Mean-field approximation on steroids: description of the deuteron

Benjamin Bally
(T. Duguet, A. Scalesi, V. Somà, L. Zurek)

ESNT workshop - 21/05/2024

Motivations

- Can we describe the deuteron with a mean-field-like picture?
\diamond Is the mean-field approximation justified for light systems?

Motivations

- Can we describe the deuteron with a mean-field-like picture?
\diamond Is the mean-field approximation justified for light systems?
\diamond Is deuteron even bound?

Motivations

- Can we describe the deuteron with a mean-field-like picture?
\diamond Is the mean-field approximation justified for light systems?
\diamond Is deuteron even bound?
\diamond If yes, how good a description can we get?

Motivations

- Can we describe the deuteron with a mean-field-like picture?
\diamond Is the mean-field approximation justified for light systems?
\diamond Is deuteron even bound?
\diamond If yes, how good a description can we get?
- Spectroscopy of an odd-odd nucleus!

Motivations

- Can we describe the deuteron with a mean-field-like picture?
\diamond Is the mean-field approximation justified for light systems?
\diamond Is deuteron even bound?
\diamond If yes, how good a description can we get?
- Spectroscopy of an odd-odd nucleus!
- Playground to study the impact of many-body approximations on renormalization

Drissi et al., EPJA 56, 119 (2020)

Motivations

- Can we describe the deuteron with a mean-field-like picture?
\diamond Is the mean-field approximation justified for light systems?
\diamond Is deuteron even bound?
\diamond If yes, how good a description can we get?
- Spectroscopy of an odd-odd nucleus!
- Playground to study the impact of many-body approximations on renormalization

Drissi et al., EPJA 56, 119 (2020)

- Introduce many concepts that will be discussed this week
\Rightarrow talks by Andrea, Mikael, Alberto, Jiangming, Thomas, ...

Chiral Hamiltonian

- Two-body Hamiltonian: EM500 at N3LO + SRG(1.8)

Entem et al., PRC 68, 041001(R) (2003) ; Hebeler et al., PRC 83, 031301 (2011)

Quantity	Experiment	EM500
J^{π}	1^{+}	1^{+}
$E(\mathrm{MeV})$	-2.2246	-2.2246
$Q_{s}\left(\mathrm{efm}^{2}\right)$	+0.286	$+0.285^{*}$
$\mu\left(\mu_{N}\right)$	+0.857	$?$
$a_{2}(\mathrm{fm})$	$5.419(7)$	5.417
$r_{2}(\mathrm{fm})$	$1.753(8)$	1.752

* "Including MEC and RC in the amount of $0.010 \mathrm{fm}^{2 "} \rightarrow \approx+0.275$ at one-body level

Computational aspects

- Numerical suite TAURUS

Bally et al., EPJA 57, 69 (2021) ; Bally et al., EPJA 60, 62 (2024)

Computational aspects

- Numerical suite TAURUS

Bally et al., EPJA 57, 69 (2021) ; Bally et al., EPJA 60, 62 (2024)

\diamond Spherical Harmonic Oscillator basis (m-scheme)
\diamond Real general Bogoliubov reference states
\diamond Variation after particle-number projection
\diamond Projection after variation: Z, N, J, π

- GitHub: https://github.com/project-taurus

Computational aspects

- Numerical suite TAURUS

Bally et al., EPJA 57, 69 (2021) ; Bally et al., EPJA 60, 62 (2024)

\diamond Spherical Harmonic Oscillator basis (m-scheme)
\diamond Real general Bogoliubov reference states
\diamond Variation after particle-number projection
\diamond Projection after variation: Z, N, J, π

- GitHub: https://github.com/project-taurus
- Topaze supercomputer (CEA/CCRT)

Natural attempt: Hartree-Fock (HF)

- Minimizes the energy exploring the variational space of Slater determinants

$$
\delta \frac{\langle\Phi| H|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \quad \text { with } \quad|\Phi\rangle=\prod_{i} a_{i}^{\dagger}|0\rangle
$$

Natural attempt: Hartree-Fock (HF)

- Minimizes the energy exploring the variational space of Slater determinants

$$
\delta \frac{\langle\Phi| H|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \quad \text { with } \quad|\Phi\rangle=\prod_{i} a_{i}^{\dagger}|0\rangle
$$

- Very general HF: breaks all spatial symmetries! \rightarrow deformed HF (dHF)

Natural attempt: Hartree-Fock (HF)

- Minimizes the energy exploring the variational space of Slater determinants

$$
\delta \frac{\langle\Phi| H|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \quad \text { with } \quad|\Phi\rangle=\prod_{i} a_{i}^{\dagger}|0\rangle
$$

- Very general HF: breaks all spatial symmetries! \rightarrow deformed HF (dHF)

Order parameter: $\eta \equiv q e^{i \Omega}$

Natural attempt: Hartree-Fock

- Not bound at dHF level

Some juice: projection after variation (PAV)

- Symmetry-broken states (rotational invariance, parity) do not have good quantum numbers

$$
|\Phi\rangle=\sum_{J K \pi} \sum_{\epsilon} c_{\epsilon}^{J K \pi}\left|\Psi_{\epsilon}^{J K \pi}\right\rangle
$$

Some juice: projection after variation (PAV)

- Symmetry-broken states (rotational invariance, parity) do not have good quantum numbers

$$
|\Phi\rangle=\sum_{J K \pi} \sum_{\epsilon} c_{\epsilon}^{J K \pi}\left|\Psi_{\epsilon}^{J K \pi}\right\rangle
$$

- Restore the symmetries through quantum-number projection

$$
\left|\Psi_{\epsilon}^{J M \pi}\right\rangle \equiv \sum_{K=-J}^{K} f_{\epsilon K}^{J \pi} P_{M K}^{J} P^{\pi}|\Phi\rangle
$$

with

$$
\begin{aligned}
& P_{M K}^{J}=\frac{2 J+1}{16 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \int_{0}^{4 \pi} d \gamma D_{M K}^{J *}(\alpha, \beta, \gamma) R(\alpha, \beta, \gamma) \\
& P^{\pi}=\frac{1}{2}(1+\pi \Pi) \\
& \operatorname{diag}\left(\langle\Phi| H P_{K K^{\prime}}^{J} P^{\pi}|\Phi\rangle\right) \longrightarrow f_{\epsilon K}^{J \pi}
\end{aligned}
$$

Some juice: projection after variation (PAV)

- Explores the phase of the order parameter

- Projected states:
\diamond Superposition of rotated states \rightarrow not a product state anymore!
\diamond Good quantum numbers
\diamond At least one of them has a lower energy than $\langle\Phi| H|\Phi\rangle$
- Explores the phase of the order parameter

- Projected states:
\diamond Superposition of rotated states \rightarrow not a product state anymore!
\diamond Good quantum numbers
\diamond At least one of them has a lower energy than $\langle\Phi| H|\Phi\rangle$
\diamond Depends inherently on reference state $|\Phi\rangle$

Some juice: projection after variation (PAV)

- Explores the phase of the order parameter

- Projected states:
\diamond Superposition of rotated states \rightarrow not a product state anymore!
\diamond Good quantum numbers
\diamond At least one of them has a lower energy than $\langle\Phi| H|\Phi\rangle$
\diamond Depends inherently on reference state $|\Phi\rangle$
- PAV: determine $|\Phi\rangle$ and then project

Some juice: dHF + PAV

- Bound by $\approx 100 \mathrm{keV}$, but very far away from experimental value

Different juice: Hartree-Fock-Bogoliubov (pairing)

- Minimizes the energy exploring the variational space of Bogoliubov quasi-particle states

$$
\begin{gathered}
\delta \frac{\langle\Phi| H|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \quad \text { with } \quad|\Phi\rangle=\prod_{i} \beta_{i}|0\rangle \\
\binom{\beta}{\beta^{\dagger}}=\left(\begin{array}{cc}
U^{\dagger} & V^{\dagger} \\
V^{T} & U^{T}
\end{array}\right)\binom{a}{a^{\dagger}} \equiv \mathcal{W}^{\dagger}\binom{a}{a^{\dagger}} \quad \mathcal{W} \mathcal{W}^{\dagger}=\mathcal{W}^{\dagger} \mathcal{W}=1
\end{gathered}
$$

Different juice: Hartree-Fock-Bogoliubov (pairing)

- Minimizes the energy exploring the variational space of Bogoliubov quasi-particle states

$$
\begin{gathered}
\delta \frac{\langle\Phi| H|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \quad \text { with } \quad|\Phi\rangle=\prod_{i} \beta_{i}|0\rangle \\
\binom{\beta}{\beta^{\dagger}}=\left(\begin{array}{cc}
U^{\dagger} & V^{\dagger} \\
V^{T} & U^{T}
\end{array}\right)\binom{a}{a^{\dagger}} \equiv \mathcal{W}^{\dagger}\binom{a}{a^{\dagger}} \quad \mathcal{W} \mathcal{W}^{\dagger}=\mathcal{W}^{\dagger} \mathcal{W}=1
\end{gathered}
$$

- Includes pairing correlations but breaks particle-number conservation

$$
|\Phi\rangle=\sum_{Z N J K \pi} \sum_{\epsilon} c_{\epsilon}^{Z N J K \pi}\left|\Psi_{\epsilon}^{Z N J K \pi}\right\rangle
$$

Different juice: Hartree-Fock-Bogoliubov (pairing)

- Minimizes the energy exploring the variational space of Bogoliubov quasi-particle states

$$
\begin{gathered}
\delta \frac{\langle\Phi| H|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \quad \text { with } \quad|\Phi\rangle=\prod_{i} \beta_{i}|0\rangle \\
\binom{\beta}{\beta^{\dagger}}=\left(\begin{array}{cc}
U^{\dagger} & V^{\dagger} \\
V^{T} & U^{T}
\end{array}\right)\binom{a}{a^{\dagger}} \equiv \mathcal{W}^{\dagger}\binom{a}{a^{\dagger}} \quad \mathcal{W} \mathcal{W}^{\dagger}=\mathcal{W}^{\dagger} \mathcal{W}=1
\end{gathered}
$$

- Includes pairing correlations but breaks particle-number conservation

$$
|\Phi\rangle=\sum_{Z N J K \pi} \sum_{\epsilon} c_{\epsilon}^{Z N J K \pi}\left|\Psi_{\epsilon}^{Z N J K \pi}\right\rangle
$$

- Very general HFB \rightarrow dHFB(np)
\diamond neutron-proton pairing
\diamond odd-odd nuclei
\diamond breaks all spatial symmetries

Different juice: dHFB(np)

Different juice: dHFB(np)

- Particle-number nonconserving theory: missing 3 N and wrong center of mass Hergert et al., PLB 682, 27 (2009)

Cocktail of juices: dHFB(np) + PAV

- Projected state now reads

$$
\left|\Psi_{\epsilon}^{Z N J M \pi}\right\rangle \equiv \sum_{K=-J}^{K} f_{\epsilon K}^{Z N J \pi} P^{Z} P^{N} P_{M K}^{J} P^{\pi}|\Phi\rangle
$$

with

$$
\begin{aligned}
& P^{Z}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi_{Z} e^{i \phi_{Z}(Z-Z)} \\
& P^{N}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi_{N} e^{i \phi_{N}(N-N)} \\
& \operatorname{diag}\left(\langle\Phi| H P^{Z} P^{N} P_{K K^{\prime}}^{J} P^{\pi}|\Phi\rangle\right) \longrightarrow f_{\epsilon K}^{Z N J \pi}
\end{aligned}
$$

Decomposition (Z, N) of the reference states

- $\operatorname{dHFB}(\mathrm{np})$ favors $N=Z$ components \rightarrow consistent with 2 N interaction

Cocktail of juices: dHFB(np) + PAV

- Not bound anymore and even worse than dHF

Much stronger juice: variation after projection (VAP)

- Minimizes the particle-number projected energy exploring the variational space of Bogoliubov quasi-particle states

$$
\delta \frac{\langle\Phi| H P^{Z} P^{N}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \quad \text { with } \quad|\Phi\rangle=\prod_{i} \beta_{i}|0\rangle
$$

Much stronger juice: variation after projection (VAP)

- Minimizes the particle-number projected energy exploring the variational space of Bogoliubov quasi-particle states

$$
\delta \frac{\langle\Phi| H P^{Z} P^{N}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=0 \quad \text { with } \quad|\Phi\rangle=\prod_{i} \beta_{i}|0\rangle
$$

- Explores the correct subspace (Z, N) of the Hilbert space
- Much more computationally demanding

Much stronger juice: dVAP

- Bound and very good agreement with experimental data

Decomposition (Z, N) of the reference states

- Different decompositions for $\operatorname{dHFB}(\mathrm{np})$ and $\operatorname{dVAP}(\mathrm{np})$

Variability of reference states

- Different Bogoliubov states can give same projected energy at dVAP(np) level

Much stronger juice: dVAP

- Bound and very good agreement with experimental data

Cocktail of juices: dVAP + PAV

- Does not change much (VAP states are almost pure $J^{\pi}=1^{+}$)

Convergence of the energy

Occupations in SHO basis of 1^{+}state $\left(e_{\max }=12\right)$

Electromagnetic moments

- We use textbook one-body operators

$$
\begin{aligned}
\mu\left(J_{\epsilon}^{\pi}\right)= & \left.\left\langle\Psi_{\epsilon}^{Z N J M=J \pi}\right| g_{l}\left|+g_{s} s\right| \Psi_{\epsilon}^{Z N J M=J \pi}\right\rangle \\
Q_{s}\left(J_{\epsilon}^{\pi}\right)= & \sqrt{\frac{16 \pi}{5}}\left\langle\Psi_{\epsilon}^{Z N J M=J \pi}\right| e r^{2} Y_{20}\left|\Psi_{\epsilon}^{Z N J M=J \pi}\right\rangle \\
r_{c h}^{2}\left(J_{\epsilon}^{\pi}\right)= & \left\langle\Psi_{\epsilon}^{Z N J M \pi}\right| r_{p}^{2}\left|\Psi_{\epsilon}^{Z N J M \pi}\right\rangle+\left\langle r^{2}\right\rangle_{(p)}+\frac{N}{Z}\left\langle r^{2}\right\rangle_{(n)}+\left\langle r^{2}\right\rangle_{(s o)}+\frac{3(\hbar c)^{2}}{4\left(m c^{2}\right)^{2}} \\
& \text { (includes center of mass correction) }
\end{aligned}
$$

- Higher-order corrections would be needed to get exact results
Miyagi et al., arXiv:2311.14383 (2023)

Epelbaum, talk at TRIUMF ab initio workshop (2024)

Magnetic moment

- Good convergence and close to experimental value

Quadrupole moment

- At $e_{\max }=10,12$, large variations depending on K-mixing
- Still, seems to converge towards the correct (EM500) value

Charge radius

- Charge radius not converged in terms of $\hbar \omega$ and $e_{\max }$
- Importance of higher-order corrections?

Energy "spectrum" ($\hbar \omega=12)$

Energy "spectrum" ($\hbar \omega=12)$

$$
1_{\text {intr }}^{+} \otimes 0_{\text {com }}^{+} \quad 1_{\text {intr }}^{+} \otimes 1_{\text {com }}^{-}
$$

Energy "spectrum" ($\hbar \omega=12)$

$1_{\text {intr }}^{+} \otimes 0_{\text {com }}^{+} \quad 1_{\text {intr }}^{+} \otimes 1_{\text {com }}^{-}$

Energy "spectrum" $(\hbar \omega=12)$

$$
1_{\text {intr }}^{+} \otimes 0_{\text {com }}^{+} \quad 1_{\text {intr }}^{+} \otimes 1_{\text {com }}^{-} \quad 1_{\text {intr }}^{+} \otimes 2_{\text {com }}^{+}
$$

Energy "spectrum" ($\hbar \omega=12)$

$$
1_{\text {intr }}^{+} \otimes 0_{\text {com }}^{+} \quad 1_{\text {intr }}^{+} \otimes 1_{\text {com }}^{-} \quad 1_{\text {intr }}^{+} \otimes 2_{\text {com }}^{+}
$$

Energy "spectrum" $(\hbar \omega=12)$

$$
1_{\text {intr }}^{+} \otimes 0_{\text {com }}^{+} \quad 1_{\text {intr }}^{+} \otimes 1_{\text {com }}^{-} \quad 1_{\text {intr }}^{+} \otimes 2_{\text {com }}^{+}
$$

- Factorization of the center of mass

Hagen et al., PRL 103, 062503 (2009)

Decomposition $\left(J^{\pi}\right)$ of the reference states $(\hbar \omega=12)$

- Components from center of mass excitations become larger with increasing $e_{\max }$

Scattering properties

- Harmonic trap: $H_{t}=H+\frac{1}{2} m \omega_{t}^{2} r^{2}=H+\frac{1}{2} \frac{\left(m c^{2}\right)\left(\hbar \omega_{t}\right)^{2}}{(\hbar c)^{2}} r^{2}$

Scattering properties

- Harmonic trap: $H_{t}=H+\frac{1}{2} m \omega_{t}^{2} r^{2}=H+\frac{1}{2} \frac{\left(m c^{2}\right)\left(\hbar \omega_{t}\right)^{2}}{(h c)^{2}} r^{2}$
- Busch (or BERW) formula for $I=0$

Stetcu et al., Ann. Phys. 325, 1644 (2010)

$$
-2 \frac{\sqrt{\left(\mu c^{2}\right) \hbar \omega_{t}}}{\hbar c} \frac{\Gamma\left(\frac{3}{4}-\frac{E_{t}}{2 \hbar \omega_{t}}\right)}{\Gamma\left(\frac{1}{4}-\frac{E_{t}}{2 \hbar \omega_{t}}\right)}=k \cot \left(\delta_{0}[k]\right)=\underbrace{-\frac{1}{a_{2}}+\frac{1}{2} r_{2} k^{2}+\frac{1}{4} P_{2} k^{4}+\ldots}_{\text {Effective Range Expansion (ERE) }}
$$

with $\mu=\frac{m}{2}$ and $k=\frac{\sqrt{\left(\mu c^{2}\right) E_{t}}}{h c}$

Scattering properties

- Harmonic trap: $H_{t}=H+\frac{1}{2} m \omega_{t}^{2} r^{2}=H+\frac{1}{2} \frac{\left(m c^{2}\right)\left(\hbar \omega_{t}\right)^{2}}{(h c)^{2}} r^{2}$
- Busch (or BERW) formula for $I=0$

Stetcu et al., Ann. Phys. 325, 1644 (2010)

$$
-2 \frac{\sqrt{\left(\mu c^{2}\right) \hbar \omega_{t}}}{\hbar c} \frac{\Gamma\left(\frac{3}{4}-\frac{E_{t}}{2 \hbar \omega_{t}}\right)}{\Gamma\left(\frac{1}{4}-\frac{E_{t}}{2 \hbar \omega_{t}}\right)}=k \cot \left(\delta_{0}[k]\right)=\underbrace{-\frac{1}{a_{2}}+\frac{1}{2} r_{2} k^{2}+\frac{1}{4} P_{2} k^{4}+\ldots}_{\text {Effective Range Expansion (ERE) }}
$$

with $\mu=\frac{m}{2}$ and $k=\frac{\sqrt{\left(\mu c^{2}\right) E_{t}}}{h c}$

- We can stop at ERE(2) at low energies

$$
-2 \frac{\sqrt{\left(\mu c^{2}\right) \hbar \omega_{t}}}{\hbar c} \frac{\Gamma\left(\frac{3}{4}-\frac{E_{t}}{2 \hbar \omega_{t}}\right)}{\Gamma\left(\frac{1}{4}-\frac{E_{t}}{2 \hbar \omega_{t}}\right)}=-\frac{1}{a_{2}}+\frac{1}{2} \frac{\left(\mu c^{2}\right) r_{2}}{(\hbar c)^{2}} E_{t}
$$

Scattering properties

- Correct behavior but would need large values of $e_{\max }$ to fully converge

Scattering properties

- At $e_{\max }=10$, for $\hbar \omega_{t} \lesssim \frac{(\hbar c)^{2}}{\left(\mu c^{2}\right) a_{2}^{2}}$, a fit gives: $a_{2 t}=5.49, r_{2 t}=1.71$

Summary

Quantity	Experiment	EM500	$\mathrm{dVAP}(\mathrm{pn})+\mathrm{PAV}$
J^{π}	1^{+}	1^{+}	1^{+}
$E(\mathrm{MeV})$	-2.2246	-2.2246	-2.222
$Q_{s}\left(\mathrm{efm}^{2}\right)$	+0.286	$+0.275^{*}$	$[+0.25,+0.31]$
$\mu\left(\mu_{N}\right)$	+0.857	$?$	$[+0.860,+0.865]$
$a_{2}(\mathrm{fm})$	$5.419(7)$	5.417	$5.49\left(e_{\max }=10\right)$
$r_{2}(\mathrm{fm})$	$1.753(8)$	1.752	$1.71\left(e_{\max }=10\right)$

- Need to remove the center of mass $\left(Q_{s}\right)$
- Very good description of observables

Summary

Quantity	Experiment	EM500	dVAP $(\mathrm{pn})+\mathrm{PAV}$
J^{π}	1^{+}	1^{+}	1^{+}
$E(\mathrm{MeV})$	-2.2246	-2.2246	-2.222
$Q_{s}\left(\mathrm{efm}^{2}\right)$	+0.286	$+0.275^{*}$	$[+0.25,+0.31]$
$\mu\left(\mu_{N}\right)$	+0.857	$?$	$[+0.860,+0.865]$
$a_{2}(\mathrm{fm})$	$5.419(7)$	5.417	$5.49\left(e_{\max }=10\right)$
$r_{2}(\mathrm{fm})$	$1.753(8)$	1.752	$1.71\left(e_{\max }=10\right)$

- Need to remove the center of mass $\left(Q_{s}\right)$
- Very good description of observables
\rightarrow reminder: BCS(np) exact in low-density symmetric nuclear matter
Baldo et al., PRC 52, 975 (1995) ; Lombardo et al., PRC 64, 064314 (2001)

Conclusions

- Mean-field approximation on steroids perfectly describes the deuteron!

Conclusions

- Mean-field approximation on steroids perfectly describes the deuteron!
- Illustrates the usefulness of symmetry-breaking/restoration schemes

Conclusions

- Mean-field approximation on steroids perfectly describes the deuteron!
- Illustrates the usefulness of symmetry-breaking/restoration schemes
- Study the growing importance of dynamical correlations with A

Conclusions

- Mean-field approximation on steroids perfectly describes the deuteron!
- Illustrates the usefulness of symmetry-breaking/restoration schemes
- Study the growing importance of dynamical correlations with A
- Analyze renormalization in pionless EFT

