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Nuclear physics at low energy }{?Q?ﬁ&kﬂ&ﬂﬁﬁ;ﬂiﬁ‘ﬁ:

7EFT Hebrew University of Jerusalem

m Quantum Chromodynamics (QCD) is the established fundamental
theory of the strong interaction. At low energies (E < 200 MeV) it is
not perturbative.

m Two approaches:
[ Solve the Lagrangian by brute force, regardless of the cost = Lattice

QCD (LQCD)
0 Work with more appropriate low-energy degrees of freedom = Effective

Field Theory (EFT)
m We employ Pionless EFT (#EFT), where the the degrees of freedom
are the nucleons and the pions are integrated out

Five-body calculation of n-*He scattering at next-to-leading order #EFT

Mirko Bagnarol



¢
) .
ﬁEFT interaction }« Zuma o o

7EFT Hebrew University of Jerusalem

2-body 3-body 4-body 5-body

: 7 7
NZLo 2 ?

Mirko Bagnarol Five-body calculation of “He scattering at next-to-leading order #EFT



¢
7EFT interaction, LO }« S T e
7EFT Hebrew University of Jerusalem

m Without pions, our Leading Order (LO) interaction is a contact
interaction:

Vio, 28(F) = Cs,10(r)
VLo, 38(7), fjk) = Ds 19(r;)d(rk)

m The two body force is projected to two channels,
(5,1)=(1,0), (0,1), while the three body force is projected to
(S,1) = (3., 3), for a total of three LO LECs

m The promotion of a repulsive three body force at LO prevents the
Thomas collapse

m In order to numerically solve Schrodinger's equation, we have to
smear the Dirac delta, introducing the cutoff A

A2,2

on(r)=e" 3
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m Our Next to LO (NLO) interaction has momentum dependent
two-body terms, three counterterms and a four-body force:

WnLo, 28 = Cs,V24(7)
VNLO, counter — CS,I(S/\(F) + DS,’é(FU)é(’?k)
WnLo, 4 Body = Esyi []  On(7in)
abepairs
m The momentum dependent terms introduce an effective range to the

interaction

m The counterterms have the same form of the LO terms and serve to
keep the LO observables reproduced at NLO
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m We have three additional terms if the angular momentum is L > 1:

Vito, 55 = CsVo(AV
VNLO, [g&= Cso(r)L-S
VNLO, Tensor — CS,Id(F)SH(F)

m Their matrix element depends on J, allowing us to distinguish
different (L, S) couplings

m They introduce a total of five LECs, but one is related to channel
mixing (351 —3 D)
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m Between LO and NLO, out model has six parameters fixed to few
body observables:

LO: a, = —18.95 fm
B(°H) = 2.2246 MeV
B(3H) —8.482 MeV

NLO: o =275 fm
r,}p =1.753 fm
B(*He) =283 MeV

m NLO interaction is included perturbatively to circumvent the Wigner
bound

m Four L > 1 new LECs are fixable with NN a, of channels 1P; and
3Py, 3P1, 3P», and one with a channel mixing angle

Mirko Bagnarol Five-body calculation of n-*He scattering at next-to-leading order #EFT



¢
Application to *He+-n scattering kmme;:ss;i:a;m

m We applied our interaction to *He-n scattering in the S, + channel
2
m We confined our system in an harmonic potential and used the Busch
formula to extract the scattering parameters, ag and ref

m We solved the Schrodinger equation with the Stochastic Variational
Method (SVM)
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m We apply the Busch formula in order to extract the free space
scattering parameters (scattering length ap and effective range refr)

r (% — 2hE )
k cotdp = —2\/pw—7T—=F%C
r (Z - 2hcw)
m The effective range expansion (ERE) gives us the scattering

parameters
1 1
kcotdg ~ — + —reffk2
a0 2

m The Busch formula relates trapped energies (solvable with bound state
methods like SVM) with free space, untrapped scattering parameters
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m The Busch formula includes a Gamma ratio: it needs very high energy
accuracy to give reliable results, below 1072 MeV

m The harmonic constant w has to be as low as possible, in order to
well separate the scales of the system

m The typical scale of “*He+n is estimated as the scattering length

a~25fm
h2
hw:m<8MeV

m In practice, it has to be at most 2 MeV in order to have negligible
trap effects

m This formula does not take into account the Coulomb interaction, but
recently a generalized form has been derived
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SVM Hebrew University of Jerusalem

m Method to solve the Schrodinger equation standing on the variational
principle, proposed by Suzuki and Varga in 1996

m The wave function is expanded as
M
W) = o)
k=1
m Each |®) depends on some parameters, which are chosen randomly

m More and more states are added until convergence
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m The single basis state is expressed as a correlated Gaussian and an
orbital, spin and isospin part

(R|G(A)) = G(R, A) = e ¥ A
(%,5,lc) = (X, 5, I|(LS)IM,IM;) = [o1 @ ws)um,e1,m,

m The Gaussian form of the wave function allows analytical calculations
of matrix elements

m The spin and isospin parts are just coupling of the single spins

osms = |[---[[s1 ® s2]sp, @ 3] - - - @ sw]s,ms)

In presence of multiple configurations, they are chosen randomly as
well!
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m The stochastic selection process eventually becomes too slow when
the basis is big enough

m In order to reach the desired accuracy ad-hoc designed states can be
generated

m We generated states that capture the *He core - n dynamic as follows

A ((3 3 9 )
(nB)?

1 1., 4 1 x42
exp | —5X AX ) = exp (*He core) exp “2(ndp

m The 3 x 3 matrices are generated for *He with SVM, S is an
optimized parameter and n runs from 1 to 10
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Scattering parameters
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m We can predict the scattering parameters for
B d+n

t+n

3He+n

“He+n

m Possibly, core-proton scattering can be reachable taking into account
the Coulomb force in the Busch formula

m We can distinguish different J channels
m The most thriving application is “He+n in the channels 2P1 and 2Ps,
2 2
where there are two resonances

m We computed the LO phase shifts span of *He+n from cutoffs 1.25
to 6 fm—!
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", Eexp=0.798 MeV, I'=0.578 MeV

7, Eexp=2.068 MeV, I'=3.18 MeV
! I |
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m We presented the pionless Effective Field Theory potential up to NLO

m We extracted the scattering parameters ag and re with the Busch
formula

m We got amazing results compared to the literature and to other more
sophisticated models!

m We hinted on future application to L > 1 systems
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