‘two-phonon ERPA’’ whenever confusion may

arise.

The Baym-Kadanoff procedure also generates other two-

contributions, for example, those coupling a and

These could be mixed with the presently con-

sidered configurations by means of an all-order expansion of

the Faddeev-Yakubovsky type. Given our present knowl-

edge, such a massive resummation of diagrams does not ap-

pear to be relevant for the understanding of the spectrum of
16O. Such a study is, in any case, beyond the scope of the

sent paper.

B. Two-phonon contributions to the propagator

The usual DRPA equations are obtained from Eq. by

choosing ab bg , as mentioned above, and by

keeping dressed propagators as external lines. In this way,

is left with only two-time quantities and, after Fourier

transformation, the DRPA equation becomes

ab ab

ab rn ns

where all the indices and summations are shown explicitly.

In Eq. , the free arization propagator ) is also a

two-time quantity, with the following Lehmann representa-

tion:

ab

where ) are the

spectroscopic amplitudes for the excited states of a system

with 1 ( 1) particles and the associated poles

) correspond to the excitation en-

ergies with respect to the state. The indices

and label the eigenstates of the systems with 1 particles

and enumerate the fragments associated with the one-particle

and one-hole excitations, respectively. When a dressed

gator is used as input, its one-body overlap functions

and quasiparticle energies already contain information about

the coupling of sp motion to 2 -1 , 2 -1 , and more com-

plex configurations. As a consequence, contributions beyond

the 1 -1 case are already included in ).

Methods based on an RPA-like expansion produce an in-

finite series of diagrams in which the direction of propaga-

tion can be reversed from backward to forward and vice

versa. In the case of standard RPA, the interaction kernel

is simply given the potential and it is the same for every

contribution to the diagrammatic expansion. Therefore the

usual RPA equation can be written in compact form, as in

Eq. . This is no longer true when one aims to include

additional contributions, and at the same time insists on

working with two-time quantities. The two-phonon diagrams

of Figs. 1 and 4 have different analytical expressions. As a

consequence, one first needs to separate all the four possible

time directions of the kernel ard to forward,

backward to backward, and the two time-inversion cases—

before including the relevant diagrams in the Bethe-Salpeter

equation . This can be achieved by splitting the free

gator into its forward- and backward-going parts,

denoted by and , respectively,

P f~v !→P f.~v !1P f,~v !.

By performing this substitution in Eq. , one obtains a

similar separation for the complete gator,

where and refer to the sense of propagation of the

final lines only. Suppressing the indices and summations, one

ains

The last step consists in substituting Eq. into Eq. and

approximating each component of the kernel with

the sum of the bare interaction and the corresponding two-

contributions. The result corresponds to the ERPA

equations given by

In Eq. ) represents the contribution of all the 16

two-phonon diagrams, Fig. 1, in the forward direction.

) corresponds to the contributions connecting the
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are obtained from the 2 -2 contribution by inverting the

sense of propagation of either the incoming or the outgoing
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expected to give rather small contributions. Nevertheless,

they represent corrections to the terms of the interac-

tions, which control the RPA correlations, and they also add

Pauli corrections to the RPA expansion of Fig. 3 at the

-3 level. In Ref. 16 it was found that they play a role in

stabilizing some particular solutions.

The present calculation includes both the direct two-

contributions of the type depicted in Fig. 1 and the

diagrams similar to the one in Fig. 4 . Obviously, all the

-2 ERPA contributions are incorporated in this approach.

Moreover, full two-phonon configurations are accouned for,

and a SCGF approach is applied. Thus, the present formal-

ism is an extension of and goes well beyond the calcula-

tions of Refs. . However, to avoid complica-

tions in the notation, we will still refer to it as ‘‘extended

RPA,’’ or as ‘‘two-phonon ERPA’’ whenever confusion may

arise.

The Baym-Kadanoff procedure also generates other two-

contributions, for example, those coupling a and

These could be mixed with the presently con-

sidered configurations by means of an all-order expansion of

the Faddeev-Yakubovsky type. Given our present knowl-

edge, such a massive resummation of diagrams does not ap-

pear to be relevant for the understanding of the spectrum of
16O. Such a study is, in any case, beyond the scope of the

sent paper.

B. Two-phonon contributions to the propagator

The usual DRPA equations are obtained from Eq. by

choosing ab bg , as mentioned above, and by

keeping dressed propagators as external lines. In this way,

is left with only two-time quantities and, after Fourier

transformation, the DRPA equation becomes

ab ab

ab rn ns

where all the indices and summations are shown explicitly.

In Eq. , the free arization propagator ) is also a

two-time quantity, with the following Lehmann representa-

tion:

ab

where ) are the

spectroscopic amplitudes for the excited states of a system

with 1 ( 1) particles and the associated poles

) correspond to the excitation en-

ergies with respect to the state. The indices

and label the eigenstates of the systems with 1 particles

and enumerate the fragments associated with the one-particle

and one-hole excitations, respectively. When a dressed

gator is used as input, its one-body overlap functions

and quasiparticle energies already contain information about

the coupling of sp motion to 2 -1 , 2 -1 , and more com-

plex configurations. As a consequence, contributions beyond

the 1 -1 case are already included in ).

Methods based on an RPA-like expansion produce an in-

finite series of diagrams in which the direction of propaga-

tion can be reversed from backward to forward and vice

versa. In the case of standard RPA, the interaction kernel

is simply given the potential and it is the same for every

contribution to the diagrammatic expansion. Therefore the

usual RPA equation can be written in compact form, as in

Eq. . This is no longer true when one aims to include

additional contributions, and at the same time insists on

working with two-time quantities. The two-phonon diagrams

of Figs. 1 and 4 have different analytical expressions. As a

consequence, one first needs to separate all the four possible

time directions of the kernel ard to forward,

backward to backward, and the two time-inversion cases—

before including the relevant diagrams in the Bethe-Salpeter

equation . This can be achieved by splitting the free

gator into its forward- and backward-going parts,

denoted by and , respectively,

By performing this substitution in Eq. , one obtains a

similar separation for the complete gator,

P~v !→P.~v !1P,~v !,

where and refer to the sense of propagation of the

final lines only. Suppressing the indices and summations, one

ains

The last step consists in substituting Eq. into Eq. and

approximating each component of the kernel with

the sum of the bare interaction and the corresponding two-

contributions. The result corresponds to the ERPA

equations given by

In Eq. ) represents the contribution of all the 16

two-phonon diagrams, Fig. 1, in the forward direction.

) corresponds to the contributions connecting the
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are obtained from the 2 -2 contribution by inverting the

sense of propagation of either the incoming or the outgoing

pair. These diagrams involve higher excitations at least

-3 , when combined in the expansion of Fig. 3 and are

expected to give rather small contributions. Nevertheless,

they represent corrections to the terms of the interac-

tions, which control the RPA correlations, and they also add

Pauli corrections to the RPA expansion of Fig. 3 at the

-3 level. In Ref. 16 it was found that they play a role in

stabilizing some particular solutions.

The present calculation includes both the direct two-

contributions of the type depicted in Fig. 1 and the

diagrams similar to the one in Fig. 4 . Obviously, all the

-2 ERPA contributions are incorporated in this approach.

Moreover, full two-phonon configurations are accouned for,

and a SCGF approach is applied. Thus, the present formal-

ism is an extension of and goes well beyond the calcula-

tions of Refs. . However, to avoid complica-

tions in the notation, we will still refer to it as ‘‘extended

RPA,’’ or as ‘‘two-phonon ERPA’’ whenever confusion may

arise.

The Baym-Kadanoff procedure also generates other two-

contributions, for example, those coupling a and

These could be mixed with the presently con-

sidered configurations by means of an all-order expansion of

the Faddeev-Yakubovsky type. Given our present knowl-

edge, such a massive resummation of diagrams does not ap-

pear to be relevant for the understanding of the spectrum of
16O. Such a study is, in any case, beyond the scope of the

sent paper.

B. Two-phonon contributions to the propagator

The usual DRPA equations are obtained from Eq. by

choosing ab bg , as mentioned above, and by

keeping dressed propagators as external lines. In this way,

is left with only two-time quantities and, after Fourier

transformation, the DRPA equation becomes

ab ab

ab rn ns

where all the indices and summations are shown explicitly.

In Eq. , the free arization propagator ) is also a

two-time quantity, with the following Lehmann representa-

tion:

ab

where ) are the

spectroscopic amplitudes for the excited states of a system

with 1 ( 1) particles and the associated poles

) correspond to the excitation en-

ergies with respect to the state. The indices

and label the eigenstates of the systems with 1 particles

and enumerate the fragments associated with the one-particle

and one-hole excitations, respectively. When a dressed

gator is used as input, its one-body overlap functions

and quasiparticle energies already contain information about

the coupling of sp motion to 2 -1 , 2 -1 , and more com-

plex configurations. As a consequence, contributions beyond

the 1 -1 case are already included in ).

Methods based on an RPA-like expansion produce an in-

finite series of diagrams in which the direction of propaga-

tion can be reversed from backward to forward and vice

versa. In the case of standard RPA, the interaction kernel

is simply given the potential and it is the same for every

contribution to the diagrammatic expansion. Therefore the

usual RPA equation can be written in compact form, as in

Eq. . This is no longer true when one aims to include

additional contributions, and at the same time insists on

working with two-time quantities. The two-phonon diagrams

of Figs. 1 and 4 have different analytical expressions. As a

consequence, one first needs to separate all the four possible

time directions of the kernel ard to forward,

backward to backward, and the two time-inversion cases—

before including the relevant diagrams in the Bethe-Salpeter

equation . This can be achieved by splitting the free

gator into its forward- and backward-going parts,

denoted by and , respectively,

By performing this substitution in Eq. , one obtains a

similar separation for the complete gator,

where and refer to the sense of propagation of the

final lines only. Suppressing the indices and summations, one

ains

The last step consists in substituting Eq. into Eq. and

approximating each component of the kernel with

the sum of the bare interaction and the corresponding two-

contributions. The result corresponds to the ERPA

equations given by

P.~v !5P f.~v !1P f.~v !$@V1W.~v !#P.~v !

1~V1H. ,,!P,~v !%,

P,~v !5P f,~v !1P f,~v !$~V1H, ,.!P.~v !

1@V1W,~v !#P,~v !%.

In Eq. ) represents the contribution of all the 16

two-phonon diagrams, Fig. 1, in the forward direction.

) corresponds to the contributions connecting the
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(2)

where (1) and (1) represent the amplitudes that appear

in the standard RPA equations , and (2) and (2)

are the analogous two-phonon amplitudes introduced by the

ERPA approach. The components (1) and (1) are related to

and , respectively, by

(1) (1)

(1) (1) A10

Equations can be put in the form of a linear eigenvalue

equation,

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

A11

where the matrix is defined as

M5F
GV G†

1D GK.† G@V1H. ,,#~G*!†

K.G† E

2G*@V1H, ,.#G†
2G*V~G*!†2D G*K,†

K,~G*!† 2E

G . A12

The off-diagonal 2 2 blocks in Eq. A12 describe diagrams

in which the time direction of propagation is inverted. In the

sent case the only nonvanishing elements are the ones that

involve the inversion of a single state into a , or

vice versa. These correspond to the sum of the first-order

term , which represents the kernel of the bare RPA, and the

more complex diagrams of Fig. 4. Blank spaces would, in

nciple, allow to include more complicated contributions

that involve time inversion of two-phonon diagrams into

or configurations. These contributions are not expected

to play a relevant role for the present problem. It must be

ed that if the terms involving the matrix G K are dis-

carded in Eq. A12 , the components (1) and (1) decouple
(2) and (2). In this case, Eqs. reduce to the

–DRPA one and matrix A12 would take the form of

the standard RPAmatrix 47 . The normalization condition is

derived in the usual way, by extracting the contribution of

r zero of the expansion around a given pole and by em-

ploying the conjugate equation. One eventually obtains 16

1,2

)† )† 1, A13

where the inner product of the vectors and is im-

plied.

2. Matrix elements for ERPA

In the following, we give the explicit expression for the

matrix elements of Eq. A12 . The contributions originating

the standard RPA equation are here and below,

summations over repeated greek indices are understood

G V G bm

bm

V G bm

A14

G V bm

with the corresponding unperturbed energies,

diag A15

The interaction between two-phonon intermediate states

and the s is given by

@~ (1) (1)

(1) (1)

A16

where and are the quantum numbers of the two

that form the intermediate state. The quantities
(1) are the forward-going amplitudes of the intermediate

A9 or A10 and are obtained from the previous

solution of the polarization propagator. Note that is

symmetric under the exchange of the two indices and

as required by the boson character of the . The
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–DRPA one and matrix A12 would take the form of
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derived in the usual way, by extracting the contribution of

r zero of the expansion around a given pole and by em-

ploying the conjugate equation. One eventually obtains 16
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In the following, we give the explicit expression for the
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the standard RPA equation are here and below,
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and the s is given by
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where and are the quantum numbers of the two

that form the intermediate state. The quantities
(1) are the forward-going amplitudes of the intermediate

A9 or A10 and are obtained from the previous

solution of the polarization propagator. Note that is
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as required by the boson character of the . The
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contribution of and can, in principle, carry in-

ation on the Pauli breaking at the level of 3 -3 and

beyond. Therefore, they may become more important for the

case of three-phonon calculations. Nevertheless, Table III

suggests that they are not likely to play an important role in

the description of the spectrum of 16O.

C. Stability vs number of two-phonon configurations

Figure 7 shows the results for selected solutions of the

ERPA equations, obtained by employing different sets of

two-phonon states. For any given point, only those configu-

ration with energy cut have been included in the

calculation. For cut 70 MeV, about 700–1000 two-

contributions have been included, depending on the

channel. This is one order of magnitude larger than the num-

ber of states that enter the calculation. Since no two-

configuration has energy lower than 10 MeV, the

leftmost points in Fig. 7 correspond to the simple RPA

calculation. As the lowest few two-phonon contributions are

included, the solutions for these levels show a sudden jump

all the lowest excited states. After this, the results ob-

tained by using an IPM input still continue to exhibit a de-

pendence on the value of the cutoff, roughly lowering states

by 1 MeV every time that cut increases by 20 MeV. In

particular, the 0 and 3 solutions decrease progressively,

eventually heading to RPA instability. This confirms that the

values reported in Table I for these states do not correspond

to converged results. The situation is much better for the case

of a dressed input propagator, for which the low-lying solu-

tions are approximately stable for cut 20 MeV. This con-

firms that corresponding higher-energy two-phonon excita-

tions do not have strong influence as their effects have

already been included by the dressing of the sp motion.

In Fig. 7 we also show the results for the most relevant of

the 2 solutions that represent the resonance at about 20

MeV. Here the variation is more appreciable, in particular,

values of the cutoff cut comparable with the energy of

the state itself. Also, here a more stable behavior is obtained

the case of a dressed input propagator. We conclude that

when the nuclear fragmentation is accounted for the choice

of cut 30 MeV adopted in Sec. III is adequate for consid-

ering the low-lying spectrum.

D. Size of the model space

As a second possible source of uncertainty, one may con-

sider the size of the employed model space. The choice of

the model space employed in Sec. III allows to take into

account excitations up to the 2 shells. This means that

configurations up to 2 27 MeV are included, con-

TABLE III. The excitation energy and total spectral strengths discussed in Sec. III are compared to the solutions of the two-phonon ERPA

equations by neglecting the time-inversion diagrams of Fig. 4. Both IPM and dressed input propagator cases are displayed. Results obtained

within a larger model space ( 5) are also shown.

0 h.o./ERPA h.o./ERPA h.o./ERPA Dressed/ERPA Dressed/ERPA Dressed/ERPA

No time inversion 5 Model Space No time inversion 5 Model Space

11.81 0.036 12.14 0.007 12.14 0.007 12.09 0.009

11.28 0.092 11.28 0.092 10.97 0.184

0 10 20 30 40 50 60 70
4

6

8

10

12

14

16

18

20

22

24 2+

0+

0+

3-

1- 1-, T=1

0+

0+

1-3-

3-

1-, T=1

2+

2-

2-

 (
M

e
V

)
x

E

 (MeV)cutE

FIG. 7. Dependence of the ERPA solutions on the number of

two-phonon states considered. For any given point, all the configu-

ration with energy «na
p

1«nb
p <Ecut have been included in the calcu-

lation. Solid ~dashed! lines refer to the results obtained from a

dressed ~IPM! input propagator.
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and 0 states, and that these values increase further for the

ERPA results. This signals an increase of the collective char-

acter of these solutions, which may lead to an instability of

the RPA equations for interactions that are even more attrac-

tive. The two-phonon ERPA approach generates a triplet of

states at about 14 MeV, with quantum numbers 0 , 2 , and

. However, these levels are almost exclusively composed

of two-phonon contributions and contain only small admix-

tures of states, resulting in a small spectral strength

. The quantum numbers and energies of these states in-

deed correspond closely to those obtained by coupling two

RPA phonons, each at 7.14 MeV. We note that a similar

triplet is found experimentally at 12.05, 11.52, and 11.10

MeV, which also corresponds to twice the experimental en-

ergy of the first 3 The first experimental 2 is

at lower energy, and its spectral strength is known to

have relevant components 23 . Thus it cannot be iden-

tified with any of the above two-phonon contribution. For all

the lowest states that are not already reproduced by standard

RPA a very small spectral strength has been found, due

to a general lack of mixing between the and the two-

configurations. Of interest is also the 2 that repre-

sents the giant quadrupole resonance at 20.7 MeV. In this

case RPA and ERPA give 22.9 and 23.3 MeV for the main

peak but with a lower in the second case. For this state,

part of the strength about 20% is shifted to two-phonon

configurations representing the expected fragmentation of

the giant resonance.

Figure 6 and Table II show the analogous results when

ssed sp propagators are used as input. In general, the main

effect of fragmentation is to screen the nuclear interaction as

a consequence of the quenching of spectroscopic factors for

the input sp propagator. For the DRPA case, this results in

increasing the lowest 3 and 1 solutions by 2 MeV.

More substantial is the effect on the lowest 0 state with a

inantly character which rises to about 17 MeV,

confirming the sensitivity of this state to details of the frag-

mentation and the strength of the nuclear interaction. Unlike

the IPM case, we have chosen to solve the two-phonon

ERPA by first shifting the lowest solution for both the 0

, and 1 states down to their relative experimental ener-

gies. This has the advantage of lowering the most important

two-phonon configurations and allows us to investigate their

interplay with the s.

As can be seen in Fig. 6, the ERPA equations still gener-

ate a triplet of 0 , 2 , and 4 states at twice the energy of

the first 3 Due to the screening of the interac-

tion, these states mix very little with the configurations

yielding an almost degenerate triplet. Table II also gives a

comparison between the total two-phonon content of the

states and the individual contributions of the most important

configurations. This decomposition demonstrates that this

triplet is formed by pure 3 states. This observation is

in accordance with the 2 -2 character of these states

. Since the overall energy of these states approxi-

mately agrees with experiment, one can expect that this cal-

culation correctly represents the bulk properties of their wave

tions. Nevertheless, it is clear that an additional interac-

tion is needed in order to split this triplet as observed experi-

mentally. It should be noted that no solution that can be

identified with the 2 and 4 levels at 9.8 and 10.4 MeV.

The 2 level has been interpreted in terms of an particle

ating around an excited 12C core 23 , and therefore in-

ves correlations that may go well beyond the present cal-

culation. With regard to the 2 strength around 20 MeV, we

e that the sp fragmentation included in the DRPA equation

already generates a distribution of 2 strength. Table II con-

TABLE I. Excitation energy and total spectral strengths ob-

tained for the principal solutions of the RPA and ERPA equations.

For the ERPA case the total fraction of and two-phonon con-

tributions are also shown. An IPM input sp propagator was used to

generate these results.
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FIG. 6. Results for the DRPA and the two-phonon ERPA propa-

gator of 16O with a dressed input propagator from Ref. @9#, middle,

and last column, respectively. In solving the ERPA equation, the

lowest 32, 12, and 01 levels of the DRPA propagator were shifted

to their experimental energies. All other DRPA solutions were left

unchanged. The excited states indicated by dashed lines are those

for which the ~E!RPA equation predicts a total spectral strength Znp

lower than 10%. The first column reports the experimental results

@44#.
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Microscopic optical potential

Nuclear self-energy                  : 

• contains both particle and hole props. 

• it is proven to be a Feshbach opt. pot ! in general it is non-local !

Solve scattering and overlap functions directly in momentum space:

mean-field

Particle-vibration 

couplings:

ns [34]. Hence, we are now in a position to mean-

ingfully compare first principles approaches to scattering

a in medium mass nuclei. In the following, we present

state-of-the-art SCGF calculations to test current ab initio

methods and compare our results to NCSM-RGM and

NCSMC computations with NN and NN inter-

ions. We then use a saturating chiral Hamiltonian to

study elastic scattering of neutrons from 16O and 40Ca.

Formalism. The Hamiltonian used to compute the

f-energy is

Þ ¼ Þ þ W;

where is the center of mass kinetic energy for

the -nucleon target plus the projectile, and are

the NN and interactions. is included as an equivalent

effective two-body interaction, averaged on the correlated

propagator as discussed in Refs. [30,35]. The SCGF

ion proceeds by solving the Dyson equation,

Þ ¼ Þ þ , in a harmonic oscillator

(HO) basis of s, where is the free

ticle propagator, and the irreducible self-energy

has the following general spectral representation:

αβ E; Þ ¼ αβ

X
;i ð þ Þþ j;

þ
X
r;s

Nα;r

!

1

E− ðK< þDÞ− iΓ

"

r;s

N
†

s;β;

where label the single particle quantum numbers of

the HO basis, is the correlated and energy independent

mean field, and s the correct boundary conditions. We

formed calculations with the third order algebraic

diagrammatic construction [ADC(3)] method, where the

matrix ) couples single particle states to intermediate

) configurations, ) is the interaction matrix

among these configurations, and ns their unper-

turbed energies [36,37]. All intermediate

states (respectively labeled by indices ) were

included. For 13, this incorporates configurations

up to 400 MeVof excitation energy and partial waves of the

projectile up to angular momentum 27 for both

ities.

The resulting dressed single particle propagator can be

written in the Käll´ Lehmann representation as

αβ E; Þ ¼
ih

ih

The poles of the forward-in-time propagator,

indicate then the energy of the th exited state of the

)-nucleon system with respect to the ground state

of the target . Hence, they are directly identified

with the scattering energy. For each many-body state

in the continuum, the corresponding overlaps

are associated with the elastic

tering wave function through Feshbach theory [1,38]

Although the scattering waves are unbound, the self-

gy ated with the optical potential is

localized, and it can be efficiently expanded on square

integrable functions. Hence, we proceed by calculating

Eq. (2) in HO basis but transform it to momentum space

ore solving the scattering problem. This will ensure that

the proper asymptotic behaviors of both bound and

tering states are obtained. The optical potential for a

given partial wave ( ) is then expressed as

k; k E; Þ ¼ n;l
l;j

E; ;l

which is nonlocal and energy dependent, where n;l are

the radial HO wave functions in momentum space.

Through Eqs. (2) (4), the SCGF approach provides

a parametrized, separable, and analytical form of the optical

al.

The parameter s the time ordering boundary

tions, but it does not affect the solution of the

y-body problem that comes from the diagonalization

of the equation of motion [5,27,37]. However, we retain it

in Eq. (4) to introduce a small finite width for the

ions, which would otherwise be discretized

in the present approach. We checked that this does not

affect our conclusions below.

We use the intrinsic Hamiltonian of Eq. (1) large

HO spaces so that the intrinsic ground state

es from the center of mass motion [39]. Even if

ed, the latter is not fully suppressed and the self-

gy (4) is still computed in laboratory frame. We correct

for this by rescaling the scattering momentum appropri-

ately, which naturally leads to the correct center of mass

(c.m.) energy reduced mass , with

A= . The Dyson equation eventually reduces

to the following one-body eigenvalue problem [25,37]

Þ&

k; l;j

We diagonalize this Schrödinger-like equation in momen-

tum space so that the kinetic energy is treated exactly and

we account for the nonlocality and nce of

Eq. (4). The phase shifts are obtained as a function

of the projectile energy for each partial wave, from which

differential cross section can be calculated. The bound

state solutions of Eq. (5) ds overlap wave functions

[40]. Hence, they provide
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a in medium mass nuclei. In the following, we present

state-of-the-art SCGF calculations to test current ab initio
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NCSMC computations with NN and NN er-
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where is the center of mass kinetic energy for

the -nucleon target plus the projectile, and

the NN and interactions. is included as an equivalent

effective two-body interaction, averaged on the correlated

propagator as discussed in Refs. [30,35]. The SCGF

ation proceeds by solving the Dyson equation,
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the HO basis, is the correlated and energy independent
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formed calculations with the third order algebraic
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matrix ) couples single particle states to intermediate

) configurations, ) is the interaction matrix

among these configurations, and ains their unper-

turbed energies [36,37]. All intermediate

states (respectively labeled by indices ) were

included. For 13, this incorporates configurations

up to 400 MeVof excitation energy and partial waves of the

projectile up to angular momentum 27 for both

ities.

The resulting dressed single particle propagator can be

written in the Käll´ Lehmann representation as

αβ E; Þ ¼
ih

ih

The poles of the forward-in-time propagator,

indicate then the energy of the th exited state of the

)-nucleon system with respect to the ground state

of the target . Hence, they are directly identified

with the scattering energy. For each many-body state

in the continuum, the corresponding overlaps

are associated with the elastic

ering wave function through Feshbach theory [1,38]

Although the scattering waves are unbound, the self-

gy ated with the optical potential is

localized, and it can be efficiently expanded on square

integrable functions. Hence, we proceed by calculating

Eq. (2) in HO basis but transform it to momentum space

ore solving the scattering problem. This will ensure that

the proper asymptotic behaviors of both bound and

tering states are obtained. The optical potential for a

given partial wave ( ) is then expressed as

l;j k; k E; Þ ¼ n;l n;n
E; ;l

which is nonlocal and energy dependent, where n;l are

radial HO wave functions in momentum space.

Eqs. (2) , the SCGF approach provides

a parametrized, separable, and analytical form of the optical

ial.

The parameter s the time ordering boundary

tions, but it does not affect the solution of the

many-body problem that comes from the diagonalization

of the equation of motion [5,27,37]. However, we retain it

in Eq. (4) to introduce a small finite width for the

igurations, which would otherwise be discretized

in the present approach. We checked that this does not

affect our conclusions below.

We use the intrinsic Hamiltonian of Eq. (1) large

HO spaces so that the intrinsic ground state

es from the center of mass motion [39]. Even if

ed, the latter is not fully suppressed and the self-

gy (4) is still computed in laboratory frame. We correct

for this by rescaling the scattering momentum appropri-

ately, which naturally leads to the correct center of mass

(c.m.) energy mass , with

A= . The Dyson equation eventually reduces

to the following one-body eigenvalue problem
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l;j k;

We diagonalize this Schrödinger-like equation in momen-

tum space so that the kinetic energy is treated exactly and

we account for the nonlocality and ce of

Eq. (4). The phase shifts are obtained as a function

of the projectile energy for each partial wave, from which

the differential cross section can be calculated. The bound

state solutions of Eq. yields overlap wave functions

[40]. Hence, they provide
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Role of intermediate state configurations (ISCs)
[A. Idini, CB, Navrátil, 
Phys. Rev. Lett. 123, 092501 (2019)]n-16O, total elastic cross section

50% of 2p1h/2h1p poles suppressed

High order configurations, or 
ADC(n>>3), to be critical for fully 
ab initio optical potentials
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study elastic scattering of neutrons from 16O and 40Ca.
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effective two-body interaction, averaged on the correlated
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(HO) basis of ls, where is the free

ticle propagator, and the irreducible self-energy
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mean field, and s the correct boundary conditions. We
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diagrammatic construction [ADC(3)] method, where the

matrix ) couples single particle states to intermediate

) configurations, ) is the interaction matrix

among these configurations, and ains their unper-

turbed energies [36,37]. All intermediate
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the radial HO wave functions in momentum space.
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Green’s function theory beyond ADC(3)? 
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The Green’s function is found as the exact solution of the Dyson equation

Gαβ (ω) = G
(0)
αβ (ω) +

∑

γδ

G
(0)
αγ (ω)Σ

⋆
γδ (ω)Gδβ (ω)

...

Stefano Brolli (Unimi) Master’s Degree Thesis 19 June 2023 4 / 29

The Green’s function is found as the exact solution of the Dyson equation

αβ ) =
(0)
αβ ) +

∑

γδ

(0)
αγ γδ δβ

Σ
⋆ = + + + +

+ + + + + ...
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Diagrammatic Monte Carlo: overviewOverview of the math

Σ
⋆
αβ (ω) =

∑
T

∑
γ1...γn

∫
dω1...dωm Dω

αβ (T ; γ1...γn;ω1...ωm) 1T ∈SΣ⋆

We define = ( ... ...

αβ ) = C |Dαβ
arg

αβ

αβ ) = αβ

|Dαβ

αβ

arg
αβ

is an order dependent reweighting factor.

αβ C |Dαβ is a normalization factor.

αβ

|D
αβ

αβ
is a probability distribution function.
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Diagrammatic Monte Carlo: normalization
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αβ (C):

αβ ) = αβ lim
→∞

=1

arg
αβ

αβ is unknown but it can be estimated.
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If the Markov chain has the correct equilibrium distribution αβ

Σ
⋆
αβ (ω) = Z

ω
αβ

[

lim
n→∞

1

n

n
∑

i=1

e
i arg[Dω

αβ
(Ci)]

Wo(N)
1Ti∈SΣ⋆

]

αβ is unknown but it can be estimated.
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αβ ) = αβ lim
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=1

arg
αβ

Zω
αβ is unknown but it can be estimated.
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Estimating αβ

We turn propagators that close on themselves into zigzag lines with an

arbitrary value

e
iω1ηGα (ω1) =

α

α
ω1−→

α

α
ω1 := −ie

−kω
2

1 .

is an arbitrary constant that can be used to optimize the convergence.
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Diagrammatic Monte Carlo: normalization
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α

α

ω1

α

α

α

α

ω1

α

α

α

α

ω2

ω

These diagrams belong to not to

They are easy to integrate and to simulate with the Monte Carlo

method.
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We define the set of normalization diagrams as the set made of these

two diagrams.

has weight

ZN
ω

α
:=

∫
SN

dC wω

α
=

|g|

4
√

πk
+

g2

16πk
|Gα (ω)|Wo(2).
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16
(2)
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The expected number of times the normalization sector is visited ( ) gives
the normalization Zω

α
.

= lim
→∞

We get the fundamental equation of DiagMC

) = lim
→∞

=1

arg[ )]
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The updates
The updates

1 Change Frequency

2 Change Single-Particle Quantum Numbers

Add Loop

Remove Loop

Reconnect

Standard Monte Carlo

Monte Carlo on the topology

The acceptance ratio of each update must be fixed to reproduce the
correct equilibrium distribution ( αβ).

With a self-consistent iterative scheme - bold diagrammatic Monte
Carlo (BDMC) - we are ergodic up to third order.
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Change Frequency:

α

α

β

β

α

α

β

β

ω − ω1 + ω2 ω1 ω2

α

α

α

α

β

β

β

β

ω − ω′

1
+ ω2 ω′

1
ω2
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Change Single-Particle Quantum Numbers:

α

α

β

β

α

α

β

β

ω − ω1 + ω2 ω1 ω2

α

α

α

α

γ

γ

γ

γ

ω − ω1 + ω2 ω1 ω2
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The updates

Change Frequency

Change Single-Particle Quantum Numbers

3 Add Loop

4 Remove Loop

5 Reconnect

Standard Monte Carlo

Monte Carlo on the topology

The acceptance ratio of each update must be fixed to reproduce the
correct equilibrium distribution ( αβ).

With a self-consistent iterative scheme - bold diagrammatic Monte
Carlo (BDMC) - we are ergodic up to third order.
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Add Loop:

α

α

β

β

α

α

β

β

ω − ω1 + ω2 ω1 ω2

α

α

α

α

β

β

β

β

ω − ω1 + ω2 ω1 ω2

α α

α α

ω

ω′

1

ω′

1
is drawn from the probability distribution Wf (ω

′

1
).

qAL =
|g|

4π

1

Wf (ω
′

1
)
e−kω′2

1 |Gα (ω)|
Wo(3)

Wo(2)
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Reconnect:

α

α

α

α

β

β

β

β

ω − ω1 + ω2 ω1 ω2

α α

α α

ω

ω′

1

α

α

α

α

β

β

β

β

ω − ω1 + ω′

1
ω1

ω2

α
αα α

ω − ω2 + ω′

1

ω′

1

The unphysical propagators are turned into physical ones when reconnected.
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Results of the simulation for D=4 
This method has been implemented for infinite systems.

It has never been tried for systems with discrete energy levels (nuclear
physics and quantum chemistry).

As a first application we considered the simple model

H = ξ

D−1∑

α=0

∑

σ=+,−

αc†ασcασ −

=0

with 4 particles.

= 3

= 2

= 1

= 0
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4.3. RESULTS OF THE SIMULATION FOR = 4 57

Figure 4.1: Components α = 0 and α = 2 of the imaginary part of the self-energy for different

values of the coupling g. The blue line is the results obtained with the BDMC simulation, while

the red line is the best fit as a sum of two Lorentzians. The results for the two values of α = 0, 2

are displayed respectively on the left and on the right of the graph. The error bars are calculated

as explained in the main text.

This method has been implemented for infinite systems.

It has never been tried for systems with discrete energy levels (nuclear
sics and quantum chemistry).

As a first application we considered the simple model

=0 =+

ασ ασ

=0

with 4 particles.

α = 3

α = 2

α = 1

α = 0
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ns [34]. Hence, we are now in a position to mean-

ingfully compare first principles approaches to scattering

a in medium mass nuclei. In the following, we present

state-of-the-art SCGF calculations to test current ab initio

methods and compare our results to NCSM-RGM and

NCSMC computations with NN and NN inter-

ions. We then use a saturating chiral Hamiltonian to

study elastic scattering of neutrons from 16O and 40Ca.

Formalism. The Hamiltonian used to compute the

f-energy is

Þ ¼ Þ þ W;

where is the center of mass kinetic energy for

the -nucleon target plus the projectile, and are

the NN and interactions. is included as an equivalent

effective two-body interaction, averaged on the correlated

propagator as discussed in Refs. [30,35]. The SCGF

ation proceeds by solving the Dyson equation,

Þ ¼ Þ þ , in a harmonic oscillator

(HO) basis of ls, where is the free

ticle propagator, and the irreducible self-energy

has the following general spectral representation:

αβ E; Þ ¼ Σ
ð∞Þ
αβ þ

X
i;j

M
†
α;i

!

1

E− ðK> þCÞ þ iΓ

"

i;j

Mj;β

;r

! "

s;

where label the single particle quantum numbers of

the HO basis, is the correlated and energy independent

mean field, and s the correct boundary conditions. We

formed calculations with the third order algebraic

diagrammatic construction [ADC(3)] method, where the

matrix ) couples single particle states to intermediate

) configurations, ) is the interaction matrix

among these configurations, and ains their unper-

turbed energies [36,37]. All intermediate

states (respectively labeled by indices ) were

included. For 13, this incorporates configurations

up to 400 MeVof excitation energy and partial waves of the

projectile up to angular momentum 27 for both

ities.

The resulting dressed single particle propagator can be

written in the Käll´ Lehmann representation as

αβ E; Þ ¼
ih

ih

The poles of the forward-in-time propagator,

indicate then the energy of the th exited state of the

)-nucleon system with respect to the ground state

of the target . Hence, they are directly identified

with the scattering energy. For each many-body state

in the continuum, the corresponding overlaps

are associated with the elastic

tering wave function through Feshbach theory [1,38]

Although the scattering waves are unbound, the self-

gy ated with the optical potential is

localized, and it can be efficiently expanded on square

integrable functions. Hence, we proceed by calculating

Eq. (2) in HO basis but transform it to momentum space

ore solving the scattering problem. This will ensure that

the proper asymptotic behaviors of both bound and

tering states are obtained. The optical potential for a

given partial wave ( ) is then expressed as

l;j k; k E; Þ ¼ E; ;l

which is nonlocal and energy dependent, where n;l are

the radial HO wave functions in momentum space.

Through Eqs. (2) (4), the SCGF approach provides

a parametrized, separable, and analytical form of the optical

ial.

The parameter s the time ordering boundary

tions, but it does not affect the solution of the

many-body problem that comes from the diagonalization

of the equation of motion [5,27,37]. However, we retain it

in Eq. (4) to introduce a small finite width for the

igurations, which would otherwise be discretized

in the present approach. We checked that this does not

affect our conclusions below.

We use the intrinsic Hamiltonian of Eq. (1) large

HO spaces so that the intrinsic ground state

es from the center of mass motion [39]. Even if

ed, the latter is not fully suppressed and the self-

gy (4) is still computed in laboratory frame. We correct

for this by rescaling the scattering momentum appropri-

ately, which naturally leads to the correct center of mass

(c.m.) energy reduced mass , with

A= . The Dyson equation eventually reduces

to the following one-body eigenvalue problem [25,37]

Þ&

k;

We diagonalize this Schrödinger-like equation in momen-

tum space so that the kinetic energy is treated exactly and

we account for the nonlocality and ce of

Eq. (4). The phase shifts are obtained as a function

of the projectile energy for each partial wave, from which

the differential cross section can be calculated. The bound

state solutions of Eq. (5) yields overlap wave functions

ween [40]. Hence, they provide
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Results of the simulation for D=4 
Results of the simulation for D=4

Imaginary part of the component α = 0 of the diagonal self-energy for

different values of the coupling:

We fitted the imaginary part of the self-energy as a sum of Lorentzians.
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This method has been implemented for infinite systems.

It has never been tried for systems with discrete energy levels (nuclear
sics and quantum chemistry).

As a first application we considered the simple model

H = ξ

D−1∑

α=0

∑

σ=+,−

αc†ασcασ −

=0

with 4 particles.

= 3

= 2

= 1

= 0
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Reorganization in terms of ladders (�)

Results of the simulation

Imaginary part of the component = 0 of the diagonal self-energy
):

New updating scheme: Old updating scheme:

We are able to treat the case g <
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We discuss the construction of a nuclear energy density functional (EDF) from ab initio computations and

advocate the need for a methodical approach that is free from ad hoc The equations of state (EoSs)

of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological

AV4 as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion

Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the

Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio EDF to carry

out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.

sat-based EDF produces encouraging results, whereas the AV4 is farther from

experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and

spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio

nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.
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I. INTRODUCTION

The need to tackle the very complex nuclear many-body

problem has inspired dramatic advances in the so-called

ab initio methods in recent years [ ]. These approaches

aim at solving the many-nucleon Schrödinger equation in

an exact or systematically improvable way by using a re-

alistic model for the nuclear interaction in the vacuum.

Examples of these approaches are the Green’s function

Monte Carlo (GFMC) and auxiliary field diffusion Monte

Carlo (AFDMC) [ ], self-consistent Green’s function

(SCGF) [ 10], coupled-cluster [ 11 12], in-medium similar-

ity renormalization group [ 13], and many-body perturbation

theory methods [14 15]. Successful nuclear structure cal-

culations have been performed for low- and medium-mass

nuclei [ 16], as well as in infinite nuclear matter [ 17 18

and neutron stars [19 20]. Although ab initio theory can now

approach masses of 140 [21], its predictive power is

affected by the large computational cost and full-scale studies

of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method

of choice is density functional theory (DFT). Originally intro-

duced in condensed matter, DFT is a hugely popular method

that finds application in several areas of physics, ranging from

quantum chemistry [22 25] to nuclear physics [26 31]. In the

latter case, it represents the only approach that allows one

to cover almost the whole nuclear chart [26 27 30], with the

partial exception of very light nuclei, and to study both ground

states (g.s.) and, in its time-dependent formulation, excited

states [29]. In principle, DFT provides an exact formulation

of the many-body problem based on the Hohenberg-Kohn

theorems [22 30 32], which state that all observables, starting

from the total energy, can be expressed in a unique way as a

functional of the one-body density (including spin densities

and other generalized densities [33]). However, these theo-

rems give no hints about the actual form of such functional,

which is dubbed as the energy density functional (EDF).

Hence, in practice, DFT turns out to be an approximate, albeit

very powerful, method. In particular, most relativistic [34

and nonrelativistic [26 28] nuclear EDFs are designed in an

empirical manner. A reasonable ansatz for the functional form

is chosen and its actual parameters are fitted on experimen-

tal observables such as radii and masses of finite nuclei, or

pseudo-observables such as the saturation density of symmet-

ric nuclear matter [27 35]. The available EDFs are overall

26 30], e.g., the experimental binding energies

are reproduced on average within 1–2 MeV and charge radii

within 0.01–0.02 fm. However, it is unclear how to further

improve the performance of traditional EDFs [36]. Despite

attempts to frame DFT as an effective field theory (EFT),

we still lack guiding principles for the systematic improve-

ment of nuclear EDFs [37]. Existing EDFs are affected by

uncontrolled extrapolation errors when applied to systems for
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FIG. 1. Dots: SNM and PNM EoS computed with the NNLOsat

interaction and the SCGF method. Dashed: model EoS (2,3,4,5,6)

(see text).

saturate; in fact, AV4 alone predicts no saturation before 0.50

fm 97]. The smallest validation error (MSE 0.06 MeV

is achieved by the (2,5,6) model, which is shown in Fig.

together with the ab initio EoS.

To sum up, parametrizing the nuclear EoS as a polynomial

of the Fermi momentum has proved an effective ansatz. Two

optimal models have been found, namely, (2,3,4,5,6) for the

NNLOsat EoS and (2,5,6) for the AV4 UIX EoS. The

parameters of these models are reported in Table III

B. Predictions of the LDA EDFs in finite nuclei

Two LDA EDFs are derived from the (2,3,4,5,6) and (2,5,6)

parametrizations of the NNLOsat- and the AV4 UIX -based

EoS (Sec. IV A). These are then applied to closed-subshell

nuclei and compared to experimental values, taken from

Refs. [98 99], and to ab initio ab initio calcula-

tions are available for a set of nuclei up to 54Ca for NNLOsat

TABLE I. Energy per particle computed with SCGF and the

NNLOsat interaction at several densities in both SNM and PNM.

(fm (MeV) SNM (MeV) PNM

0.04

0.08

0.12

0.16

0.20

0.22

0.24

0.26

0.28

0.32

TABLE II. Energy per particle standard errors (in paren-

theses) computed with AFDMC and the AV4 interaction at

several densities in both SNM and PNM.

(fm (MeV) SNM (MeV) PNM

0.04

0.08

0.12

0.16

0.20

0.22

0.24

0.26

0.28

0.32

0.36

0.40

and 90Zr for AV4 UIX . Moreover, the NNLOsat densities

for 90Zr are available.

The discrepancy between theory and experiment for ener-

gies per nucleon (top) and charge radii (bottom) are shown in

Fig. for NNLOsat and the (2,3,4,5,6) EDF, as well as the

GA-E and GA-r EDFs introduced later on (Sec. IV C). On

the one hand, we can appreciate that NNLOsat predictions are

very close to experiment. On the other hand, the LDA EDF, al-

though less precise, exhibits interesting trends, since it enables

one to reproduce heavier nuclei, especially from 90Zr on, in

a realistic way, with deviations smaller than 1 MeV nucleon

and 0.05 fm for the energies and radii, respectively. This is

quite remarkable, as the LDA EDF incorporates only infor-

mation on uniform matter. Also, it is unsurprising that light

systems are less amenable to a local density treatment, since

FIG. 2. Dots: SNM and PNM EoS computed with the AV4

and the AFDMC method. The AFDMC statistical

bars are shown. Dashed: model EoS (2,5,6) (see text).
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the AFDMC, the spin-isospin degrees of freedom are de-

scribed by single-particle spinors, the amplitudes of which are

sampled using Monte Carlo techniques based on the Hubbard-

Stratonovich transformation, reducing the computational cost

from exponential to polynomial in . However, some of

the contributions characterizing fully realistic nuclear forces,

such as isospin-dependent spin-orbit contributions, cannot be

treated in this way, yet. Hence, the AFDMC is limited to

somewhat simplified interactions, but it can be applied to

compute larger nuclei and nuclear matter.

The starting point of AFDMC calculations is a trial wave

function, which is commonly expressed as the product of a

long-range component and of two- plus three-body corre-

lations:

i j i jk (7)

In the above equation, we assumed the correlations to be spin-

isospin independent. This simplified ansatz, consistent with

Refs. [58 81 82], is justified by the fact that the AV4 UIX

Hamiltonian does not contain tensor or spin-orbit terms.

In finite nuclei, is constructed by coupling different

Slater determinants of single-particle orbitals in the nl jm

basis so as to reproduce the total angular momentum, total

isospin, and parity of the nuclear state of interest [ ]. On the

other hand, infinite nuclear matter is modeled by simulating

a finite number of nucleons on which periodic-box boundary

conditions are imposed [83]. In this case, the single-particle

states are plane waves with quantized wave numbers:

, . . . , (8)

where is the size of the box and the shell closure condition

must be met in order to satisfy translational invariance. As

a consequence, the number of nucleons in a box must be

equal to the momentum space “magic numbers” (1, 7, 19, 27,

33, . . . ) times the number of spin states: 2 for PNM,

4 for SNM. The equations of state of nuclear matter discussed

in Sec. IV A are computed with 66 neutrons (PNM) and

76 nucleons (SNM) in a periodic box.

The AFDMC method has no difficulty in dealing with

“stiff” forces that can generate wave functions with high-

momentum components. This is in contrast with remarkably

successful many-body approaches that rely on a basis ex-

pansion [11 12 84 85], which need relatively “soft” forces to

obtain converged calculations. However, like standard dif-

fusion Monte Carlo algorithms, the AFDMC suffers from

the fermion sign problem, which results in large statistical

errors that grow exponentially with . To control it, we

employ the constrained-path approximation, as described in

Refs. [ 69 86]. This scheme is believed to be accurate for

Hamiltonians that do not include tensor or spin-orbit opera-

tors, as is the case for the AV4 UIX potential. Expectation

values of operators that do not commute with the Hamilto-

nian are evaluated by means of the mixed estimator [

(9)

Also, charge radii are estimated from the proton radii with the

ch (0 8 fm)

III. METHOD

A. Nuclear EDFs

The general structure of a nonrelativistic nuclear EDF is

described in depth in Refs. [27 28 87]. In this section, the

discussion is limited to even-even nuclei and to quasilocal

EDFs, i.e., functionals that can be expressed as the volume

integral of an energy density ) which is a function of

the local densities [28] and their gradients. Nonlocal EDFs

such as Gogny ones are not treated. Moreover, for simplicity

pairing terms are neglected. Applications shall be limited to

magic nuclei and to some closed-subshell ones.

Under these assumptions, the total energy is a functional

of the time-even proton and neutron densities [number density

), kinetic density ), and spin-orbit density ), with

] [28 35] and reads

E =

∫

dr E (r) = Ekin + Epot + ECoul. (10)

The kinetic energy term is given by [35

kin kin (11)

The Coulomb contribution Coul is treated in the standard

local Slater approximation [88]. The most general form of the

potential term

pot pot ) (12)

is reported in Eqs. (48) and (49) of Ref. [28], and will be

outlined in the next section. Neutron and proton densities have

been recoupled into the isoscalar ( 0) and isovector ( 1)

channels: isoscalar densities are total densities (e.g.,

), while isovector densities account for proton-neutron

differences ( ). The coefficients of the various

terms are all, in principle, functions of the density, although

in practice most of them are set to a constant value [27].

The mean field equations are then derived by relating the

to the single-particle orbitals ) and applying the

variational principle [87]:

−∇ Coul (13)

)(∇ × ) (14)

where

δρ δτ
(15)

and ), ), and ) are called effective mass, mean

field, and spin-orbit potential, respectively.
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite

matter EoS is LDA [23 31 44]. In LDA, one assumes that

the same expression of the potential energy density valid in

infinite matter holds for nonuniform densities ) too. This

approximation is well suited in particular for slowly varying

density distributions, so that each small region of a generic

(finite or infinite) system can be treated as a piece of bulk

matter [23]. LDA provides the following expression for the

bulk energy density bulk ):

bulk (25)

The LDA EDFs read

LDA kin bulk Coul (26)

and Eq. (13) simplifies, as 0, and
bulk ), where

bulk bulk

δρ

[( 1) (27)

for the potential term (23) and = +1 for neutrons and

1 for protons. See Appendix for the derivation.

While an ab initio based treatment of LDA is the main sub-

ject of this paper, it is known that such approximation is not

sufficient to accurately describe nuclear systems [31]. Even

for electronic DFT, where LDA is a solid starting point, it is

understood that gradient terms are necessary for quantitatively

accurate predictions [22]. In Sec. IV B, we will show that

the LDA EDFs based on our chosen Hamiltonians give rather

different outcomes. Hence, to better gauge the LDA, we also

perform a preliminary analysis of a set of EDFs that include

surface terms.

These functionals, that we name GA EDFs, are made by

complementing LDA with isoscalar and isovector density-

gradient terms and a one-parameter spin-orbit contribution. It

must be understood that these GA EDFs are treated at a very

preliminary level. For instance, ρτ terms, that are known to

be important in nuclear DFT and produce an effective mass

, are not discussed. Also, no rigorous statistical anal-

ysis is performed and no attempt to derive the surface terms

ab initio is made. These important themes are left for

Our GA EDFs have the following form:

GA LDA surf (28)

where

Esurf =

∫

dr

[

∑

t=0,1

C1
t ρt1ρt

( )]

(29)

Three parameters, , and , are introduced and are

all assumed to be density-independent constants, as in widely

used EDFs. The mean field equations (13) hold, with

and bulk surf ), where

surf
(30)

surf surf

δρ

1ρ 1ρ

(31)

and surf is derived in Appendix . Appendix is dedicated

to the concept of rearrangement energy of the EDF.

To tune the surface terms, a grid search on the three param-

eters , and is carried out, although full-fledged fits

will be necessary in later works. To benchmark the quality of

the EDF predictions, the root mean square (rms) errors of the

binding energies and the charge radii for the GA EDFs

th exp

(32a)

ch

th exp

(32b)

are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are

performed with the SKYRME RPA code [88], which has been

appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the

NNLOsat potential were computed in Ref. [18] using the

SCGF method. The 0 limit is shown in Fig. and explicit

values are reported in Table . In this paper, we consider sim-

ulations up to densities 32 fm , as these are still com-

patible with the soft momentum cutoff of this interaction. The

SNM EoS saturates at sat 15 fm and sat 14 7 MeV.

We performed fits on a set of points equally spaced by

fm following the parametrizations discussed in

Sec. III B. A fivefold cross-validation procedure was used

to estimate the validation error and select the best model.

The optimal choice was the polynomial (2,3,4,5,6), which

achieves a very small MSE 10 MeV . This model is

shown by the curves in Fig. along with the complete ab

initio dataset used in the fit.

The AV4 UIX EoS has been calculated with the

AFDMC method for several densities up to 0.40 fm . To the

best of our knowledge, this is the first application of AV4

UIX to nuclear matter. The results are reported in Table II

The saturation point is located at an unusually high density

fm ) and low energy ( sat 23 7 MeV) and the

3N contribution is instrumental in allowing the SNM EoS to
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bulk (25)
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LDA kin bulk Coul (26)
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bulk ), where

bulk bulk

δρ

[( 1) (27)

for the potential term (23) and = +1 for neutrons and

1 for protons. See Appendix for the derivation.
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=

1ρ

−
W0

2

(
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∑

q

ρq∇ · Jq

)]

(29)
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surf
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surf surf
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1ρ 1ρ

(31)
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ch

th exp

(32b)
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at the uniform matter values ) = ) =
and ) = 0 and the fields are determined accordingly.
The s.c. procedure is stopped if two conditions are

met: the energies between iterations and 1 and, at
the same time, the two formulas (22) and (21) for the
energy at iteration , agree within a chosen tolerance.
Thresholds of the order of 0.1-1 keV per nucleon can be
obtained usually in few tens of iterations. Combining
linear mixing and two convergence conditions makes our
approach rather robust.

III. THEORY OF THE STATIC RESPONSE

The theory of the response of homogeneous matter to
an external static perturbation is summarized. In-depth
discussions can be found in Refs. [29 47 48].
Consider a system with uniform g.s. density , de-

scribed either by a Hamiltonian or an EDF. A static
potential ) coupled to the total density is then turned
on. ) is periodic so as to respect the PBCs. The den-
sity and energy of the g.s. of the perturbed system are
called ) and ], respectively. If the external po-
tential is weak enough, its e ect can be treated pertur-
batively (see e.g. Refs. [43 47]). The density fluctuation
induced by ), in particular, is linear in the external
potential and is written as follows:

δρ ) = (24)

The static response function ) has been introduced
and we stress that it depends exclusively on the proper-
ties of the unperturbed system. The response of homo-
geneous matter, in particular, is a function only of
i.e ) = ).
While a generic periodic function ) is a superposi-

tion of plane waves, in the following we consider without
loss of generality a monochromatic potential oscillating
at a given wave number , namely

v(x) = vqe
iq·x + c.c. = 2vq cos (q · x) (25)

Thus the density fluctuation induced by the perturbation
25) is monochromatic too and is given by

δρ ) = 2 cos ( (26)

where the amplitude is linear in , i.e.

(27)

and ) is the Fourier transform of ), see Eq.
B6). The energy of the perturbed system, instead, is
quadratic in the external potential. In App. , we derive
that the energy per particle is given by [29

(28)

The formalism we have outlined is valid both in the
TL and in finite systems, and both for DFT and for

iltonian-based methods. The question is now how
to compute the response function in practice. For gener-
alized Skyrme EDFs [23] and Gogny and Nakada EDFs
24], for example, the response in the TL can be deter-
mined analytically (App. ). An alternative for study-
ing ) is provided by exploiting Eqs. (27) or (28).
The strategy to determine ) for a uniform system at
a given density , and with a given particle number,
is the following. For a given (quantized) momentum
multiple calculations of the g.s. of the perturbed system
are performed for di erent values of the strength of
the external potential (25). Then ) can be extracted
from the amplitude of the density fluctuations [Eq. (27)]
or from the energies [Eq. (28)] as a function of , for
su ciently small . This strategy has been applied in
several contexts, e.g. Refs. [26 29 49 50], and pro-
vides a relatively straightforward way to determine the
static response function numerically. We will interpolate
energies using the more general formula [26 49

(29)

which takes into account higher-order contributions.
Second-order perturbation theory, or equivalently the

spectral representation of the dynamical density response
), can be employed to derive a formula that relates

) to the excited states of the homogeneous system
43 47]. For the case of the spin- and isospin-saturated
A-fermion FG, the response at zero temperature is
given by [47 49

) =
mg

occ

(30)

where the sum extends over the occupied momentum
states and terms with vanishing denominator are can be
safely neglected. Consistently with the assumptions of
Sec. II, we write and take quantized and

parallel to the direction, i.e. , with
integer. Then Eq. (30) is expressed as

) =
mg

occ
+ 2pn

(31)

This formula is straightforward to evaluate: we deter-
mine the occupied states of the A-particle FG g.s. once
and then, for each value of , we simply perform a
sum over these states. In the TL, ),

−→ (2 43] and the static response becomes

the well-known Lindhard function at zero-frequency [51

) =
mq

2(
(32)

) = 1 + log
1 +

(33)

z{**
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https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/

Chapter11-programs/Inf_Matter. We will use the C++ programming language and

refer to this code for describing the technical details of the implementation.

We then show results based on the Minnesota nuclear potential from [47]. This

is a very simplified model of the nuclear interaction that allows for an easy

implementation. On the other hand, it still retains some physical properties of

the nuclear Hamiltonian that will allow us to discuss the basic features of the

spectral function of nucleonic matter (and of infinite fermionic systems in general).

The reader interested in these physics aspects could refer directly to Sect. 11.4.2

11.4.1 Computational Details for ADC(n)

The first fundamental step to set up a SCGF computation is the choice of the model

space. For infinite matter, translational invariance imposes that the Dyson equation

is diagonal in momentum and therefore it becomes much easier to solve the problem

in momentum space. However, there remain two possible choices for how to encode

single particle degrees of freedom. The first one is to subdivide the infinite space in

boxes of finite size and to impose periodic boundary conditions (see also Chap. 8).

In this way, the number of fermions included in each box is finite and determined by

the particle density of the system. The resulting model space is naturally expressed

by a set of discretized single particle states and one solves the working equations in

the form of Eqs. (11.38), (11.39) and (11.48). This path requires the same technical

steps needed to calculate finite systems in a box. Numerical results then need to

be converged with respect to the truncation of the k-space (and, for an infinite

system, with respect to the number of nucleons inside each periodic box). We will

follow this approach for the present computational project. The other approach is to

retain the full momentum space and write the SCGF equations already in the full

thermodynamic limit. This choice is best suited to solve the Dyson equation at finite

temperatures and in a full SCGF fashion and will be discussed further in Sect. 11.5

Construction of the Model Space For simplicity, we assume a total number of

nucleons in each (cubic) periodic box. For boxes of length , the density and the

Fermi momentum are expressed, respectively as ( =1):

and pF D
3

ss

6�2�

�d

(11.54)

where the degeneracy is twice the number of different spin- fermions and the

basis states are defined by the cartesian quantum numbers = 0, 1, 2. . . with

momentum

(11.55)
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We work with a system of non-relativistic fermions interacting by means of

two-body and three-body interactions. We divide the Hamiltonian into two parts,

. The unperturbed term, , is given by the sum

of the kinetic term and an auxiliary one-body operator . Its choice defines the

reference state, , and the corresponding unperturbed propagator .0/.!/ that

are the starting point for the perturbative expansion. The perturbative term is then

, where denotes the two-body interaction operator and is

the three-body interaction. In a second-quantized framework, the full Hamiltonian

reads:

bH D
X

˛
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˛ˇ
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˛aˇ C
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X

˛
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36
�

ˇı
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In Eq. (11.13) we continue to use Greek indices ,. . . to label the single particle

basis that defines the model space. But we make the additional assumption that

these are the same states which diagonalize the unperturbed Hamiltonian, , with

eigenvalues . This choice is made in most applications of perturbation theory but

it is not strictly necessary here and it will not affect our discussion in the following

sections. The matrix elements of the one-body operator are given by ˛ˇ . And

we work with properly antisymmetrized matrix elements of the two-body and three-

body forces, ;ˇı and �;ˇı

In time representation, the many-body Green’s functions are defined as the

expectation value of time-ordered products of annihilation and creation operators

in the Heisenberg picture. This is shown by Eq. (11.1) for the single particle

propagator. Every Green’s function can be expanded in a perturbation series in

powers of . For the one-body propagator this reads [22 35]:

˛ˇ : : :

/ : : : conn (11.14)

where and are now intended as operators in the interaction

picture with respect to . The subscript “conn” implies that only connected

diagrams have to be considered when performing the Wick contractions of the

time-ordered product . Each Wick contraction generates an uncorrelated single

particle propagator, .0/.!/, which is associated with the system governed by the

A typical choice in nuclear physics would be a Slater determinant such as the solution of the

Hartree-Fock problem or a set of single-particle harmonic oscillator wave functions.
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Solution

Upon performing the four frequency integrals, one obtains:
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11.3 The Algebraic Diagrammatic Construction Method

The most general form of the irreducible self-energy is given by Eq. (11.15).

The is defined by the mean-field diagrams of Fig. 11.3a and Eq. (11.17a),

while ˙.!/ has a Lehmann representation as seen in the examples of Eqs. (11.25

and (11.26). Similarly to the case of a propagator, the pole structure of the energy-

dependent part is dictated by the principle of causality with the correct boundary

conditions coded by the terms in the denominators. This implies a dispersion

relation that can link the real and imaginary parts of the self-energy [22 26].

Correspondingly, the direct coupling of single particle orbits to ISCs (of 2p1h and

2h1p character or more complex) imposes the separable structure of the residues. In

this section we consider the case of a finite system, for which it is useful to use a

discretized single particle basis as the model space. From now on we will use

the Einstein convention that repeated indices ( . . . ) are summed over even if

not explicitly stated. Thus, the above constraints impose the following analytical

form for the self-energy operator:

˙
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where, here and in the following, and are to be intended as multiplication

operators (that is, with matrix elements Œ! �� .! /ı ) and the fraction

means a matrix inversion. In Eq. (11.27), the and are the unperturbed energies

for the forward and backward ISCs and and are collective indices that label sets of

configurations beyond single particle structure. Specifically, is for particle addition

and will label 2p1h, 3p2h, 4p3h, . . . states, in the general case. Likewise, is for

particle removal and we will use it to label 2h1p states (or higher configurations).
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40 Gorkov corrections

of a SCGF calculation. The first step is always to construct the s.p. basis and determine
HF reference propagator and 2p1h/2h1p configurations. Then, the Dyson matrix is constructed using

reference propagator, Lanczos-reduced and stored. Afterward, the Dyson eigenvalue problem ( ) is solved for the
dressed propagator is thus obtained. Then, the Fermi level is adjusted to conserve the particle number,

gy, the density matrix and the relevant one-body observables are computed. The static self-energy
is evaluated using in the Dyson matrix (while the dynamical self-energy is kept unchanged). This is the

of the sc0 loop, which is repeated until the total energy is converged from one iteration to the next within a chosen
Typically, about 10-15 iterations are sufficient for the sc0 loop. Once a sc0 cycle has converged, a new reference

is determined to approximate the dressed propagator. The OpRS GF in general is characterized
by s.p. energies and amplitudes somewhat different from those of the HF propagator. Then, the whole Dyson matrix is

from scratch using the new (uncorrelated) reference state, and the sc0 loop is started again. Convergence is
10 OpRS cycles (and often 5 iterations are enough).

, but rather an operator , with fermion species in the system. Thus, the
of particles be conserved only on average,

αα

−∞

αα

by demanding

In [84], it has been shown (to second order) that ADC(n) is a so-called conserving approximation of the
gy. That is, it was shown by Baym and Kadanoff [ ] that, if the self-energy can be derived

from a certain functional of the dressed 1B propagator, then all basic conservation laws are satisfied by
]. This is an important and non-trivial property that, however,

is rigorously verified only if the observables are evaluated on the exact Green’s function. However, since, as
to the true self-consistent solution of the Dyson equation are attainable

in practical cases, a slight violation of the particle number is to be expected, usually in the range of 2-3
In contrast, Gorkov-SCGF [26 84] does not suffer from this issue, as the particle number is fixed exactly on

in this framework. This is one of the main motivations for introducing Gorkov corrections, as we
in Sec.

In this work, we do not implement a full Gorkov approach for infinite matter. However, we do study an
in which first-order Gorkov corrections are introduced on top of Dyson-ADC (Sec. ).
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Combined Gkv-ADC(1) + Dys ADC(3)
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αγ (ω)Σ⋆, g3g4

γδ (ω)Gg4g2
αδ (ω)

G
g1g2
αβ (ω) → G

OpRS, g1g2
αβ (ω) , ω

OpRS(k) → ε
OpRs(k) = µ± ω

OpRS(k)

S(k,ω) = ∓
1

π

ℑmG
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k=k′ (ω)



Summary

T
h
an

k 
yo

u 
fo

r 
yo

ur
 a

tt
e
nt

io
n!

!!

!Optimised reference states stabilise computaiotions — valid alternative to Nat. Orb., ecc… 

! Improved spectroscpy from polarization propagators improbe with should-phonons but current 

implementation are still outdated.  

!Diagrammatic Monte Carlo is a promising method to go forward on high precision simulations. 

!SCGF Gorkov/ADC(3) computations in nuclear matter in the way. Applications to Nuclear DFT.
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And thanks to my collaborators (over the years…):


