

ESNT WORKSHOP

Emulation of PGCM calculations using the eigenvector continuation method

A. Roux

T. Duguet, J-P. Ebran, V. Somà, M. Frosini

24/05/2024

Outline

Part 1 : general considerations

- Introduction
- GCM formalism
- GCM workflow
- Emulator workflow
- Emulator quality
- Grassmannian distance

Part 2 : results

- The model
- Subspace distance
- Brute-force self-learning
- Fixed common space
- Under and over training
- Emulator quality vs subspace distance
- Computational cost

Part 1: general considerations Introduction

- Beyond mean-field approximation of A-body nuclear problem (HFB)
- Static correlations & collective spectroscopy
- EC ----- Eigenvector Continuation*
 - Emulate eigensolutions of parametrized hamiltonian

PGCM-EC

- Same underlying formalism
- Taking advantage of

$$H^{\mu} = \sum_{k=1}^{n_p} \mu^k h_k$$

- \bullet Emulate PGCM for arbitrary μ with negligible cost
- Uncertainty propagation

* D.Frame et al, PRL 121, 032508 (2018)
A.Ekstrom, G.Hagen, arXiv:1910.02922v1 (2019)
T.Duguet et al, arXiv:2310.19419v1 (2023)

Part 1: general considerations GCM formalism

Part 1: general considerations GCM workflow

Part 1: general considerations Emulator workflow

Part 1: general considerations Emulator quality

- Parameter distance : Euclidean distance
- Space distance : Grassmannian distance
- Emulator quality : relative error

Are they correlated ?

Part 1 : general considerations Grassmannian distance

 ${\ensuremath{\bullet}}\, \mathcal{H}, \, n\text{-dimensional Hilbert space}$

• $\operatorname{Gr}(k,\mathcal{H})$ set of k-dimensional linear subspace of \mathcal{H}

$$\longrightarrow = O(n) / (O(k) \times O(n-k))$$

→ homogeneous space

- \blacktriangleright riemannian manifold
 - ◆ geodesic distance

• For $V_1 \in \operatorname{Gr}(k, \mathcal{H}), V_2 \in \operatorname{Gr}(l, \mathcal{H}), k < l *$

define $\Omega^{-}(V_2) = \{ W \in \operatorname{Gr}(k, \mathcal{H}) \mid W \subset V_2 \} \subset \operatorname{Gr}(k, \mathcal{H})$

• $\delta(V_1, V_2) = \text{minimal geodesic distance from } V_1 \text{ to } \Omega^-(V_2)$

• $\delta(V_1, V_2) = 0 \iff V_1 \subset V_2 \text{ or } V_2 \subset V_1$

• δ is a premetric *Ye and Lim, SIAM (2016)

- Readily computable
 - $(u_i)_{1 \le i \le k}$ orthonormal basis of V_1 $(v_i)_{1 \le i \le l}$ orthonormal basis of V_2

$$\bullet X_{ij} = \langle u_i, v_j \rangle \longrightarrow \text{SVD}$$

•
$$S = (s_1, \cdots, s_m) = (\cos \theta_1, \cdots, \cos \theta_m)$$

 $0 \le \theta_i \le \frac{\pi}{2}$ principal angles $m = \min(k, l)$

•
$$\delta(V_1, V_2) = \left(\sum_{i=1}^m \theta_i^2\right)^{\frac{1}{2}} \le \frac{\pi}{2}\sqrt{m}$$

upper bound attained iff V_1 and V_2 are orthogonal 6/16

Part 1: general considerations Grassmannian distance

Part 2 : Results The model

- ²⁰Ne Nucleus
- No particule number & J^2 projections
- Brink & Boecker interaction (4 + 2 parameters) $V^{\text{BB}} = \sum_{i=0}^{1} (w_i - m_i P_\sigma P_\tau) e^{-(r_1 - r_2)^2/\mu_i^2}$ + kinetic & COM correction
 - $\rightarrow n_p = 4$
- mesh on β_2 , β_3 with $n_q = 53$ points
- basis truncation : 8 oscillator shells
- Latin Hypercube Sampling in $[\lambda_0 10, \lambda_0 + 10]^4$ with $n_{\text{pes}} = 50$ points
- 50×53 HF states \rightarrow computation time : 736 hours • $\frac{(50 \times 53)^2}{2} \times 6$ kernels \rightarrow computation time : 2703 hours ^{0.0-}

Nominal parametrization

Part 2 : Results The model

- ²⁰Ne Nucleus
- No particule number & J^2 projections
- Brink & Boecker interaction (4 + 2 parameters) $V^{\text{BB}} = \sum_{i=0}^{1} (w_i - m_i P_\sigma P_\tau) e^{-(r_1 - r_2)^2/\mu_i^2}$ + kinetic & COM correction
 - $\longrightarrow n_p = 4$
- mesh on β_2 , β_3 with $n_q = 53$ points
- basis truncation : 8 oscillator shells
- Latin Hypercube Sampling in $[\lambda_0 10, \lambda_0 + 10]^4$ with $n_{\text{pes}} = 50$ points
- 50 × 53 HF states → computation time : 736 hours
 (50×53)²/₂ × 6 kernels → computation time : 2703 hours

Nominal parametrization

$$w_0 = -72.21 \text{ MeV}$$

 $m_0 = -68.39 \text{ MeV}$
 $w_1 = -595.55 \text{ MeV}$
 $m_1 = -206.05 \text{ MeV}$
 $\mu_0 = 1.4 \text{ fm}$
 $\mu_1 = 0.7 \text{ fm}$
Fixed at
nominal values

Part 2 : Results Subspace distance

 \bigcirc Distance decrease quasi-exponentially for (essentially) all $41 \leq i \leq 50$

•
$$\delta\left(E_{53}^{\lambda_{43}}, E_{53}^{L_{40}}\right) \simeq \delta\left(E_{53}^{\lambda_{45}}, E_{53}^{L_{40}}\right) \simeq 0.1 \text{ and } \delta\left(E_{53}^{\lambda_{48}}, E_{53}^{L_{40}}\right) \simeq 1$$

 $- \triangleright E_{53}^{\lambda_{43}}, E_{53}^{\lambda_{45}}$ and $E_{53}^{\lambda_{48}}$ not fully emulated by training space

• For $1 \le n_t < n_t \max$ take as $n_t + 1$ training point the one minimizing ground state relative error

• For $n_a = 3$ very good reprodution of $E_0 E_1 E_2$

Best relative error : 0.3 % (~ 0.4 MeV) good reprodution of E_3

► Best relative error : 3 % (~ 4 MeV)

- Very good accuracy
- For $n_t \ge 6$ accuracy slowly degrades

Good accuracy but not fantastic

For large n_t accuracy keeps improving slowly

Part 2: Results Emulator vs simulator in fixed common space

Part 2: Results Emulator vs simulator in fixed common space

GCM subspace emulation is the limiting factor

Need to investigate subspace distance

Part 2 : Results Under-training and over-training

Part 2: Results Correlation of emulator quality with subspace distance

 d_{space}

Part 2 : Results Correlation of emulator quality with subspace distance mean % error E_0 Mean ground-state energy error 0.6strongly correlated with mean distance $n_t = 14$ $n_{a} = 3$ $\rho = -0.52$ For $n_a = 3$ and $n_t = 1$ 0.5-Distance from 4 to 10 • 6.0 % error *E*0 Mean error around 10% Strong correlation between error and distance to training (Large) error dominated by GCM space 0.2 too distant from training space • For $n_a = 3$ and $n_t = 14$ 0.1-All distances to training space reduced to ~1 0.0-Mean error down to 0.2 % 10 **Residual error dispersion** 6 8 d_{space} not correlated with residual distance

Due to over-training

14/16

Part 2 : Results Computational cost

Conclusion

- -Good reproduction of absolute and excitation enrgies
- -Large computational speedup
- -Emulation limited by lack of common space

Perspectives

- -Emulation of charge radii (already done but not shown)
- -Including projection on J and emulation of electromagnetic transitions
- -Moving to Chiral EFT Hamiltonians
- -Large scale applications and sensitivity analysis