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Nuclear physics at low energy

Quantum Chromodynamics (QCD) is the established fundamental
theory of the strong interaction. At low energies (E ≲ 200 MeV) it is
not perturbative.

Two approaches:

□ Solve the Lagrangian by brute force, regardless of the cost ⇒ Lattice
QCD (LQCD)

□ Work with more appropriate low-energy degrees of freedom ⇒ Effective
Field Theory (EFT)

We employ Pionless EFT (/πEFT), where the the degrees of freedom
are the nucleons and the pions are integrated out
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/πEFT interaction

2-body 3-body 4-body 5-body

LO C1 D1 – –

NLO C2 – E2 –

N2LO C3 D3 ? ?
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/πEFT interaction, LO

Without pions, our Leading Order (LO) interaction is a contact
interaction:

VLO, 2B(r⃗) = CS ,I δ(r⃗)
VLO, 3B(r⃗ij , r⃗jk) = DS ,I δ(r⃗ij)δ(r⃗jk)

The two body force is projected to two channels,
(S , I ) = (1, 0), (0, 1), while the three body force is projected to
(S , I ) =

(
1
2 ,

1
2

)
, for a total of three LO LECs

The promotion of a repulsive three body force at LO prevents the
Thomas collapse

In order to numerically solve Schrödinger’s equation, we have to
smear the Dirac delta, introducing the cutoff Λ

δΛ(r⃗) = e−
Λ2r2

4
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/πEFT interaction, NLO

Our Next to LO (NLO) interaction has momentum dependent
two-body terms, three counterterms and a four-body force:

VNLO, 2B = CS ,I∇2δ(r⃗)
VNLO, counter = CS ,I δΛ(r⃗) + DS ,I δ(r⃗ij)δ(r⃗jk)

VNLO, 4 Body = ES,I

∏
ab∈pairs

δΛ(r⃗ab)

The momentum dependent terms introduce an effective range to the
interaction

The counterterms have the same form of the LO terms and serve to
keep the LO observables reproduced at NLO
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/πEFT interaction, NLO L ≥ 1

We have three additional terms if the angular momentum is L ≥ 1:

VNLO, p⃗·p⃗′ = CS ,I
←−
∇δ(r⃗)

−→
∇

V
NLO, L⃗·S⃗ = CS ,I δ(r⃗)L⃗ · S⃗

VNLO, Tensor = CS ,I δ(r⃗)S12(r⃗)

Their matrix element depends on J, allowing us to distinguish
different (L, S) couplings

They introduce a total of five LECs, but one is related to channel
mixing (3S1 −3 D1)
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Final remarks on the model

Between LO and NLO, out model has six parameters fixed to few
body observables:

LO: a0nn = −18.95 fm

B(2H) = 2.2246 MeV

B(3H) = 8.482 MeV

NLO: r0nn = 2.75 fm

r1np = 1.753 fm

B(4He) = 28.3 MeV

NLO interaction is included perturbatively to circumvent the Wigner
bound

Four L ≥ 1 new LECs are fixable with NN av of channels 1P1 and
3P0,

3P1,
3P2, and one with a channel mixing angle
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Application to 4He+n scattering

We applied our interaction to 4He+n scattering in the 2S 1
2

+ channel

We confined our system in an harmonic potential and used the Busch
formula to extract the scattering parameters, a0 and reff

We solved the Schrödinger equation with the Stochastic Variational
Method (SVM)
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Busch formula’s idea
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Busch formula

We apply the Busch formula in order to extract the free space
scattering parameters (scattering length a0 and effective range reff)

k cot δ0 = −2
√
µω

Γ
(
3
4 −

E
2ℏcω

)
Γ
(
1
4 −

E
2ℏcω

)
The effective range expansion (ERE) gives us the scattering
parameters

k cot δ0 ≈
1

a0
+

1

2
reffk

2

The Busch formula relates trapped energies (solvable with bound state
methods like SVM) with free space, untrapped scattering parameters
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Busch formula convergence

The Busch formula includes a Gamma ratio: it needs very high energy
accuracy to give reliable results, below 10−2 MeV

The harmonic constant ω has to be as low as possible, in order to
well separate the scales of the system

The typical scale of 4He+n is estimated as the scattering length
a ≈ 2.5 fm

ℏω =
ℏ2

µL2
< 8 MeV

In practice, it has to be at most 2 MeV in order to have negligible
trap effects

This formula does not take into account the Coulomb interaction, but
recently a generalized form has been derived
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Stochastic Variational Method

Method to solve the Schrödinger equation standing on the variational
principle, proposed by Suzuki and Varga in 1996

The wave function is expanded as

|Ψ⟩ =
M∑
k=1

αk |Φk⟩

Each |Φk⟩ depends on some parameters, which are chosen randomly

More and more states are added until convergence
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SVM single state

The single basis state is expressed as a correlated Gaussian and an
orbital, spin and isospin part

|Φ⟩ = A(G (A)|c⟩)
⟨x⃗ |G (A)⟩ = G (x⃗ ,A) = e−

1
2
x⃗TAx⃗

⟨x⃗ , s⃗, I⃗ |c⟩ = ⟨x⃗ , s⃗, I⃗ |(LS)JMJ IMI ⟩ = [φL ⊗ φS ]J,MJ
φI ,MI

The Gaussian form of the wave function allows analytical calculations
of matrix elements

The spin and isospin parts are just coupling of the single spins

φS,MS
= |[. . . [[s1 ⊗ s2]s12 ⊗ s3] · · · ⊗ sN ]S,MS

⟩

In presence of multiple configurations, they are chosen randomly as
well!

Mirko Bagnarol Five-body calculation of n-4He scattering at next-to-leading order /πEFT 13



SVM Hebrew University of Jerusalem

Particle cluster states

The stochastic selection process eventually becomes too slow when
the basis is big enough

In order to reach the desired accuracy ad-hoc designed states can be
generated

We generated states that capture the 4He core - n dynamic as follows

A =

(
(3× 3) 0

0 1
(nβ)2

)

exp

(
−1

2
x⃗TAx⃗

)
= exp

(
4He core

)
exp

(
−1

2

x4
2

(nβ)2

)
The 3× 3 matrices are generated for 4He with SVM, β is an
optimized parameter and n runs from 1 to 10
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Convergence example
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Phase shifts
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Scattering parameters
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a0 in the literature
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r0 in the literature
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L = 1 systems

We can predict the scattering parameters for

d + n
t + n
3He+n
4He+n

Possibly, core-proton scattering can be reachable taking into account
the Coulomb force in the Busch formula

We can distinguish different J channels

The most thriving application is 4He+n in the channels 2P 1
2
and 2P 3

2
,

where there are two resonances

We computed the LO phase shifts span of 4He+n from cutoffs 1.25
to 6 fm−1
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4He+n resonance
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Conclusions & summary

We presented the pionless Effective Field Theory potential up to NLO

We extracted the scattering parameters a0 and reff with the Busch
formula

We got amazing results compared to the literature and to other more
sophisticated models!

We hinted on future application to L ≥ 1 systems
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Thank you for your attention!
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