Five-body calculation of $n-{ }^{4} \mathrm{He}$ scattering at next-to-leading order $\not \subset E F T$

Mirko Bagnarol
Hebrew University of Jerusalem
Racah Institute of Physics

9th April 2024

Nuclear physics at low energy

- Quantum Chromodynamics (QCD) is the established fundamental theory of the strong interaction. At low energies ($E \lesssim 200 \mathrm{MeV}$) it is not perturbative.
- Two approaches:
\square Solve the Lagrangian by brute force, regardless of the cost \Rightarrow Lattice QCD (LQCD)
\square Work with more appropriate low-energy degrees of freedom \Rightarrow Effective Field Theory (EFT)
■ We employ Pionless EFT ($đ \mathrm{EFF}$), where the the degrees of freedom are the nucleons and the pions are integrated out

- Without pions, our Leading Order (LO) interaction is a contact interaction:

$$
\begin{aligned}
V_{\mathrm{LO}, 2 \mathrm{~B}}(\vec{r}) & =C_{S, 1} \delta(\vec{r}) \\
V_{\mathrm{LO}, 3 \mathrm{~B}}\left(\vec{r}_{i j}, \vec{r}_{j k}\right) & =D_{S, 1} \delta\left(\vec{r}_{i j}\right) \delta\left(\vec{r}_{j k}\right)
\end{aligned}
$$

- The two body force is projected to two channels, $(S, I)=(1,0),(0,1)$, while the three body force is projected to $(S, I)=\left(\frac{1}{2}, \frac{1}{2}\right)$, for a total of three LO LECs
- The promotion of a repulsive three body force at LO prevents the Thomas collapse
- In order to numerically solve Schrödinger's equation, we have to smear the Dirac delta, introducing the cutoff Λ

$$
\delta_{\Lambda}(\vec{r})=e^{-\frac{\Lambda^{2} r^{2}}{4}}
$$

- Our Next to LO (NLO) interaction has momentum dependent two-body terms, three counterterms and a four-body force:

$$
\begin{aligned}
V_{\text {NLO, 2B }} & =C_{S, I} \nabla^{2} \delta(\vec{r}) \\
V_{\text {NLO, counter }} & =C_{S, I} \delta(\vec{r})+D_{S, I} \delta\left(\vec{r}_{i j}\right) \delta\left(\vec{r}_{j k}\right) \\
V_{\text {NLO, 4 Body }} & =E_{S, I} \prod_{a b \in \text { pairs }} \delta_{\Lambda}\left(\vec{r}_{a b}\right)
\end{aligned}
$$

- The momentum dependent terms introduce an effective range to the interaction
- The counterterms have the same form of the LO terms and serve to keep the LO observables reproduced at NLO
- We have three additional terms if the angular momentum is $L \geq 1$:

$$
\begin{aligned}
V_{\text {NLO }, \vec{p} \cdot \vec{p}^{\prime}} & =C_{S, I} \overleftarrow{\nabla} \delta(\vec{r}) \vec{\nabla} \\
V_{\text {NLO, }} \vec{l} \cdot \vec{S} & =C_{S, I} \delta(\vec{r}) \vec{L} \cdot \vec{S} \\
V_{\text {NLO, Tensor }} & =C_{S, I} \delta(\vec{r}) S_{12}(\vec{r})
\end{aligned}
$$

- Their matrix element depends on J, allowing us to distinguish different (L, S) couplings
■ They introduce a total of five LECs, but one is related to channel mixing $\left({ }^{3} S_{1}-{ }^{3} D_{1}\right)$

Final remarks on the model

■ Between LO and NLO, out model has six parameters fixed to few body observables:

LO:	$a_{n n}^{0}$	$=-18.95 \mathrm{fm}$
	$B\left({ }^{2} \mathrm{H}\right)$	$=2.2246 \mathrm{MeV}$
	$B\left({ }^{3} \mathrm{H}\right)$	$=8.482 \mathrm{MeV}$
NLO:	$r_{n n}^{0}$	$=2.75$
	$r_{n p}^{1}$	$=1.753 \mathrm{fm}$
	$B\left({ }^{4} \mathrm{He}\right)$	$=28.3 \quad \mathrm{MeV}$

■ NLO interaction is included perturbatively to circumvent the Wigner bound

- Four $L \geq 1$ new LECs are fixable with $N N a_{v}$ of channels ${ }^{1} P_{1}$ and ${ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}$, and one with a channel mixing angle

Application to ${ }^{4} \mathrm{He}+n$ scattering

- We applied our interaction to ${ }^{4} \mathrm{He}+n$ scattering in the ${ }^{2} \mathrm{~S}_{\frac{1}{2}}$ + channel
- We confined our system in an harmonic potential and used the Busch formula to extract the scattering parameters, a_{0} and $r_{\text {eff }}$
- We solved the Schrödinger equation with the Stochastic Variational Method (SVM)

Busch formula's idea

Busch formula

- We apply the Busch formula in order to extract the free space scattering parameters (scattering length a_{0} and effective range $r_{\text {eff }}$)
$k \cot \delta_{0}=-2 \sqrt{\mu \omega} \frac{\Gamma\left(\frac{3}{4}-\frac{E}{2 \hbar c \omega}\right)}{\Gamma\left(\frac{1}{4}-\frac{E}{2 \hbar c \omega}\right)}$
- The effective range expansion (ERE) gives us the scattering parameters
$k \cot \delta_{0} \approx \frac{1}{a_{0}}+\frac{1}{2} r_{\text {eff }} k^{2}$
- The Busch formula relates trapped energies (solvable with bound state methods like SVM) with free space, untrapped scattering parameters

Busch formula convergence

■ The Busch formula includes a Gamma ratio: it needs very high energy accuracy to give reliable results, below $10^{-2} \mathrm{MeV}$
■ The harmonic constant ω has to be as low as possible, in order to well separate the scales of the system

- The typical scale of ${ }^{4} \mathrm{He}+n$ is estimated as the scattering length $a \approx 2.5 \mathrm{fm}$
$\hbar \omega=\frac{\hbar^{2}}{\mu L^{2}}<8 \mathrm{MeV}$
■ In practice, it has to be at most 2 MeV in order to have negligible trap effects
■ This formula does not take into account the Coulomb interaction, but recently a generalized form has been derived

Stochastic Variational Method

■ Method to solve the Schrödinger equation standing on the variational principle, proposed by Suzuki and Varga in 1996

- The wave function is expanded as

$$
|\Psi\rangle=\sum_{k=1}^{M} \alpha_{k}\left|\Phi_{k}\right\rangle
$$

■ Each $\left|\Phi_{k}\right\rangle$ depends on some parameters, which are chosen randomly
■ More and more states are added until convergence

- The single basis state is expressed as a correlated Gaussian and an orbital, spin and isospin part

$$
\begin{aligned}
|\Phi\rangle & =\mathcal{A}(G(A)|c\rangle) \\
\langle\vec{x} \mid G(A)\rangle & =G(\vec{x}, A)=e^{-\frac{1}{2} \vec{x}^{\top} A \vec{x}} \\
\langle\vec{x}, \vec{s}, \vec{l} \mid c\rangle & =\langle\vec{x}, \vec{s}, \vec{l}|(L S) J M_{J}\left|M_{l}\right\rangle=\left[\varphi_{L} \otimes \varphi_{S}\right]_{J, M_{J}} \varphi_{I, M_{l}}
\end{aligned}
$$

- The Gaussian form of the wave function allows analytical calculations of matrix elements
- The spin and isospin parts are just coupling of the single spins
$\varphi_{S, M_{S}}=\left|\left[\ldots\left[\left[s_{1} \otimes s_{2}\right]_{s_{12}} \otimes s_{3}\right] \cdots \otimes s_{N}\right]_{S, M_{S}}\right\rangle$
In presence of multiple configurations, they are chosen randomly as well!

Particle cluster states

- The stochastic selection process eventually becomes too slow when the basis is big enough
- In order to reach the desired accuracy ad-hoc designed states can be generated
■ We generated states that capture the ${ }^{4} \mathrm{He}$ core - n dynamic as follows
$A=\left(\begin{array}{cc}(3 \times 3) & 0 \\ 0 & \frac{1}{(n \beta)^{2}}\end{array}\right)$
$\exp \left(-\frac{1}{2} \vec{x}^{\top} A \vec{x}\right)=\exp \left({ }^{4}\right.$ He core) $\exp \left(-\frac{1}{2} \frac{x_{4}{ }^{2}}{(n \beta)^{2}}\right)$
- The 3×3 matrices are generated for ${ }^{4} \mathrm{He}$ with SVM, β is an optimized parameter and n runs from 1 to 10

Convergence example

Phase shifts

Scattering parameters

- We can predict the scattering parameters for
- $d+n$
- $t+n$
- ${ }^{3} \mathrm{He}+n$
- ${ }^{4} \mathrm{He}+n$

■ Possibly, core-proton scattering can be reachable taking into account the Coulomb force in the Busch formula

- We can distinguish different J channels
- The most thriving application is ${ }^{4} \mathrm{He}+n$ in the channels ${ }^{2} P_{\frac{1}{2}}$ and ${ }^{2} P_{\frac{3}{2}}$, where there are two resonances
■ We computed the LO phase shifts span of ${ }^{4} \mathrm{He}+n$ from cutoffs 1.25 to $6 \mathrm{fm}^{-1}$

${ }^{4} \mathrm{He}+n$ resonance

Conclusions \& summary

■ We presented the pionless Effective Field Theory potential up to NLO
■ We extracted the scattering parameters a_{0} and $r_{\text {eff }}$ with the Busch formula

- We got amazing results compared to the literature and to other more sophisticated models!
- We hinted on future application to $L \geq 1$ systems

Thank you for your attention!

