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Nsh EHF [MeV] r [fm] �
7 -195.65 2.991 0.378
9 -196.21 3.009 0.392
11 -196.93 3.011 0.383
13 -197.15 3.016 0.390

TABLE I: Hartree-Fock ground-state energy EHF, root mean square radius r and deformation � of the HF
vacuum adopted for the Nsh study in 24Mg.

III. NUMERICAL DETAILS

Equations (11), (12) and (13) have been implemented in such a way to accommodate results from RPA on top
of HF in an harmonic oscillator basis. Such implementation is based on a series of basis transformations, going
from the elementary matrix elements of Jy in the spherical harmonic oscillator basis to the complicated matrix
elements. Details can be found in Ref. [21]. The implementation was validated through several steps, including the
application to a spherical system, that is 4He, where the projected and the original strengths were found to coincide
up to numerical precision.

Results are presented in this work for 24Mg, using the SkM⇤ Skyrme EDF [22]. The QRPA code originally
introduced in Ref. [23] is used. The code is built for open-shell systems and it is based on the HFB solution
obtained in a harmonic oscillator (HO) basis via the code HFBTHO in the version of Ref. [24]. It was used, without
projection, in Ref. [25] for calculations of the monopole and quadrupole strengths in Molybdenum isotopes. The
HO basis is characterised by the value of ~! = 1.2 ⇥ 41/A1/3 [MeV]. The axial quadrupole deformation parameter,
defined in this work as [26]
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, (16)

is employed to generate the reference state of the QRPA solution. Convergence with respect to the number of major
shells Nsh included in the HO basis was studied. In the present case, a non-superfluid (i.e. HF) solution for 24Mg
was found for all considered Nsh, whose numerical details are given in Tab. I. Accordingly, the QRPA formalism
reduces to the RPA. The RPA problem is solved in the standard matrix form
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RPA eigenvalues and eigenvectors are found by using diagonalization techniques for sparse matrices. In the present
work, RPA equations are solved for K = 0. The strength associated with the standard monopole and quadrupole
operator, i.e.

P
i r

2
i and

P
i r

2
i Y20 respectively, are then computed. The strength’s stability against changes of the

HO and RPA p-h basis dimension is investigated. The p-h basis dimension Ecut is defined in terms of the upper
value of the energies of the K = 0 p-h pairs included in the calculation. The convergence of the RPA spectra with
respect to Nsh and Ecut variations is presented in Fig. 1. Note that here, and in the following figures, the discrete
RPA strength is averaged using Lorentzian functions with a width of � = 0.5 MeV.

The convergence with respect to the harmonic oscillator basis size Nsh is first addressed for a fixed value of the
maximal ph-excitation energy value Ecut = 100 MeV. The original RPA response displays a converging pattern in
the quadrupole channel, as seen in the bottom panel of Fig. 1 (left). The low-energy component (below ⇠20 MeV)
of the monopole response also converges for relatively small Nsh. However, the high-energy component (above
⇠20 MeV) shows a strong dependence on the dimension of the HO basis and the fragmentation is still increasing
for the largest model space employed. This phenomenon is attributed to high-lying excitations involving states in
the continuum, such that details of single-particle configurations strongly a↵ect the global response.

The dependence on the ph excitation energy cut-o↵ Ecut is then addressed for a fixed number of harmonic
oscillator shells Nsh = 11. Monopole and quadrupole RPA responses are displayed in Fig. 1 (right). A converging
pattern is observed, inferring that a cuto↵ of Ecut =80 MeV is already su�cient to produce a reliable linelshape
for the main peaks, whereas results for Ecut =100 MeV and Ecut =120 MeV being practically identical.

Final results, unless otherwise specified, correspond to Nsh = 11 and Ecut =100 MeV in the following.

IV. RESULTS AND DISCUSSION

In order to understand the e↵ects of AMP on the RPA strength, its implications on the HF reference state are also
addressed. The J-components of the HF ground state are displayed in Fig. 2 and are in agreement with Ref. [27],
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Eventually rewrites as (Q)RPA equations

[Jancovici, Schiff, 1964]
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Studied quantity: monopole strength

• Transition amplitudes: height of peaks

• Energy difference: position of peaks

Ab-initio PGCM and QRPA consistent numerical settings (systematic study in 46Ti)

● Quantities expanded on harmonic oscillator basis (characterised by ħω, emax , e3max)

● Family of chiral NN + in-medium 3N interactions (NLO, N2LO and N3LO)
○ T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral two-plus three-nucleon interactions for 

accurate nuclear structure studies", Phys. Lett. B, 808, 2020

○ In-vacuum SRG evolution (α=0.04 fm4, α=0.08 fm4)

○ M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, “In-medium k-body reduction of n-body 
operators”, The European Physical Journal A, 57(4), 2021
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Ab-initio PGCM and QRPA consistent numerical settings (systematic study in 46Ti)

● Quantities expanded on harmonic oscillator basis (characterised by ħω, emax , e3max)

● Family of chiral NN + in-medium 3N interactions (NLO, N2LO and N3LO)
○ T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral two-plus three-nucleon interactions for 
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• NO2B approximation

• 1-2 % uncertainty in low-lying exc

• Not tested for giant resonances

• LEC dependence of χ forces

• Few interactions compared

• Correlated to SRG
• Need for emulators (EC)

• Empirical knowledge, two coords r and β2
• More systematic choice needed

• Strong centroid dependence ~ 10 %

• Dispersion relative error ~ 20 %

• Truncates both H and many-body

• Comparison to PGCM-PT 

• Only tested for low-lying exc

• Correlated to SRG and generator coords

• Good overall convergence

• Centroid relative error ~ 1,6 %

• Dispersion relative error ~ 9,8 %

• Good overall convergence

• Centroid relative error ~ 1,6 %

• Dispersion relative error ~ 6 %

• Good overall convergence

• Centroid relative error ~ 0,6 %

• Dispersion relative error ~ 1,7 %

• e3max not studied (14 safe for GS) 10

Uncer t a int y b ud get



• Good overall convergence
• Centroid relative error ~ 0,6 %
• Dispersion relative error ~ 1,7 %
• e3max not studied (14 safe for GS) [Myiagi et al., PRC, 2022]
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(2) [Frosini, Duguet, Ebran, Bally, Hergert, Rodriguez, Roth, Yao and Somà, EPJA 58(64), 2022]

PGCM reliable for low-lying collective 
spectroscopy

Dynamical correlations mostly cancel out
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Monopole Strength
● Focus on the prolate-shape isomer

● Coupling to GQR generates splitting

    x     High peak = shifted “spherical” breathing mode

    x     Low peak = induced by coupling to GQR (K=0)

● Two-peak GMR on the prolate shape isomer

K=0 Quadrupole Strength

16

Total Energy Surface EHFB(β2,r)

+ β2

D eformat ion ef fect s in  p r o lat e 28S i



● Quantitative anharmonicities analysis

o Light nuclei are less harmonic

● Qualitatively similar results QRPA/PGCM

o Consistent monopole response 

o QRPA response less fragmented

● Case specific fragmentation, no quantitative correlation

● Projection contribution to fragmentation
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Ab initio PGCM nicely reproduces the experimental data

• Nicer description of the main resonance and fragmentation

Experimental data are useful and promising to test different many-body methods

Data are not unambiguous, i.e. higher resolution would be beneficial
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• 2-D PGCM in the (r, β2) plane

• Good agreement with experiment

• Multi-phonon states observed

• Harmonicity well confirmed
[Marevic, Regnier, Lacroix, PRC, 2023]

T w o-d imens ional ca lcu lat ions
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From f in i t e  nuc le i  t o  As t rophys ics

Nuclear compressibility 

• GMR

INCOMPRESSIBILITY IN FINITE NUCLEI AND . . . PHYSICAL REVIEW C 89, 044316 (2014)

Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the

044316-5
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a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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method [18]. As a matter of fact, the extraction proce-
dure is not unambiguous in itself. Furthermore, while
originally applying it to a couple of doubly closed-shell
nuclei (208Pb and 92Zr) led to consistent values of K1,
the more recent use of open-shell nuclei produced con-
flicting results.

The goal is to extract the value of K1 associated with
�EFT-based interactions via ab initio calculations. In
EDF calculations, it has become customary to extract
K1 by computing directly the symmetric nuclear mat-
ter EOS, while checking that EGMR is well reproduced
in a selected set of finite nuclei on the basis of the same
EDF parameterization. Another approach, presently in
use, consists of extracting K1 from the leptodermous
expansion of the finite-nucleus compressibility modu-
lus computed microscopically [19]. While the former
approach typically carries smaller uncertainties, the lat-
ter bypasses the need to compute the infinite matter
EOS.

The second approach was recently employed to extract
K1 for NNLOsat [20] and NNLOopt [21] �EFT-based
Hamiltonians via symmetry-adapted no core shell model
(SA-NCSM) calculations of 4He, 16O, 20Ne and 40Ca [22].
The extracted result for NNLOsat (K1 = 297) was
shown to be consistent, within the rather large extrapo-
lation uncertainties, with the value (K1 = 253) based
on the computation of the EOS with the same Hamilto-
nian.

Following the same protocol but only relying on a set of
intrinsically-deformed nuclei, i.e. 24Mg, 28Si and 46Ti,
the compressibility modulus K1 associated with the
N3LO Hamiltonian under use [6] is presently estimated
based on PGCM and QRPA calculations.

8.1 Finite-nucleus compression modulus

The first step consists of accessing the finite-system
compression modulus given by [19]

KA ⌘ m

~2 h �0

0 |r2lab| �0

0 iE2
GMR , (32)

which thus requires the ground-state mean-square mat-
ter radius and the GMR energy as inputs. In finite,
especially light and deformed, nuclei the GMR strength
is not concentrated into a single peak. Consequently,
the choice of EGMR to be used in Eq. (32) is neither
unique nor obvious. Specific derivations support the use
of Ẽ1 or Ẽ3 whereas general arguments also motivate
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Ē1

Fig. 7 Finite-nuclei compression modulus KA as a function of
A for PGCM and QFAM calculations. Di↵erent definitions of
the average GMR energy E GMR entering Eq. (32) are used,
see Eqs. (5) for the notation.

EGMR

QFAM PGCM
Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 18.48 21.19 17.19 17.72 20.23
28Si 18.88 20.91 18.04 18.45 20.60
46Ti 20.15 21.33 19.17 19.60 20.68

Table 10 Average GMR energies in MeV computed from
QFAM and PGCM calculations according to Eqs. (4).

the use of the centroid energy Ē1 [19]. In the following,
all three cases are tested17.

Based on the GMR energies provided in Tab. 10, the
set of KA values are given in Tab. 11 and displayed
in Fig. 7 as a function of A. The higher values of KA

in QRPA than in PGCM reflects the characteristics
of the GMR energies pointed out earlier on whenever
computing PGCM moments via the SOES approach as
presently done. The spread of KA values depending on
the definition of EGMR is the manifestation that Ẽ1

(Ẽ3) is more sensitive to the part of the strength located
at lower (higher) energies than Ē1. Eventually, KA can
typically vary by as much as 30% in 24Mg depending on
that choice. However, this variation quickly decreases
with A to reach 14% in 46Ti. Such a trend is encouraging
in view of extracting K1.

8.2 Extraction of K1

The method to extractK1 is based on the leptodermous
expansion of KA given by [19]

KA = Kvol +KsurfA
�1/3 +KCoulZ

2A�4/3 +Ksym�
2 ,

17Whenever a single mode exhausts the complete monopole
response, the three energies are the same and the choice is
thus straightforward.
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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method [18]. As a matter of fact, the extraction proce-
dure is not unambiguous in itself. Furthermore, while
originally applying it to a couple of doubly closed-shell
nuclei (208Pb and 92Zr) led to consistent values of K1,
the more recent use of open-shell nuclei produced con-
flicting results.

The goal is to extract the value of K1 associated with
�EFT-based interactions via ab initio calculations. In
EDF calculations, it has become customary to extract
K1 by computing directly the symmetric nuclear mat-
ter EOS, while checking that EGMR is well reproduced
in a selected set of finite nuclei on the basis of the same
EDF parameterization. Another approach, presently in
use, consists of extracting K1 from the leptodermous
expansion of the finite-nucleus compressibility modu-
lus computed microscopically [19]. While the former
approach typically carries smaller uncertainties, the lat-
ter bypasses the need to compute the infinite matter
EOS.

The second approach was recently employed to extract
K1 for NNLOsat [20] and NNLOopt [21] �EFT-based
Hamiltonians via symmetry-adapted no core shell model
(SA-NCSM) calculations of 4He, 16O, 20Ne and 40Ca [22].
The extracted result for NNLOsat (K1 = 297) was
shown to be consistent, within the rather large extrapo-
lation uncertainties, with the value (K1 = 253) based
on the computation of the EOS with the same Hamilto-
nian.

Following the same protocol but only relying on a set of
intrinsically-deformed nuclei, i.e. 24Mg, 28Si and 46Ti,
the compressibility modulus K1 associated with the
N3LO Hamiltonian under use [6] is presently estimated
based on PGCM and QRPA calculations.

8.1 Finite-nucleus compression modulus

The first step consists of accessing the finite-system
compression modulus given by [19]

KA ⌘ m

~2 h �0

0 |r2lab| �0

0 iE2
GMR , (32)

which thus requires the ground-state mean-square mat-
ter radius and the GMR energy as inputs. In finite,
especially light and deformed, nuclei the GMR strength
is not concentrated into a single peak. Consequently,
the choice of EGMR to be used in Eq. (32) is neither
unique nor obvious. Specific derivations support the use
of Ẽ1 or Ẽ3 whereas general arguments also motivate
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Fig. 7 Finite-nuclei compression modulus KA as a function of
A for PGCM and QFAM calculations. Di↵erent definitions of
the average GMR energy E GMR entering Eq. (32) are used,
see Eqs. (5) for the notation.

EGMR

QFAM PGCM
Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 18.48 21.19 17.19 17.72 20.23
28Si 18.88 20.91 18.04 18.45 20.60
46Ti 20.15 21.33 19.17 19.60 20.68

Table 10 Average GMR energies in MeV computed from
QFAM and PGCM calculations according to Eqs. (4).

the use of the centroid energy Ē1 [19]. In the following,
all three cases are tested17.

Based on the GMR energies provided in Tab. 10, the
set of KA values are given in Tab. 11 and displayed
in Fig. 7 as a function of A. The higher values of KA

in QRPA than in PGCM reflects the characteristics
of the GMR energies pointed out earlier on whenever
computing PGCM moments via the SOES approach as
presently done. The spread of KA values depending on
the definition of EGMR is the manifestation that Ẽ1

(Ẽ3) is more sensitive to the part of the strength located
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.
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proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.
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The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]
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where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA
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+KCoulZ
2A−4/3 + Kτ β
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Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0
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where E/A is the energy per particle. In a more realistic case
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must be written as
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GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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method [18]. As a matter of fact, the extraction proce-
dure is not unambiguous in itself. Furthermore, while
originally applying it to a couple of doubly closed-shell
nuclei (208Pb and 92Zr) led to consistent values of K1,
the more recent use of open-shell nuclei produced con-
flicting results.

The goal is to extract the value of K1 associated with
�EFT-based interactions via ab initio calculations. In
EDF calculations, it has become customary to extract
K1 by computing directly the symmetric nuclear mat-
ter EOS, while checking that EGMR is well reproduced
in a selected set of finite nuclei on the basis of the same
EDF parameterization. Another approach, presently in
use, consists of extracting K1 from the leptodermous
expansion of the finite-nucleus compressibility modu-
lus computed microscopically [19]. While the former
approach typically carries smaller uncertainties, the lat-
ter bypasses the need to compute the infinite matter
EOS.

The second approach was recently employed to extract
K1 for NNLOsat [20] and NNLOopt [21] �EFT-based
Hamiltonians via symmetry-adapted no core shell model
(SA-NCSM) calculations of 4He, 16O, 20Ne and 40Ca [22].
The extracted result for NNLOsat (K1 = 297) was
shown to be consistent, within the rather large extrapo-
lation uncertainties, with the value (K1 = 253) based
on the computation of the EOS with the same Hamilto-
nian.

Following the same protocol but only relying on a set of
intrinsically-deformed nuclei, i.e. 24Mg, 28Si and 46Ti,
the compressibility modulus K1 associated with the
N3LO Hamiltonian under use [6] is presently estimated
based on PGCM and QRPA calculations.

8.1 Finite-nucleus compression modulus

The first step consists of accessing the finite-system
compression modulus given by [19]

KA ⌘ m

~2 h �0

0 |r2lab| �0

0 iE2
GMR , (32)

which thus requires the ground-state mean-square mat-
ter radius and the GMR energy as inputs. In finite,
especially light and deformed, nuclei the GMR strength
is not concentrated into a single peak. Consequently,
the choice of EGMR to be used in Eq. (32) is neither
unique nor obvious. Specific derivations support the use
of Ẽ1 or Ẽ3 whereas general arguments also motivate
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Fig. 7 Finite-nuclei compression modulus KA as a function of
A for PGCM and QFAM calculations. Di↵erent definitions of
the average GMR energy E GMR entering Eq. (32) are used,
see Eqs. (5) for the notation.

EGMR

QFAM PGCM
Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 18.48 21.19 17.19 17.72 20.23
28Si 18.88 20.91 18.04 18.45 20.60
46Ti 20.15 21.33 19.17 19.60 20.68

Table 10 Average GMR energies in MeV computed from
QFAM and PGCM calculations according to Eqs. (4).

the use of the centroid energy Ē1 [19]. In the following,
all three cases are tested17.

Based on the GMR energies provided in Tab. 10, the
set of KA values are given in Tab. 11 and displayed
in Fig. 7 as a function of A. The higher values of KA

in QRPA than in PGCM reflects the characteristics
of the GMR energies pointed out earlier on whenever
computing PGCM moments via the SOES approach as
presently done. The spread of KA values depending on
the definition of EGMR is the manifestation that Ẽ1

(Ẽ3) is more sensitive to the part of the strength located
at lower (higher) energies than Ē1. Eventually, KA can
typically vary by as much as 30% in 24Mg depending on
that choice. However, this variation quickly decreases
with A to reach 14% in 46Ti. Such a trend is encouraging
in view of extracting K1.

8.2 Extraction of K1

The method to extractK1 is based on the leptodermous
expansion of KA given by [19]

KA = Kvol +KsurfA
�1/3 +KCoulZ

2A�4/3 +Ksym�
2 ,

17Whenever a single mode exhausts the complete monopole
response, the three energies are the same and the choice is
thus straightforward.

Extrapolation to infinite matter
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0 0.2 0.4 0.6
0

100

200

300

A�1/3

K
A

[M
e

V
]

QFAM Ē1
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KA
QFAM PGCM

Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 74.0 97.3 64.6 68.7 89.5
28Si 83.0 101.8 76.2 79.7 99.4
46Ti 118.2 132.4 107.5 112.5 125.1

Table 11 Finite-nucleus compression modulus KA computed
from QFAM and PGCM calculations. Values are categorised
according to the definition of the GMR energy (see Eqs. (4))
employed to compute KA via Eq. (32).

(33)

where Kvol, Ksurf, KCoul and Ksym are the volume, sur-
face, Coulomb and symmetry contributions to the com-
pression modulus, respectively. The parameter � char-
acterizes the isospin asymmetry

� ⌘ N � Z

N + Z
, (34)

where N (Z) denotes the neutron (proton) number.
Equation (33) is fitted based on the values of KA given
in Tab. 11 and Kvol is interpreted as the infinite nuclear
matter incompressibility K1. Given that the Coulomb
and symmetry terms do not significantly impact the
asymptotic behaviour of KA for very large A [22], K1
can be obtained via a simple linear fit in the variable
x ⌘ A�1/3

KA = K1 +Ksurf x . (35)

While the linear fits are displayed in Fig. 8, the corre-
sponding values of K1 and Ksurf are reported in Tab. 12
along with the uncertainties associated with the fit. The
extracted incompressibility is K1 ⇡ 290. While QRPA
central values are a few MeV higher than PGCM ones,
they only di↵er by about 3.3% and 4.2% when using
EGMR ⌘ Ē1 and EGMR ⌘ Ẽ3, respectively. Eventually,
QRPA and PGCM values are consistent within extrap-
olation uncertainties, which are significantly larger for
QRPA than for PGCM results18.

Interestingly, while the hierarchy KA(Ẽ1) < KA(Ē1) <
KA(Ẽ3) is systematically valid for all computed nuclei
with A  46, the trends are such that the extrapolation
to very large A values leads to K1 being the smallest
for EGMR ⌘ Ẽ3. Eventually, the nuclear matter incom-
pressibility varies by 6.6% (7.5%) for QRPA (PGCM)
between the two extreme values obtained for Ẽ3 and
Ē1. This confirms the trend observed above for KA as
a function of A.

In Fig. 8, the shaded gray area accounts for the generally
accepted range 250 < K1 < 315 MeV [24]. All values

18The tiny extrapolation uncertainty of the PGCM results
might be accidental, i.e. it may simply reflect the small number
of points employed in the fit rather than a genuine behavior
following strictly the A

�1/3 law of Eq. (35). The exercise
needs to be repeated in the future with a significantly larger
number of points.

23



From f in i t e  nuc le i  t o  As t rophys ics

Nuclear compressibility 

• GMR

INCOMPRESSIBILITY IN FINITE NUCLEI AND . . . PHYSICAL REVIEW C 89, 044316 (2014)

Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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method [18]. As a matter of fact, the extraction proce-
dure is not unambiguous in itself. Furthermore, while
originally applying it to a couple of doubly closed-shell
nuclei (208Pb and 92Zr) led to consistent values of K1,
the more recent use of open-shell nuclei produced con-
flicting results.

The goal is to extract the value of K1 associated with
�EFT-based interactions via ab initio calculations. In
EDF calculations, it has become customary to extract
K1 by computing directly the symmetric nuclear mat-
ter EOS, while checking that EGMR is well reproduced
in a selected set of finite nuclei on the basis of the same
EDF parameterization. Another approach, presently in
use, consists of extracting K1 from the leptodermous
expansion of the finite-nucleus compressibility modu-
lus computed microscopically [19]. While the former
approach typically carries smaller uncertainties, the lat-
ter bypasses the need to compute the infinite matter
EOS.

The second approach was recently employed to extract
K1 for NNLOsat [20] and NNLOopt [21] �EFT-based
Hamiltonians via symmetry-adapted no core shell model
(SA-NCSM) calculations of 4He, 16O, 20Ne and 40Ca [22].
The extracted result for NNLOsat (K1 = 297) was
shown to be consistent, within the rather large extrapo-
lation uncertainties, with the value (K1 = 253) based
on the computation of the EOS with the same Hamilto-
nian.

Following the same protocol but only relying on a set of
intrinsically-deformed nuclei, i.e. 24Mg, 28Si and 46Ti,
the compressibility modulus K1 associated with the
N3LO Hamiltonian under use [6] is presently estimated
based on PGCM and QRPA calculations.

8.1 Finite-nucleus compression modulus

The first step consists of accessing the finite-system
compression modulus given by [19]

KA ⌘ m

~2 h �0

0 |r2lab| �0

0 iE2
GMR , (32)

which thus requires the ground-state mean-square mat-
ter radius and the GMR energy as inputs. In finite,
especially light and deformed, nuclei the GMR strength
is not concentrated into a single peak. Consequently,
the choice of EGMR to be used in Eq. (32) is neither
unique nor obvious. Specific derivations support the use
of Ẽ1 or Ẽ3 whereas general arguments also motivate
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Fig. 7 Finite-nuclei compression modulus KA as a function of
A for PGCM and QFAM calculations. Di↵erent definitions of
the average GMR energy E GMR entering Eq. (32) are used,
see Eqs. (5) for the notation.

EGMR

QFAM PGCM
Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 18.48 21.19 17.19 17.72 20.23
28Si 18.88 20.91 18.04 18.45 20.60
46Ti 20.15 21.33 19.17 19.60 20.68

Table 10 Average GMR energies in MeV computed from
QFAM and PGCM calculations according to Eqs. (4).

the use of the centroid energy Ē1 [19]. In the following,
all three cases are tested17.

Based on the GMR energies provided in Tab. 10, the
set of KA values are given in Tab. 11 and displayed
in Fig. 7 as a function of A. The higher values of KA

in QRPA than in PGCM reflects the characteristics
of the GMR energies pointed out earlier on whenever
computing PGCM moments via the SOES approach as
presently done. The spread of KA values depending on
the definition of EGMR is the manifestation that Ẽ1

(Ẽ3) is more sensitive to the part of the strength located
at lower (higher) energies than Ē1. Eventually, KA can
typically vary by as much as 30% in 24Mg depending on
that choice. However, this variation quickly decreases
with A to reach 14% in 46Ti. Such a trend is encouraging
in view of extracting K1.

8.2 Extraction of K1

The method to extractK1 is based on the leptodermous
expansion of KA given by [19]

KA = Kvol +KsurfA
�1/3 +KCoulZ

2A�4/3 +Ksym�
2 ,

17Whenever a single mode exhausts the complete monopole
response, the three energies are the same and the choice is
thus straightforward.

Extrapolation to infinite matter
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method [18]. As a matter of fact, the extraction proce-
dure is not unambiguous in itself. Furthermore, while
originally applying it to a couple of doubly closed-shell
nuclei (208Pb and 92Zr) led to consistent values of K1,
the more recent use of open-shell nuclei produced con-
flicting results.

The goal is to extract the value of K1 associated with
�EFT-based interactions via ab initio calculations. In
EDF calculations, it has become customary to extract
K1 by computing directly the symmetric nuclear mat-
ter EOS, while checking that EGMR is well reproduced
in a selected set of finite nuclei on the basis of the same
EDF parameterization. Another approach, presently in
use, consists of extracting K1 from the leptodermous
expansion of the finite-nucleus compressibility modu-
lus computed microscopically [19]. While the former
approach typically carries smaller uncertainties, the lat-
ter bypasses the need to compute the infinite matter
EOS.

The second approach was recently employed to extract
K1 for NNLOsat [20] and NNLOopt [21] �EFT-based
Hamiltonians via symmetry-adapted no core shell model
(SA-NCSM) calculations of 4He, 16O, 20Ne and 40Ca [22].
The extracted result for NNLOsat (K1 = 297) was
shown to be consistent, within the rather large extrapo-
lation uncertainties, with the value (K1 = 253) based
on the computation of the EOS with the same Hamilto-
nian.

Following the same protocol but only relying on a set of
intrinsically-deformed nuclei, i.e. 24Mg, 28Si and 46Ti,
the compressibility modulus K1 associated with the
N3LO Hamiltonian under use [6] is presently estimated
based on PGCM and QRPA calculations.

8.1 Finite-nucleus compression modulus

The first step consists of accessing the finite-system
compression modulus given by [19]
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0 iE2
GMR , (32)

which thus requires the ground-state mean-square mat-
ter radius and the GMR energy as inputs. In finite,
especially light and deformed, nuclei the GMR strength
is not concentrated into a single peak. Consequently,
the choice of EGMR to be used in Eq. (32) is neither
unique nor obvious. Specific derivations support the use
of Ẽ1 or Ẽ3 whereas general arguments also motivate
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QFAM PGCM
Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 18.48 21.19 17.19 17.72 20.23
28Si 18.88 20.91 18.04 18.45 20.60
46Ti 20.15 21.33 19.17 19.60 20.68

Table 10 Average GMR energies in MeV computed from
QFAM and PGCM calculations according to Eqs. (4).

the use of the centroid energy Ē1 [19]. In the following,
all three cases are tested17.

Based on the GMR energies provided in Tab. 10, the
set of KA values are given in Tab. 11 and displayed
in Fig. 7 as a function of A. The higher values of KA

in QRPA than in PGCM reflects the characteristics
of the GMR energies pointed out earlier on whenever
computing PGCM moments via the SOES approach as
presently done. The spread of KA values depending on
the definition of EGMR is the manifestation that Ẽ1

(Ẽ3) is more sensitive to the part of the strength located
at lower (higher) energies than Ē1. Eventually, KA can
typically vary by as much as 30% in 24Mg depending on
that choice. However, this variation quickly decreases
with A to reach 14% in 46Ti. Such a trend is encouraging
in view of extracting K1.

8.2 Extraction of K1

The method to extractK1 is based on the leptodermous
expansion of KA given by [19]

KA = Kvol +KsurfA
�1/3 +KCoulZ

2A�4/3 +Ksym�
2 ,

17Whenever a single mode exhausts the complete monopole
response, the three energies are the same and the choice is
thus straightforward.
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circles). The best fit is shown in all cases with the corresponding 1� (darker shade) and 2� (lighter shade) bands of regression
(see, e.g., Chap. 3 of Ref. [23]). The shaded gray area represents the empirically accepted range 250 < K1 < 315 MeV [24].

KA
QFAM PGCM

Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 74.0 97.3 64.6 68.7 89.5
28Si 83.0 101.8 76.2 79.7 99.4
46Ti 118.2 132.4 107.5 112.5 125.1

Table 11 Finite-nucleus compression modulus KA computed
from QFAM and PGCM calculations. Values are categorised
according to the definition of the GMR energy (see Eqs. (4))
employed to compute KA via Eq. (32).

(33)

where Kvol, Ksurf, KCoul and Ksym are the volume, sur-
face, Coulomb and symmetry contributions to the com-
pression modulus, respectively. The parameter � char-
acterizes the isospin asymmetry

� ⌘ N � Z

N + Z
, (34)

where N (Z) denotes the neutron (proton) number.
Equation (33) is fitted based on the values of KA given
in Tab. 11 and Kvol is interpreted as the infinite nuclear
matter incompressibility K1. Given that the Coulomb
and symmetry terms do not significantly impact the
asymptotic behaviour of KA for very large A [22], K1
can be obtained via a simple linear fit in the variable
x ⌘ A�1/3

KA = K1 +Ksurf x . (35)

While the linear fits are displayed in Fig. 8, the corre-
sponding values of K1 and Ksurf are reported in Tab. 12
along with the uncertainties associated with the fit. The
extracted incompressibility is K1 ⇡ 290. While QRPA
central values are a few MeV higher than PGCM ones,
they only di↵er by about 3.3% and 4.2% when using
EGMR ⌘ Ē1 and EGMR ⌘ Ẽ3, respectively. Eventually,
QRPA and PGCM values are consistent within extrap-
olation uncertainties, which are significantly larger for
QRPA than for PGCM results18.

Interestingly, while the hierarchy KA(Ẽ1) < KA(Ē1) <
KA(Ẽ3) is systematically valid for all computed nuclei
with A  46, the trends are such that the extrapolation
to very large A values leads to K1 being the smallest
for EGMR ⌘ Ẽ3. Eventually, the nuclear matter incom-
pressibility varies by 6.6% (7.5%) for QRPA (PGCM)
between the two extreme values obtained for Ẽ3 and
Ē1. This confirms the trend observed above for KA as
a function of A.

In Fig. 8, the shaded gray area accounts for the generally
accepted range 250 < K1 < 315 MeV [24]. All values

18The tiny extrapolation uncertainty of the PGCM results
might be accidental, i.e. it may simply reflect the small number
of points employed in the fit rather than a genuine behavior
following strictly the A

�1/3 law of Eq. (35). The exercise
needs to be repeated in the future with a significantly larger
number of points.

23[Burrows, Baker, Bacca et al., arXiv:2312.09782]
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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Fig. 8 Finite-nucleus compression modulus KA as a function of A�1/3 obtained from PGCM and QRPA calculations (black
circles). The best fit is shown in all cases with the corresponding 1� (darker shade) and 2� (lighter shade) bands of regression
(see, e.g., Chap. 3 of Ref. [23]). The shaded gray area represents the empirically accepted range 250 < K1 < 315 MeV [24].

KA
QFAM PGCM

Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 74.0 97.3 64.6 68.7 89.5
28Si 83.0 101.8 76.2 79.7 99.4
46Ti 118.2 132.4 107.5 112.5 125.1

Table 11 Finite-nucleus compression modulus KA computed
from QFAM and PGCM calculations. Values are categorised
according to the definition of the GMR energy (see Eqs. (4))
employed to compute KA via Eq. (32).

(33)

where Kvol, Ksurf, KCoul and Ksym are the volume, sur-
face, Coulomb and symmetry contributions to the com-
pression modulus, respectively. The parameter � char-
acterizes the isospin asymmetry

� ⌘ N � Z

N + Z
, (34)

where N (Z) denotes the neutron (proton) number.
Equation (33) is fitted based on the values of KA given
in Tab. 11 and Kvol is interpreted as the infinite nuclear
matter incompressibility K1. Given that the Coulomb
and symmetry terms do not significantly impact the
asymptotic behaviour of KA for very large A [22], K1
can be obtained via a simple linear fit in the variable
x ⌘ A�1/3

KA = K1 +Ksurf x . (35)

While the linear fits are displayed in Fig. 8, the corre-
sponding values of K1 and Ksurf are reported in Tab. 12
along with the uncertainties associated with the fit. The
extracted incompressibility is K1 ⇡ 290. While QRPA
central values are a few MeV higher than PGCM ones,
they only di↵er by about 3.3% and 4.2% when using
EGMR ⌘ Ē1 and EGMR ⌘ Ẽ3, respectively. Eventually,
QRPA and PGCM values are consistent within extrap-
olation uncertainties, which are significantly larger for
QRPA than for PGCM results18.

Interestingly, while the hierarchy KA(Ẽ1) < KA(Ē1) <
KA(Ẽ3) is systematically valid for all computed nuclei
with A  46, the trends are such that the extrapolation
to very large A values leads to K1 being the smallest
for EGMR ⌘ Ẽ3. Eventually, the nuclear matter incom-
pressibility varies by 6.6% (7.5%) for QRPA (PGCM)
between the two extreme values obtained for Ẽ3 and
Ē1. This confirms the trend observed above for KA as
a function of A.

In Fig. 8, the shaded gray area accounts for the generally
accepted range 250 < K1 < 315 MeV [24]. All values

18The tiny extrapolation uncertainty of the PGCM results
might be accidental, i.e. it may simply reflect the small number
of points employed in the fit rather than a genuine behavior
following strictly the A

�1/3 law of Eq. (35). The exercise
needs to be repeated in the future with a significantly larger
number of points.

Extrapolation to infinite matter

12

method [18]. As a matter of fact, the extraction proce-
dure is not unambiguous in itself. Furthermore, while
originally applying it to a couple of doubly closed-shell
nuclei (208Pb and 92Zr) led to consistent values of K1,
the more recent use of open-shell nuclei produced con-
flicting results.

The goal is to extract the value of K1 associated with
�EFT-based interactions via ab initio calculations. In
EDF calculations, it has become customary to extract
K1 by computing directly the symmetric nuclear mat-
ter EOS, while checking that EGMR is well reproduced
in a selected set of finite nuclei on the basis of the same
EDF parameterization. Another approach, presently in
use, consists of extracting K1 from the leptodermous
expansion of the finite-nucleus compressibility modu-
lus computed microscopically [19]. While the former
approach typically carries smaller uncertainties, the lat-
ter bypasses the need to compute the infinite matter
EOS.

The second approach was recently employed to extract
K1 for NNLOsat [20] and NNLOopt [21] �EFT-based
Hamiltonians via symmetry-adapted no core shell model
(SA-NCSM) calculations of 4He, 16O, 20Ne and 40Ca [22].
The extracted result for NNLOsat (K1 = 297) was
shown to be consistent, within the rather large extrapo-
lation uncertainties, with the value (K1 = 253) based
on the computation of the EOS with the same Hamilto-
nian.

Following the same protocol but only relying on a set of
intrinsically-deformed nuclei, i.e. 24Mg, 28Si and 46Ti,
the compressibility modulus K1 associated with the
N3LO Hamiltonian under use [6] is presently estimated
based on PGCM and QRPA calculations.

8.1 Finite-nucleus compression modulus

The first step consists of accessing the finite-system
compression modulus given by [19]

KA ⌘ m

~2 h �0

0 |r2lab| �0

0 iE2
GMR , (32)

which thus requires the ground-state mean-square mat-
ter radius and the GMR energy as inputs. In finite,
especially light and deformed, nuclei the GMR strength
is not concentrated into a single peak. Consequently,
the choice of EGMR to be used in Eq. (32) is neither
unique nor obvious. Specific derivations support the use
of Ẽ1 or Ẽ3 whereas general arguments also motivate
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A for PGCM and QFAM calculations. Di↵erent definitions of
the average GMR energy E GMR entering Eq. (32) are used,
see Eqs. (5) for the notation.

EGMR

QFAM PGCM
Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 18.48 21.19 17.19 17.72 20.23
28Si 18.88 20.91 18.04 18.45 20.60
46Ti 20.15 21.33 19.17 19.60 20.68

Table 10 Average GMR energies in MeV computed from
QFAM and PGCM calculations according to Eqs. (4).

the use of the centroid energy Ē1 [19]. In the following,
all three cases are tested17.

Based on the GMR energies provided in Tab. 10, the
set of KA values are given in Tab. 11 and displayed
in Fig. 7 as a function of A. The higher values of KA

in QRPA than in PGCM reflects the characteristics
of the GMR energies pointed out earlier on whenever
computing PGCM moments via the SOES approach as
presently done. The spread of KA values depending on
the definition of EGMR is the manifestation that Ẽ1

(Ẽ3) is more sensitive to the part of the strength located
at lower (higher) energies than Ē1. Eventually, KA can
typically vary by as much as 30% in 24Mg depending on
that choice. However, this variation quickly decreases
with A to reach 14% in 46Ti. Such a trend is encouraging
in view of extracting K1.

8.2 Extraction of K1

The method to extractK1 is based on the leptodermous
expansion of KA given by [19]

KA = Kvol +KsurfA
�1/3 +KCoulZ

2A�4/3 +Ksym�
2 ,

17Whenever a single mode exhausts the complete monopole
response, the three energies are the same and the choice is
thus straightforward.
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24Mg 74.0 97.3 64.6 68.7 89.5
28Si 83.0 101.8 76.2 79.7 99.4
46Ti 118.2 132.4 107.5 112.5 125.1

Table 11 Finite-nucleus compression modulus KA computed
from QFAM and PGCM calculations. Values are categorised
according to the definition of the GMR energy (see Eqs. (4))
employed to compute KA via Eq. (32).

(33)

where Kvol, Ksurf, KCoul and Ksym are the volume, sur-
face, Coulomb and symmetry contributions to the com-
pression modulus, respectively. The parameter � char-
acterizes the isospin asymmetry

� ⌘ N � Z

N + Z
, (34)

where N (Z) denotes the neutron (proton) number.
Equation (33) is fitted based on the values of KA given
in Tab. 11 and Kvol is interpreted as the infinite nuclear
matter incompressibility K1. Given that the Coulomb
and symmetry terms do not significantly impact the
asymptotic behaviour of KA for very large A [22], K1
can be obtained via a simple linear fit in the variable
x ⌘ A�1/3

KA = K1 +Ksurf x . (35)

While the linear fits are displayed in Fig. 8, the corre-
sponding values of K1 and Ksurf are reported in Tab. 12
along with the uncertainties associated with the fit. The
extracted incompressibility is K1 ⇡ 290. While QRPA
central values are a few MeV higher than PGCM ones,
they only di↵er by about 3.3% and 4.2% when using
EGMR ⌘ Ē1 and EGMR ⌘ Ẽ3, respectively. Eventually,
QRPA and PGCM values are consistent within extrap-
olation uncertainties, which are significantly larger for
QRPA than for PGCM results18.

Interestingly, while the hierarchy KA(Ẽ1) < KA(Ē1) <
KA(Ẽ3) is systematically valid for all computed nuclei
with A  46, the trends are such that the extrapolation
to very large A values leads to K1 being the smallest
for EGMR ⌘ Ẽ3. Eventually, the nuclear matter incom-
pressibility varies by 6.6% (7.5%) for QRPA (PGCM)
between the two extreme values obtained for Ẽ3 and
Ē1. This confirms the trend observed above for KA as
a function of A.

In Fig. 8, the shaded gray area accounts for the generally
accepted range 250 < K1 < 315 MeV [24]. All values

18The tiny extrapolation uncertainty of the PGCM results
might be accidental, i.e. it may simply reflect the small number
of points employed in the fit rather than a genuine behavior
following strictly the A

�1/3 law of Eq. (35). The exercise
needs to be repeated in the future with a significantly larger
number of points.

23[Burrows, Baker, Bacca et al., arXiv:2312.09782]



From f in i t e  nuc le i  t o  As t rophys ics

Preliminary evaluation of K∞

• Starting from deformed systems

• Extrapolation in agreement with commonly accepted values

• Systematic investigation in heavier systems (Sn, Mo isotopic chains, neutron rich)

Nuclear compressibility 

• GMR

INCOMPRESSIBILITY IN FINITE NUCLEI AND . . . PHYSICAL REVIEW C 89, 044316 (2014)

Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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Extensive discussion of the pros and cons of the macro-
scopic and microscopic methods has been given in several
papers (see, e.g., [18,22–25]). Although the general tendency
has been to prefer the microscopic approach, a fundamental
problem emerged also there. The nonrelativistic models,
mainly using the Skyrme interaction, systematically predicted
lower values of K0, around 210–250 MeV (see, e.g., [25–28]),
but the relativistic models yielded higher values (see, e.g.,
[29–35]). Reanalysis of experimental data available in 1989
using the leptodermous expansion was presented by Sharma
et al. [30,31] showed that the best fit was achieved for K0 ∼
(300 ± 25) MeV, thus supporting predictions of relativistic
models.

Currently a general consensus has developed to adopt a
lower value of K0, K0 = (240 ± 20) MeV (e.g., [36]) which has
been used as an initial condition/requirement in most models.
Skyrme effective interactions were constructed to reproduce
this ‘canonical’ value and attempts were made to reconcile [37]
and modify effective Lagrangians [38] in relativistic models
to comply with this adopted value.

These efforts however indicate the main weakness of
the microscopic approaches. The effective interactions have
a flexible form and too many variable parameters so that
modifications can be introduced which yield a desired result
but do not advance understanding of the underlying physics.
The most recent illustration of the problem can be found in
Ref. [39], where even the state-of-the-art HFB+QRPA cal-
culation did not succeed to reproduce GMR energies in Sn,
Cd, and Pb nuclei using the same Skyrme parametrization.
The dependence of the calculated value of K0 on the choice
of the microscopic model is obvious from examination of
Table I.

In parallel with K0, investigation of the isospin incompress-
ibility Kτ , which quantifies the contribution from the neutron-
proton difference to the incompressibility of a finite nucleus
KA, has been performed. We introduce here the term “isospin”
incompressibility to avoid confusion with the “symmetry”
incompressibility—the name sometimes used for the curvature
of the symmetry energy at saturation density Ksym. This
coefficient can be obtained in either the microscopic or the
empirical approach [22,23,35,40–42]. Its recent extraction
from empirical analysis of GMR data on Sn isotopes [43,44]
attracted a lot of attention as the value of Kτ was larger than
predicted by most of the microscopic models. Determination
of Kτ from experimental data on GMR is complicated by the
fact that, as with the volume and surface contributions to KA,
it also includes volume and surface terms and the latter cannot
be easily evaluated in microscopic models [22,23,40,41].

In this paper we survey existing data on GMR energies
in nuclei with A ! 56 and use them to set limits on K0 and
the isospin incompressibility coefficient Kτ , using the macro-
scopic approach in the scaling approximation and employing
a new method of analysis. In Sec. II we present the basic
expressions and the data selection for the analysis followed
by Sec. III containing the the main results. A schematic
theoretical model of the ratio of the volume and surface
contributions to KA is presented in Sec. IV. Microscopic
models are commented on in Sec. V. Discussion of results
and conclusions form Sec. VI.

II. THE BASICS

The incompressibility KA of a finite nucleus with mass A
is related to the energy of the GMR resonance EGMR of the
nucleus [18]

KA = (M/!2)
〈
r2

〉
E2

GMR, (1)

where M is the nucleon mass and r is rms matter radius of
the nucleus. KA can be expanded in terms of A−1/3 and the
asymmetry parameter β = (N − Z)/A as [18]

KA = Kvol + KsurfA
−1/3 + KcurvA

−2/3

+KCoulZ
2A−4/3 + Kτ β

2. (2)

Higher order terms in β can be safely neglected as their
contribution to KA is less then 1% [45]. Kvol, Ksurf , Kcurv, Kτ ,
and KCoul represent the volume, surface, curvature, isospin,
and Coulomb contributions to the incompressibility KA. The
coefficient Kτ consists of two components,

Kτ = Kτ,v + Kτ,sA
−1/3, (3)

where Kτ,v(Kτ,s) determine the volume (surface) isospin
incompressibility.

Assuming the expansion (2) theoretically justified, different
coefficients can be extracted from comparison with experi-
mental data. Care must be taken concerning the interpretation
of KA. The energy EGMR is understood as a mean energy
calculated from moments mk of a strength function [22]

mk =
∫

EkS(E)dE, (4)

where the strength function S(E) =
∑

n |⟨n|Ô|0⟩|2δ(E − En).
|0⟩ is the ground state of the nucleus and En is the energy
of a state n. The monopole excitation operator Ô is taken
as

∑A
i=1 r2

i . Various mean energies Ẽk are calculated from
moment ratios

Ẽk =
√

mk

mk−2
. (5)

If the strength function is distributed in a narrow energy
region, the mean energies Ẽk are close together and can be
interpreted as EGMR. In this case KA is determined in principle
unambiguously using Eq. (2) and Kvol in Eq. (2) is equal to
the incompressibility of infinite symmetric nuclear matter K0

at saturation density ρ0

K0 = 9ρ0
d2(E/A)

dρ2

∣∣∣∣
ρ=ρ0

, (6)

where E/A is the energy per particle. In a more realistic case
when the strength function is somewhat spread out, Eq. (1)
must be written as

KA(k) = (M/!2)
〈
r2

〉
E2

GMR(k), (7)

and the KA can be determined only within a certain region
of k.

A. Determination of EGMR

Blaizot [18] and Treiner et al. [22] studied two forms
of the expansion (2): the scaling model, based on the
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24Mg 74.0 97.3 64.6 68.7 89.5
28Si 83.0 101.8 76.2 79.7 99.4
46Ti 118.2 132.4 107.5 112.5 125.1

Table 11 Finite-nucleus compression modulus KA computed
from QFAM and PGCM calculations. Values are categorised
according to the definition of the GMR energy (see Eqs. (4))
employed to compute KA via Eq. (32).

(33)

where Kvol, Ksurf, KCoul and Ksym are the volume, sur-
face, Coulomb and symmetry contributions to the com-
pression modulus, respectively. The parameter � char-
acterizes the isospin asymmetry

� ⌘ N � Z

N + Z
, (34)

where N (Z) denotes the neutron (proton) number.
Equation (33) is fitted based on the values of KA given
in Tab. 11 and Kvol is interpreted as the infinite nuclear
matter incompressibility K1. Given that the Coulomb
and symmetry terms do not significantly impact the
asymptotic behaviour of KA for very large A [22], K1
can be obtained via a simple linear fit in the variable
x ⌘ A�1/3

KA = K1 +Ksurf x . (35)

While the linear fits are displayed in Fig. 8, the corre-
sponding values of K1 and Ksurf are reported in Tab. 12
along with the uncertainties associated with the fit. The
extracted incompressibility is K1 ⇡ 290. While QRPA
central values are a few MeV higher than PGCM ones,
they only di↵er by about 3.3% and 4.2% when using
EGMR ⌘ Ē1 and EGMR ⌘ Ẽ3, respectively. Eventually,
QRPA and PGCM values are consistent within extrap-
olation uncertainties, which are significantly larger for
QRPA than for PGCM results18.

Interestingly, while the hierarchy KA(Ẽ1) < KA(Ē1) <
KA(Ẽ3) is systematically valid for all computed nuclei
with A  46, the trends are such that the extrapolation
to very large A values leads to K1 being the smallest
for EGMR ⌘ Ẽ3. Eventually, the nuclear matter incom-
pressibility varies by 6.6% (7.5%) for QRPA (PGCM)
between the two extreme values obtained for Ẽ3 and
Ē1. This confirms the trend observed above for KA as
a function of A.

In Fig. 8, the shaded gray area accounts for the generally
accepted range 250 < K1 < 315 MeV [24]. All values

18The tiny extrapolation uncertainty of the PGCM results
might be accidental, i.e. it may simply reflect the small number
of points employed in the fit rather than a genuine behavior
following strictly the A

�1/3 law of Eq. (35). The exercise
needs to be repeated in the future with a significantly larger
number of points.

Extrapolation to infinite matter
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method [18]. As a matter of fact, the extraction proce-
dure is not unambiguous in itself. Furthermore, while
originally applying it to a couple of doubly closed-shell
nuclei (208Pb and 92Zr) led to consistent values of K1,
the more recent use of open-shell nuclei produced con-
flicting results.

The goal is to extract the value of K1 associated with
�EFT-based interactions via ab initio calculations. In
EDF calculations, it has become customary to extract
K1 by computing directly the symmetric nuclear mat-
ter EOS, while checking that EGMR is well reproduced
in a selected set of finite nuclei on the basis of the same
EDF parameterization. Another approach, presently in
use, consists of extracting K1 from the leptodermous
expansion of the finite-nucleus compressibility modu-
lus computed microscopically [19]. While the former
approach typically carries smaller uncertainties, the lat-
ter bypasses the need to compute the infinite matter
EOS.

The second approach was recently employed to extract
K1 for NNLOsat [20] and NNLOopt [21] �EFT-based
Hamiltonians via symmetry-adapted no core shell model
(SA-NCSM) calculations of 4He, 16O, 20Ne and 40Ca [22].
The extracted result for NNLOsat (K1 = 297) was
shown to be consistent, within the rather large extrapo-
lation uncertainties, with the value (K1 = 253) based
on the computation of the EOS with the same Hamilto-
nian.

Following the same protocol but only relying on a set of
intrinsically-deformed nuclei, i.e. 24Mg, 28Si and 46Ti,
the compressibility modulus K1 associated with the
N3LO Hamiltonian under use [6] is presently estimated
based on PGCM and QRPA calculations.

8.1 Finite-nucleus compression modulus

The first step consists of accessing the finite-system
compression modulus given by [19]

KA ⌘ m

~2 h �0

0 |r2lab| �0

0 iE2
GMR , (32)

which thus requires the ground-state mean-square mat-
ter radius and the GMR energy as inputs. In finite,
especially light and deformed, nuclei the GMR strength
is not concentrated into a single peak. Consequently,
the choice of EGMR to be used in Eq. (32) is neither
unique nor obvious. Specific derivations support the use
of Ẽ1 or Ẽ3 whereas general arguments also motivate
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Fig. 7 Finite-nuclei compression modulus KA as a function of
A for PGCM and QFAM calculations. Di↵erent definitions of
the average GMR energy E GMR entering Eq. (32) are used,
see Eqs. (5) for the notation.

EGMR

QFAM PGCM
Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 18.48 21.19 17.19 17.72 20.23
28Si 18.88 20.91 18.04 18.45 20.60
46Ti 20.15 21.33 19.17 19.60 20.68

Table 10 Average GMR energies in MeV computed from
QFAM and PGCM calculations according to Eqs. (4).

the use of the centroid energy Ē1 [19]. In the following,
all three cases are tested17.

Based on the GMR energies provided in Tab. 10, the
set of KA values are given in Tab. 11 and displayed
in Fig. 7 as a function of A. The higher values of KA

in QRPA than in PGCM reflects the characteristics
of the GMR energies pointed out earlier on whenever
computing PGCM moments via the SOES approach as
presently done. The spread of KA values depending on
the definition of EGMR is the manifestation that Ẽ1

(Ẽ3) is more sensitive to the part of the strength located
at lower (higher) energies than Ē1. Eventually, KA can
typically vary by as much as 30% in 24Mg depending on
that choice. However, this variation quickly decreases
with A to reach 14% in 46Ti. Such a trend is encouraging
in view of extracting K1.

8.2 Extraction of K1

The method to extractK1 is based on the leptodermous
expansion of KA given by [19]

KA = Kvol +KsurfA
�1/3 +KCoulZ

2A�4/3 +Ksym�
2 ,

17Whenever a single mode exhausts the complete monopole
response, the three energies are the same and the choice is
thus straightforward.
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Fig. 8 Finite-nucleus compression modulus KA as a function of A�1/3 obtained from PGCM and QRPA calculations (black
circles). The best fit is shown in all cases with the corresponding 1� (darker shade) and 2� (lighter shade) bands of regression
(see, e.g., Chap. 3 of Ref. [23]). The shaded gray area represents the empirically accepted range 250 < K1 < 315 MeV [24].

KA
QFAM PGCM

Ē1 Ẽ3 Ẽ1 Ē1 Ẽ3

24Mg 74.0 97.3 64.6 68.7 89.5
28Si 83.0 101.8 76.2 79.7 99.4
46Ti 118.2 132.4 107.5 112.5 125.1

Table 11 Finite-nucleus compression modulus KA computed
from QFAM and PGCM calculations. Values are categorised
according to the definition of the GMR energy (see Eqs. (4))
employed to compute KA via Eq. (32).

(33)

where Kvol, Ksurf, KCoul and Ksym are the volume, sur-
face, Coulomb and symmetry contributions to the com-
pression modulus, respectively. The parameter � char-
acterizes the isospin asymmetry

� ⌘ N � Z

N + Z
, (34)

where N (Z) denotes the neutron (proton) number.
Equation (33) is fitted based on the values of KA given
in Tab. 11 and Kvol is interpreted as the infinite nuclear
matter incompressibility K1. Given that the Coulomb
and symmetry terms do not significantly impact the
asymptotic behaviour of KA for very large A [22], K1
can be obtained via a simple linear fit in the variable
x ⌘ A�1/3

KA = K1 +Ksurf x . (35)

While the linear fits are displayed in Fig. 8, the corre-
sponding values of K1 and Ksurf are reported in Tab. 12
along with the uncertainties associated with the fit. The
extracted incompressibility is K1 ⇡ 290. While QRPA
central values are a few MeV higher than PGCM ones,
they only di↵er by about 3.3% and 4.2% when using
EGMR ⌘ Ē1 and EGMR ⌘ Ẽ3, respectively. Eventually,
QRPA and PGCM values are consistent within extrap-
olation uncertainties, which are significantly larger for
QRPA than for PGCM results18.

Interestingly, while the hierarchy KA(Ẽ1) < KA(Ē1) <
KA(Ẽ3) is systematically valid for all computed nuclei
with A  46, the trends are such that the extrapolation
to very large A values leads to K1 being the smallest
for EGMR ⌘ Ẽ3. Eventually, the nuclear matter incom-
pressibility varies by 6.6% (7.5%) for QRPA (PGCM)
between the two extreme values obtained for Ẽ3 and
Ē1. This confirms the trend observed above for KA as
a function of A.

In Fig. 8, the shaded gray area accounts for the generally
accepted range 250 < K1 < 315 MeV [24]. All values

18The tiny extrapolation uncertainty of the PGCM results
might be accidental, i.e. it may simply reflect the small number
of points employed in the fit rather than a genuine behavior
following strictly the A

�1/3 law of Eq. (35). The exercise
needs to be repeated in the future with a significantly larger
number of points.

23[Burrows, Baker, Bacca et al., arXiv:2312.09782]
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